Anomaly Detection Based on Aggregation of Indicators

Abstract : Automatic anomaly detection is a major issue in various areas. Beyond mere detection, the identification of the origin of the problem that produced the anomaly is also essential. This paper introduces a general methodology that can assist human operators who aim at classifying monitoring signals. The main idea is to leverage expert knowledge by generating a very large number of indicators. A feature selection method is used to keep only the most discriminant indicators which are used as inputs of a Naive Bayes classifier. The parameters of the classifier have been optimized indirectly by the selection process. Simulated data designed to reproduce some of the anomaly types observed in real world engines.
Type de document :
Communication dans un congrès
23rd annual Belgian-Dutch Conference on Machine Learning (Benelearn 2014), Jun 2014, Bruxelles, Belgium. pp.64-71
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01017853
Contributeur : Fabrice Rossi <>
Soumis le : mardi 16 septembre 2014 - 15:18:36
Dernière modification le : dimanche 8 février 2015 - 01:01:26
Document(s) archivé(s) le : mercredi 17 décembre 2014 - 11:21:09

Fichiers

rabenorolacailleetal2014anomal...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01017853, version 2
  • ARXIV : 1407.0880

Citation

Tsirizo Rabenoro, Jérôme Lacaille, Marie Cottrell, Fabrice Rossi. Anomaly Detection Based on Aggregation of Indicators. 23rd annual Belgian-Dutch Conference on Machine Learning (Benelearn 2014), Jun 2014, Bruxelles, Belgium. pp.64-71. <hal-01017853v2>

Partager

Métriques

Consultations de
la notice

111

Téléchargements du document

85