
HAL Id: hal-01019978
https://hal.science/hal-01019978

Submitted on 7 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of Embedded Applications By Evolutionary
Fuzzing

Vincent Alimi, Sylvain Vernois, Christophe Rosenberger

To cite this version:
Vincent Alimi, Sylvain Vernois, Christophe Rosenberger. Analysis of Embedded Applications By Evo-
lutionary Fuzzing. Workshop on Security and High Performance Computing Systems, International
Conference on High Performance Computing & Simulation (HPCS), Jul 2014, Rome, Italy. pp.7.
�hal-01019978�

https://hal.science/hal-01019978
https://hal.archives-ouvertes.fr

Analysis of Embedded Applications
By Evolutionary Fuzzing

V. Alimi, S. Vernois, C. Rosenberger

Normandie Univ, France;
UNICAEN, GREYC F-14032 Caen, France;

ENSICAEN, GREYC, F-14032 Caen, France;
CNRS, UMR 6072, F-14032 Caen, France

christophe.rosenberger@ensicaen.fr

Abstract—In this paper, we propose to use fuzzing techniques
to discover vulnerabilities in programs hosted into smart cards
used for telecommunications or banking purposes (SIM cards,
credit cards, secure element into NFC mobile devices. . .). Those
programs – called applets – usually host sensitive applications and
manipulate sensitive data. A flaw by design or by implementation
in one of those applet could have disastrous consequences. The
proposed approach uses a genetic algorithm to optimize the
vulnerabilities search. We illustrate the benefit of the proposed
method on a MasterCard M/Chip applet through experimental
results.

I. INTRODUCTION

With the development of Internet and digital networks,
new transactions have emerged. These electronic transactions
govern our daily lives such as access control to a building
with a badge, internet payment, payment with a mobile
phone, etc. As for example, here are some figures in France
in 2010: E-commerce (online shopping) concerned an amount
of $31 billion, it has been recorded $7 billions of credit
card payments for an amount of $336 billion and 1.5 billion
withdrawals on ATMs for $115 billion.

Electronic transactions have opened the door to a multitude
of opportunities declined in various forms : the internet portal
to check your bank accounts, make transfers or place orders
in scholarships, a smart card to open a door or validate his
title transit, a downloaded to a computer or a mobile device
like a PDA or a mobile phone application. This latter category
of mobile equipment is extremely powerful in terms of service
offerings. Indeed, a mobile phone (which will be called mobile
thereafter) has the following characteristics :

• Nomad: it is characterized by its mobility which al-
lows him to become an indispensable tool of everyday
life ;

• Online: with the phone 3th and now 4th generation,
the mobile has a roaming internet access broadband.
This allows, among other things, the consultation
emails, access to web services, ...;

• Powerful: current mobile called smartphones ship
processors more powerful, of memory increasingly
important and operating more efficient system.

By nature and as for example, contactless transactions
of mobile services are more prone to attacks such as
man-in-the-middle, eavesdropping and relay. The discovery
of new vulnerabilities and new types of attacks are often
defined through the generalization of existing ones from
the state of the art. When developing new applications,
most of implementation errors are mostly detected. It may
nevertheless be possible to have undetected errors which
could have disastrous consequences.

Vulnerabilities can be classified in different ways. In [1],
Dowd et al. propose a classification into three classes:

• Vulnerabilities due to the design: introduced during
the transcription of specifications into functional spec-
ifications themselves transcribed into technical speci-
fications;

• Vulnerabilities due to the implementation: introduced
when developing the program code or server ;

• Vulnerabilities due to the use: observed during the
deployment and operation of the program or server.

The implementation errors are mostly detected by error
or warning messages from the compiler, unit testing or
integration testing. It may nevertheless happen that some
errors are not detected, either by lack of resources to allocate
to the test phase or because the test phase focuses primarily
on compliance with the functional requirements. As for
example, the attack on the Mifare Classic cards made by
Koning et al. published in [2] exploits a weakness in the
pseudo-random generator involved in the encryption of the
communication between the card and the player. In the
context of mobile contactless services, implementation errors
can have disastrous consequences. Consider as an example
the case of a mobile proximity payment service on the
Secure Element as an applet. This application was developed
considering defined specifications by an actor such as Visa,
MasterCard, American Express or by a so-called proprietary
networks. To overcome the difficulty of conducting extensive
testing, fuzzing techniques can be very useful. The fuzzing
is a technique to discover vulnerabilities in a program or a
system. The principle is to inject malformed or the limits of
their values.

Barton Miller, professor at the University of Wisconsin,
is the originator of the field of fuzzing. He introduced the
concept of fuzz program in 1988 in a class project [3] whose
first findings were published in [4]. The class project consisted
in sending some random character chains as input into some
UNIX processes in order to make them crash. In [5], Clarke
enunciates the common features to fuzzing programs:

• data generation (creating data to be passed to the
target);

• data transmission (getting the data to the target);

• target monitoring and logging (observing and record-
ing the reaction of the target), and;

• automation (reducing, as much as possible, the amount
of direct user-interaction required to carry out the
testing regime).

The last two may be considered optional or can be
implemented in an external module fuzzer. Three methods
for the generation of data [6] can be distinguished: Random,
data mutation and protocol analysis. The random generation
involves a generator that produces a set of test data. This
approach minimizes the effort and time required, but turns
out to be less effective for detecting vulnerabilities because
they are not necessarily known in advance. The mutation
data combines two techniques: data capture and selective
mutation. Starting from a valid input data is carried mutations
in order to obtain a set of test data which is very close to the
structure of a valid data. Generating data based on protocol
analysis is based on the principle that the input data meet
very often a protocol or a pre-defined format. A fuzzer of
this type is implemented by defining a model of this protocol
so that it can create valid input but whose data is random data.

The paper is organized as follows. in section II, a brief
state of the art is given related to existing analysis method for
embedded applications such as the ones in a Secure Element.
Section III describes the proposed method based on a Fuzzing
approach exploiting a genetic algorithm to optimize the space
search. Illustrations of the proposed method are given in
section IV on a real JavaCard payment application. Section
V gives the conclusion and perspectives of this study.

II. STATE OF THE ART

In [7], Guyot illustrates the use of fuzzing on applets.
He demonstrates how easy it is to accurately determine the
commands (i.e. the instruction codes) that are accepted by the
application. The commands – also called Application Data
Units (APDU) – are coded in accordance with the ISO 7816
standard [8]. A command that is recognized induces an action
and the return of data or of status words indicating an internal
error. For instance, the applet can return the status words 6F
00 if the input data are not conform and provoked a treatment
error in the applet. On the other hand, it the command is not
recognized the standard status words 6D 00 are returned.
Then, Guyot uses the results obtained to make the application
(a student card application) fuzzing-proof. Instead of using a
different instruction code per supported command, he uses a
single instruction code and differentiates the commands by

using the reference parameters (P1 and P2). The result is
an increase of the complexity for an attacker to find out the
way the application works because the use of the reference
parameters is not standard.

In [9], Barreaud et al. expose a method to analyse the
vulnerabilities on a smard card embedding a web server.
Their approach consists in fuzzing the BIP protocol (Bearer
Independant Protocol) responsible for the communication
between the application processor and the SIM card of a
mobile phone. They use the fuzzing framework Peach that
they extend with the Pyscard library in order to communicate
with the SIM card. They modelize the BIP protocol with
an XML file. They also add to the file the two markups
< Expected > and < Response > in order to monitor
the target. They find out that some of the tested cards do
not properly implement the protocol as defined by ETSI
(European Telecommunications Standards Institute) and that
some have implementation flaws allowing to create a Denial
of Service attack.

In [10], Lancia publishes one of the only known fuzzing
methodologies aiming at discovering vulnerabilities in EMV
(Eurocard Mastercard Visa) banking applications. To realize
this attack, he uses the block fuzzing framework Sulley [11].
Sulley is written in Python and is recognized as one the
most complete and efficient fuzzing framework. In order
to transmit data, Lancia has integrated the Triton library,
also written in Python, allowing to communicate with smart
cards through the standard PC/SC API. For monitoring
the target, Lancia developed a reference implementation of
the EMV applications he targeted. The same commands
are simultaneously sent to the real card and the reference
implementation. An anomaly is detected when the results
returned by the real card differs from the one returned by
the reference implementation. All the protocol commands are
modelized then linked together in order to create the protocol
graph (cf. figure 1).

To test a particular command in the graph, all the preceding
commands are sent with their default value. For that particular
command, the framework Sulley generates the data from the
model of the protocol. Thanks to this methodology, Lancia
has brought out some functional differences with the EMV
specifications and some security flaws on implementations
of the Visa and Mastercard specifications. For instance, he
noticed that a particular combination of data could generate
the reset of the offline counters.

Lancia’s approach has proven efficient by showing some
functional differences and security flaws on real cards that
have been certified in accredited certification labs. This
efficiency is the result of a precise description of the data
model and a thoroughness in the development of the reference
implementation. However, the approach has gaps that we
propose to fill in.

In this paper, we propose an improvement of Lancia’s
approach for the testing of payment applications in black box

Fig. 1. EMV protocol model according to Lancia in [10]

by using evolutionary algorithms.

III. PROPOSED METHOD

A. Principles

Instinctively, we thought that an ideal testing framework
would be a framework capable of assessing the quality of the
data sent to the card function of the effect produced. In other
words, the ideal framework would be capable of modifying in
real-time the commands sent to the card function of the data
returned in order to discover vulnerabilities.

A fuzzer based on a reference implementation does not
match our initial need to adapt the data generated function
of the results it produces. Indeed, this kind of fuzzer makes
a static comparison and raises a warning when the results
returned by the target and the reference implementation differ.
Instead, we prefer using an algorithm capable of iterating over
a new round of data based on the evaluation of the preceding
rounds data, such as evolutionary algorithms.

In this paper, we propose a fuzzing methodology for smart
card applications using the genetic algorithm (GAs) to generate
the data sent to the card and evaluate the quality of this data.

B. WSCT Framework

WinSCard Tools, alias WSCT, is a framework foremost
developed for Windows using C# programming language. In
the same way as Java is based on the execution of byte code
independent of the machine thanks to the Java Virtual Machine

(JVM), C# compiler generates a byte code intended to be
executed by a Common Language Runtime (CLR). Hopefully
CLR implementations exist on most common systems: .Net
framework by Microsoft is dedicated to Windows operating
systems starting with Windows XP and Mono platform by
Xamarin is dedicated to Linux based operating systems up to
iOS and Android, even if Windows is also supported.

native PC/SC

Operating System

.net VM

Wrapper

Core

Stack

Smart Card Application

proprietary API

Proprietary wrapper

native PC/SC

Operating System

.net VM

Wrapper

Core

Stack

Smart Card Application

proprietary API

Proprietary wrapper

Fig. 2. WSCT framework overview

WSCT framework itself is mainly composed of five mod-
ules (figure 2) :

• Wrapper: this module publishes a first basic API
allowing to access to the concrete PC/SC resource
manager hosted on the machine. It is the most ma-
chine dependent module as it has to be adapted
for each operating system. Standard implementation
allows transparent access to PC/SC smartcard readers
on Windows, Linux and MacOS by providing one
binary for all. By overriding this module, the entire
framework can self adapt to other systems (Android
NFC reader is a work in progress for example) or
specific readers and probes.

• Core: this module aims at providing an higher level
API allowing the communication with the wrapped
readers and inserted smartcard. It provides useful
interfaces and objects allowing observability of com-
munication between the card and the caller. It’s the
foundation of genericness and re-usability of tools
developed upon WSCT.

• Stack: it publishes a mechanism allowing the chaining
of layers able to intercept and transform data exchange
between the caller and the card.

• ISO 7816 library: it provides mainly a partial imple-
mentation of common ISO7816-4 normalized objects,
such as C-APDU and R-APDU (normalized formats
of command and response) or SELECT instruction.

• Helpers: it publishes a set of useful objects often
needed when working with smart cards. For example
TLV format (tag length value), often used with smart
cards, is defined there and can be used everywhere.

These items have finally been made public [12]. A graphic
user interface is also available to help creating demonstrators.
Several libraries have been built on top of WSCT to ease the
work on concrete card. The most used is the EMV library

that implements main parts of EMV specification and allows
sending, observability and interpretation of exchanges relative
to EMV payment. The sources of these libraries are not
published to prevent public misuse.

The added value of this framework compared to other
existing API dedicated to smartcard communication, whatever
the language, is certainly the passive observation of the
communication that is natively provided, allowing the
interpretation of transaction exchanges to be kept separated
and independent from the functional cinematic, as illustrated
by figure 3. This is why the fuzzing experimentations were
realized using this framework.

Concrete Smart Card

Layer 1

Application Layer

Layer 2S
ta

ck

C APDU

R APDU

Terminal cinematic

Live analysis

Actions on APDU

Fig. 3. WSCT observability (Core) and interception (Stack)

C. Genetic algorithm

Genetic algorithms determine the optimal value of a
criterion by simulating the evolution of a population until
survival of best fitted individuals [13], [14]. The survivors are
individuals obtained by crossing-over, mutation and selection
of individuals from the previous generation. We think that
GA is a good candidate to find out the optimal combination
of segmentation results for two main reasons. The first one
is due to the fact an evaluation criterion is not very easy to
differentiate. GA is an optimization method that does not
necessitate to differentiate the fitness function but only to
evaluate it. Second, if the population is enough important
considering the size of the search space, we have good
guarantees that we will reach the optimal value of the fitness.

A genetic algorithm is defined by considering five essential
data:

1) genotype: It is composed of the candidate solution
for the command resulting to a vulnerability. In our
case, we focus on the GENERATE AC command on
a payment applet (see Figure 4)

2) initial population: a set of individuals characterized
by their genotypes,

3) fitness function: this function enables us to quantify
the fitness of an individual to the environment by
considering its genotype. In our case, it corresponds
to the evaluation of the GENERATE AC command.
For more details, see section IV-B.

4) operators on genotypes: they define alterations on
genotypes in order to make the population evolve
during generations. Three types of operators are used:

• individual mutation: individual’s genes are
modified in order to be better adapted to
the environment. We use the non-uniform
mutation process which randomly selects one
chromosome xi, and sets it as equal to a non-
uniform random number:

x′i =

{
xi + (bi − xi)f(G) if r1 < 0.5
xi − (xi + ai)f(G) if r1 ≥ 0.5

(1)
where f(G) = (r2(1− G

Gmax
))b

The values r1, r2 are numbers in the in-
terval [0,1]. The values ai and bi are the
lower and upper bound of chromosome xi.
G is the current generation, Gmax is
the maximum number of generations and b
is a shape parameter

• selection of an individual: individuals that are
not adapted to the environment do not survive
to the next generation. We used the nor-
malized geometric ranking selection method
which defines a probability Pi for each indi-
vidual i to be selected as following:

Pi =
q(1− q)r−1

1− (1− q)n
(2)

where q is the probability of se-
lecting the best individual, r is
the rank of individual (1 is the best)
and n is the size of the population.

• crossing-over: two individuals can reproduce
by combining their genes. We use the arith-
metic crossover which produces two comple-
mentary linear combinations of the parents:

X ′ = aX + (1− a)Y
Y ′ = (1− a)X + aY

(3)

where X and Y are the genotype of parents,
a is a number in the interval [0,1] and X ′

and Y ′ are the genotype of the linear com-
binations of the parents.

5) stopping criterion : this criterion allows to stop the
evolution of the population. We can consider the
stability of the standard deviation of the evaluation
criterion of the population or set a maximal number

of iterations (we used the second one with the number
of iterations equals to 2000).

Given these five informations, the execution of the genetic
algorithm is carried out in four steps:

1) definition of the initial population (segmentation re-
sults) and computation of the fitness function (evalu-
ation criterion) of each individual,

2) mutation and crossing-over of individuals,
3) selection of individuals,
4) evaluation of individuals in the population,
5) back to step 2 if the stopping criterion is not satisfied.

IV. ILLUSTRATIONS

A. Experimental protocol

Our GA-based testing framework is based on the
architecture described in section III-B. We’re adding to the
logic responsible for the fuzzing the library AForge.NET [15]
offering an open source implementation of genetic algorithms.
We’re loading, installing and personalizing an application that
we developed onto a smart card. We implemented in this
applet a part of the MasterCard M/Chip [16] specifications
whose transaction flow complies with the EMV standard. We
simplified the development by keeping only the piece of code
strict necessary to perform a transaction. Table I summarizes
the parts of the experiment.

Fuzzing framework WinSCard Tools
Framework language C#
Smart card used JCOP 2.4.1 simulator
Payment application MasterCard MChip 4
GA library AForge.NET
Population size 10000
Number of iterations 5000
Selection of best individuals Elitist selection
Selection method Permutation of two genes randomly se-

lected
Mutation method Crossover of two genes randomly

picked)
Data represented by individuals Data of the command GENERATE AC

(cf. Figure 4)
Fitness function Evaluation of the response to GENER-

ATE AC (CID, CVR . . .) (cf. ??)
Coefficient α, score multiplier α = 1 if the cryptogram is an AAC

α = 3 if the cryptogram is an ARQC
α = 5 if the cryptogram is an TC

TABLE I. SUMMARY OF THE EXPERIMENT

The following section details the implementation of our
approach on this particular applet.

B. Experiment procedure

In our GA-based approach, we follow the flow of a
payment transaction and use GAs to generate the data field
of the command textttGENERATE AC. Hence, the genome
of the individuals represents the data field of this command,
i.e. the data related to CDOL 1 or CDOL 2 depending on the
case. The CDOL 1 related data of the MasterCard M/Chip
application is given in figure 4. The fitness evaluation of
the command GENERATE AC is a combination of the type
of cryptogram returned by the application indicated by the
data element Cryptogram Information Data (CID) and the

checks performed by the application gathered in the data
element Card Verification Results (CVR). Both CID and CVR
are returned by the card in the response to the command
GENERATE AC.

Fig. 4. MasterCard M/Chip CDOL 1 related data

MasterCard M/Chip CVR comprises six bytes: the first
three bytes are used for information only while the last three
bytes are used for the decision making. We detail in figure
5 the bits used by the fitness function. The fitness score is
incremented by one if one of the bits flagged in bytes 1 to
3 is set to 0, and also incremented by one if one the bits
flagged in bytes 4 to 6 are set to 1. Then this score multiplied
by a coefficient α whose value is function of CID value, i.e.
of the cryptogram returned: 1 if the cryptogram is an AAC, 3
if the cryptogram is an ARQC and 5 if the cryptogram is a TC.

On the fuzzing framework side, we enriched the library
AForge.NET with a new object type Chromosome capable
of generating the data field of the command GENERATE AC
based on the CDOL 1 or CDOL 2 and to performs crossovers
and mutations. We also developed an evaluation function and
a fitness function dedicated to this type of chromosome. For
this fuzzing session, we had set a simple goal to reach in
order to validate our approach: fuzz the command GENERATE
AC responsible for the approval of the transaction by the
application. The experiment procedure is the following:

1) Definition of the coefficients used for the score eval-
uation: α = 1, β = 3, γ = 5.

2) Creation of a population comprising n individuals.
3) For each iteration i, perform a payment transaction

with the n individuals :
a) send the commands SELECT, GET

PROCESSING OPTIONS, READ RECORD
and GET DATA with their default values,

b) randomly, send the PIN code with the com-
mand VERIFY (requires the prior knowledge
of the PIN code),

c) the first command GENERATE AC is sent to
request a TC with the data of the individual
coding the CDOL 1 related data. If an ARQC
is returned by the application, the second
GENERATE AC is sent requesting a TC with

Fig. 5. Data associated to the Card Verification Results from the
MasterCard M/Chip application used for the fitness function of the genetic
algorithm

the data of the individual coding the CDOL
2 related data,

d) based on the data returned by the applica-
tion, each indivual is evaluated by the fitness
function as explained above,

e) the best individual is selected to create the
next generation of individuals.

All the transactions are recorded and when a reset of the
offline counters occurs or when a transaction is approved above
the limit of offline consecutive transactions, this transactions
is also added to the abnormal transactions records. The reset
of the offline transactions counters can be easily detected as
the application returns them in the response to the command
GENERATE AC into the data element Issuer Application Data.

C. Results

The first conclusion we came to was that the smart cards
we used to perform our fuzzing sessions appeared inadequate
for this kind of stressful treatment. Indeed, we made our set
of smart cards unusable after 25,000 consecutive transactions.
We then decided not to perform our fuzzing sessions on real
cards but to load the applications into a simulator (cf. figure
6). After obtaining a license of the NXP tool JCOP, we
integrated it to WinSCard Tool. To do so, we used the JCOP
simulator executable file and ported the JCOP offcard library
written in Java to C#. Then, we developed an interface in
order to seamlessly send and receive APDU commands to
the JCOP simulator from the our testing framework. While
this dematerialization introduces a bias into the experiment
as some vulnerabilities could have a hardware origin, this
allowed us to dramatically increase the framework execution
speed. For instance, we achieved to perform 5,000 EMV

payment transactions per minute on a powerful computer.

After many fuzzing sessions – dozens of hours and millions
of transactions – the proposed approach did not allow us to
observe any rest of the offline counters on our Mastercard
M/Chip implementation, but we observed the approval of many
transactions above the limit of consecutive offline transactions.
This proves the presence of an anomaly in our implementa-
tion of the payment application which was the goal of our
fuzzing framework and of our experiment. Those illegitimate
transactions are recorded so that we have all the necessary
elements for further analysis. However, it is quite difficult to
go back to the sequence of commands that lead to this anomaly.
For instance, we have detected during a fuzzing session that
some transactions got approved offline beyond the 10,000th
transaction Hence, it is very difficult to know exactly the
context of the anomaly and how the preceding transactions
had influence on the result.

V. CONCLUSION AND PERSPECTIVES

We proposed in this paper a new fuzzing technique
to detect vulnerabilities or problem of conformance to
specifications based on a genetic algorithm. This technique
allows us to optimize the search of commands that result
to a problem. Experimental results on a real applet showed
some interesting results such as the observation of different
illegitimate transactions. We observe that it is difficult to
identify exactly the commands resulting to a problem but
vulnerabilities are correctly identified.

Perspectives of this study concern the definition of proper-
ties on a transaction in order to better understand the situations
resulting to a vulnerability or a problem of conformance to
specifications.

REFERENCES

[1] Mark Dowd, John McDonald, and Justin Schuh. The Art of Software Se-
curity Assessment: Identifying and Preventing Software Vulnerabilities.
Addison-Wesley Professional, 2006.

[2] Gerhard Koning Gans, Jaap-Henk Hoepman, and Flavio D. Garcia.
A practical attack on the mifare classic. In Proceedings of the 8th
IFIP WG 8.8/11.2 international conference on Smart Card Research
and Advanced Applications, CARDIS ’08, pages 267–282, Berlin,
Heidelberg, 2008. Springer-Verlag.

[3] Barton Miller. Cs 736, fall 1988, project list.
http://pages.cs.wisc.edu/ bart/fuzz/CS736-Projects-f1988.pdf, 1988.

[4] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of
the reliability of unix utilities. Commun. ACM, 33(12):32–44, December
1990.

[5] Toby Clarke. Fuzzing for software vulnerability discovery. Technical
report, Royal Holloway University of London, 2009.

[6] Jason Crampton Toby Clarke. Fuzzing – or how to help computers cope
with the unexpected. Technical report, Royal Holloway University of
London.

[7] Vincent Guyot. Smart card, the invisible wallet. In Proceedings of the
9th European Conference on Information Warfare and Security, 2010.

[8] ISO/IEC, http://www.iso.org. ISO/IEC 7816-1 to 15: Identification
cards – Integrated circuit(s) cards with contacts(Parts 1 to 15).

[9] Nassima Kamel Matthieu Barreaud, Guillaume Bouffard and Jean-Louis
Lanet. Fuzzing on the http protocol implementation in mobile embedded
web server. In Proceeding of C&ESAR 2011, 2011.

Fig. 6. Use of the JCOP simulator to perform fuzzing on smart card applications

[10] Julien Lancia. Un framework de fuzzing pour cartes puce: application
aux protocoles emv. In Symposium sur la scurit des technologies de
l’information et des communications, 2011.

[11] Pedram Amini. Sulley fuzzing framework.
http://code.google.com/p/sulley/.

[12] Sylvain Vernois. Wsct framework.
[13] Matthew Bartschi Wall. A Genetic Algorithm for Resource-Constrained

Scheduling. PhD thesis, Department of Mechanical Engineering –
Massachusetts Institute of Technology, 1996.

[14] C. Houck, J. Joines, and M. G. Kay. The genetic algorithm optimization
toolbox (gaot) for matlab 5. Technical report, North Carolina State
University, 2005.

[15] Aforge.net :: Computer vision, artificial intelligence, robotics.
http://www.aforgenet.com/.

[16] MasterCard. M/Chip 4 Version 1.1 - Card Application Specifications
for Debit and Credit. MasterCard, October 2006.

