Target identification using dictionary matching of generalized polarization tensors

Abstract : The aim of this paper is to provide a fast and efficient procedure for (real-time) target identification in imaging based on matching on a dictionary of precomputed generalized polarization tensors (GPTs). The approach is based on some important properties of the GPTs and new invariants. A new shape representation is given and numerically tested in the presence of measurement noise. The stability and resolution of the proposed identification algorithm is numerically quantified. We compare the proposed GPT-based shape representation with a moment-based one.
Type de document :
Article dans une revue
Foundations of Computational Mathematics, Springer Verlag, 2014, 14 (1), pp.27-62. <10.1007/s10208-013-9168-6>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01017774
Contributeur : Serena Benassù <>
Soumis le : jeudi 3 juillet 2014 - 10:38:29
Dernière modification le : jeudi 27 avril 2017 - 09:47:15

Identifiants

Collections

Citation

Habib Ammari, Thomas Boulier, Josselin Garnier, Wenjia Jing, Hyeonbae Kang, et al.. Target identification using dictionary matching of generalized polarization tensors. Foundations of Computational Mathematics, Springer Verlag, 2014, 14 (1), pp.27-62. <10.1007/s10208-013-9168-6>. <hal-01017774>

Partager

Métriques

Consultations de la notice

112