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Abstract-In this paper, the hyperspectral unmixing problem is 

solved with the nonnegative matrix factorization (NMF) 

algorithm. The regularized criterion is minimized with a 

hierarchical alternating least squares (HALS) scheme. Under 

the HALS framework, four constraints are introduced to 

improve the unmixing accuracy, including the sum-to-unity 

(STU) constraint, the constraints for minimum spectral 

dispersion and maximum spatial dispersion, and the 

minimum volume constraint. The derived algorithm is called 

F-NMF, for NMF with flexible constraints. We experimently 

compare F-NMF with different constraints and combined 

ones. We test the sensitivity and robustness of F-NMF to 

many parameters such as the purity level of endmembers, the 

number of endmembers and pixels, the SNR, the sparsity 

level of abundances, and the overestimation of endmembers. 

The proposed algorithm improves the results estimated by 

vertex component analysis (VCA). A comparative analysis on 

real data is included. The unmixing results given by a 

geometrical method, the simplex identification via split 

augmented Lagrangian (SISAL) and the F-NMF algorithms 

with combined constraints are compared, which shows the 

relative stability of F-NMF. 

Index Terms- Hyperspectral unmixing, nonnegative matrix 

factorization (NMF), hierarchical alternating least squares 

(HALS), constraint. 

 

I. INTRODUCTION 

Airborne hyperspectral sensors collect images in hundreds of 

narrow and contiguous spectral bands. Due to the limited spatial 

resolution of hyperspectral image (HSI), each observed pixel 

generally contains more than one material spectral signature. 

Hence, the hyperspectral unmixing, which decomposes a mixed 

pixel into a combination of pure material spectra known as 

endmembers, weighted by their corresponding abundance 

coefficients, is a challenging task.  

Let R (L×I) be the matrix unfolded HSI, whose I columns are 

the spectral pixels and the L rows are the vectorial spectral band 

images. As N is the related noise matrix, the linear spectral 

mixing model (LSMM) can be written as 

= + = +R AS N X N

                              

(1) 

The rows of S (J×I) are the abundance maps corresponding to the 

respective endmembers, whose spectra are located in the columns 

of A (L×J). J denotes the number of endmembers.  

Basically, hyperspectral unmixing is a problem of blind 

source separation (BSS). However, compared with most BSS 

applications, the endmembers of HSI data are dependent and the 

elements in A and S are nonnegative, so the hyperspectral 

unmixing is beyond the reach of many BSS algorithms (e.g. 

independent component analysis (ICA) [1]). To fulfill these 

constraints, numerous special algorithms have been proposed to 

solve the hyperspectral unmixing problem under the LSMM 

assumption, including the approaches of convex geometry, 

Bayesian source separation (BSS), and nonnegative matrix 

factorization (NMF). The geometrical approaches first determine 

the endmembers and estimate the abundances in a second step, 

while the BSS and NMF-based approaches find the endmembers 

and the abundances simultaneously.  

Geometrical approaches try to determine the vertices of the J-

simplex enclosing the observed pixels, such as pixel purity index 

(PPI) [2], N-FINDR [3], vertex component analysis (VCA) [4]. 

The PPI algorithm projects every spectral vector onto skewers 

(large number of random vectors). The points corresponding to 

extremes, for each skewer direction, are stored and cumulated. 

The pixels with the highest scores are the purest ones. N-FINDR 

finds the set of pixels defining the largest volume within the data. 

VCA iteratively projects data onto a direction orthogonal and the 

endmembers correspond to the extreme of the projections. The 

issue of these approaches is to find extreme points within the data 

with the assumption of pure pixel of each endmember, which is 

always unsatisfactory for real hyperspectral data. Recently, the 

state-of-art reference algorithms MVSA [5], MVES [6] and the 

simplex identification via split augmented Lagrangian (SISAL) 

[7] have proposed various ways to find a minimum volume 

simplex, showing very good performances in the estimation of 

endmembers. Particularly, SISAL is able to unmix HSI data in 

the case of no pure pixel. 

The geometrical approaches do not work well when the 

observed data are highly mixed, because there are not enough 

vectors in simplex facets. In these cases, the separation problem 

can be addressed in a Bayesian framework. Several Bayesian 

Positive Source Separation (BPSS) algorithms under positivity 

and sum-to-one constraints have been recently developed [8-10]. 

In [10], a discussion on the effectiveness of the sum-to-one 

constraint is done, showing that full constrained BPSS2 gives 

better results than BPSS for simulated data, while it is the 

contrary for the real OMEGA data, “due to non-linearity in the 

radiative transfer and noise in the dataset in contradiction with 

the full additivity constraint”. We think that it would be not the 

same with the proposed NMF-based algorithm, firstly because 

the full additivity is not a hard but a soft constraint, and second 

because the residual error RQE is able to represent measurement 

noise or model noise, and then the algorithm is quite robust for 

real data, which can contain non-linear mixed terms. This can be 

seen by comparing the results of a geometrical algorithm like 

SISAL, very performant on simulated data, with the results 

obtained on Cuprite real data, which drops dramatically, while 

the NMF-based algorithms keep performing.  

 In the last decade, NMF has been a popular algorithm since 

Lee and Seung [11] investigated the properties of the algorithm 

and published some simple and useful algorithms for two types 

of factorizations. The NMF algorithm has been broadly used in 

text mining, image analysis, speech processing and automatic 

control. The basic NMF problem consists of finding two 

nonnegative data matrices whose product approximates the 

mixed data in a chosen measure sense [e.g., the reconstruction 

quadratic error (RQE)].  However, the solution to NMF is not 

unique so various regularizations with prior knowledge should be 

taken into account to reduce the number of solutions. The sum-

to-unity (STU) constraint is proposed in [12], which regularizes 

the RQE with a function of S to normalize the columns of it. The 

authors of [13] propose constraints based on two inherent 

characteristics of hyperspectral data: the spectral piecewise 

smoothness and spatial sparseness. In [14], a minimum volume 

constrained NMF (MVC-NMF) based on projected gradient (PG) 

optimization method is proposed, whose regularization term 

minimizes the simplex volume spanned by the endmembers. 
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Other authors [15], propose a minimum distance constrained 

NMF (MDC-NMF), which consider the endmember distance 

instead of the volume of the estimated simplex. MDC-NMF 

makes a slight modification of the optimized algorithm used for 

MVC-NMF. MiniDisCo algorithm makes the assumption of 

minimum spectral dispersion for NMF regularization [16], and 

MDMD-NMF regularizes with minimum spectral dispersion and 

maximum spatial dispersion [17]. A new step-size estimation 

technique is proposed for the two algorithms to hasten the PG 

convergence. 

The optimization algorithms and constraints on A and S are 

two main techniques for NMF-based hyperspectral unmixing. 

The authors of [18] propose a flexible hierarchical alternating 

least squares (HALS) algorithm with a set of local cost functions 

called alpha and beta divergences. The word “flexible” means the 

variation of the optimization algorithm. In this paper, we propose 

an improved NMF algorithm with four constraints due to the 

characteristics of HSI, called the flexible NMF (F-NMF). The 

word “flexible” means the variation of constraints on A and S. F-

NMF also uses the HALS update rules, significantly 

outperfoming the PG update rules in convergence speed. Actually, 

the novelty is both the combination of the constraints and the 

development of these constraints under HALS-based algorithm. 

The paper is organized as follows: Section II presents the 

basic NMF algorithm and the HALS update rules. In Section III, 

we introduce four contraint functions and integrate them into the 

F-NMF algorithm. In Section IV, the comparison and analysis of 

the F-NMF with different constraints are given by processing 

various simulated HSIs. The algorithms are applied to real data in 

Section V. The F-NMF algorithms are compared with SISAL, for 

the two algorithms are both able to unmix hyperspectral data in 

which the pure pixel assumption is violated. Finally, some 

conclusion closes the paper. 
 

II. NMF FOR HYPERSPECTRAL UNMIXING 

In this section, we first present the NMF problem and then 

the optimization algorithm used to solve it in this paper.  

A. NMF problem 

The aim of basis NMF methods is to find two estimated 

matrices Â  and Ŝ  such that 

ˆ ˆX AS

                                     

(2) 

A commonly used theoretical solution is to find nonnegative 

matrices minimizing the RQE 
2

RQE( , )
F

= −A S X AS

                       

(3) 

where 
F
⋅ is the Frobenius (e.g., quadratic) norm.  

B. HALS algorithms 

In [19], the authors show that the HALS scheme works 

remarkably well in practice, outperforming, in most cases, the 

other optimization algorithms for NMF. In particular, it is proved 

to be locally more efficient [20] and shown to converge to a 

stationary point under some mild assumptions [21]. For these 

reasons, we choose HALS as the optimization technique. 

The basic idea of HALS is to define residues as 
( )k

i i k k

i k≠

= − = − +∑X X A S X AS A S

             

(4) 

for k = 1, 2,…, J.  Ak (L×1) is one endmember spectrum and    Sk 

(1× I) corresponds to its abundance fraction. 

By substituting equation (4) into (3), the new RQE function is 
2

( )RQE( , ) k

k k k k F
= −A S X A S

                   

(5) 

The gradients of the above function are expressed by 

2 ( )

2 ( )

RQE( , )
2( )

RQE( , )
2( )

k Tk k
k k k

k

T kk k
k k k

k

∂
= −

∂

∂
= −

∂

A S
A S X S

A

A S
A S A X

S

              (6) 

By setting the above equation to zero, the updating rules are 

obtained: 

( ) ( )

2 2

[0,1] [0,1]

, .
k T T k

k k
k k

k k

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥← ←⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

X S A X
A S

S A

               (7) 

For k = 1, 2, …, J, where [δ][0,1] is to enforce every element δij 

lies in [0, 1], so 

[ ]( )[0,1]

0, if  0

,     if  0< 1

1, if  1

ij

ij ij
ij

ij

δ
δ δ

δ

⎧ <⎪⎪⎪⎪= <⎨⎪⎪ >⎪⎪⎩

δ
 

Clearly, the HALS algorithm is bound-constrained. It is also 

shown that the optimal value of each entry of A (Ak) does not 

depend on the other entries of the same column. By symmetry, 

the same property holds for each row of S (Sk). Thus, the detailed 

HALS algorithm is summarized as follows: 

1) Initialize A and S with the VCA algorithm; 

2) for  i = 1, 2, …, do 

for k = 1, 2, …, J 

        Update Ak and Sk with the HALS update rules; 

end 

until the stop criteria is reached 

The simplest update rules are given in eq. (7), and the regularized 

f with all constraints will be proposed in eq. (18). The maximum 

number of iterations is always set high (e.g. 2000) to obtain 

accuate estimations. However, the overestimation of the iteration 

number induces time waste. Indeed, the RQE value slightly 

increases from certain iteration whereas the regularized f keeps 

decreasing. Thus, the algorithm is stopped at this iteration when 

the RQE value goes to a minimum although the highest iteration 

number is not reached. The stop criteria is expressed as 

 
50 '

' 0,...,50
RQE min RQE .k k k

k

− −

=
<  

 

III. NMF WITH FLEXIBLE CONSTRAINTS 

The basic NMF optimized function ensures that the two 

constraints A and S are both nonnegative. Since the NMF 

solution is not unique, some prior knowledge on HSIs can be 

introduced to regularize the problem. A generic expression for 

the optimized function is  

( , ) ( , ) ( ) ( )e e i i j j

e i j

f D D Dσ α β= + +∑ ∑ ∑A S A S S A
 

(8) 

where σ, α and β are regularized parameters for the estimation 

error and the spectral and abundance constraints. D(A,S) 

measures the difference between X and AS with respect to some 

norms. By substituting equation (4) into (8) and using the RQE 

norm, the new optimized function f is 

  

( , ) RQE( , ) ( ) ( )k k k k i i k j j k

i j

f D Dα β= + +∑ ∑A S A S S A
(9) 

In this section, we add four constraints for A and S to the 

function to improve the unmixing result. With all these 

constraints, the algorithm is called flexible NMF (F-NMF), based 

on HALS update rules.  

A. STU constraint 

 The STU constraint makes the sums of the columns of S 

equal to 1. The STU constraint is defined as follows: 
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2

1 1( )k k i I

i k F

D
≠

= + −∑S S S 1
                   

(10) 

where 11I is an (1×I) vector of ones. The gradient derivation of D1 

with respect to Sk is 

1
1

( )
2k

k i I

i kk

D

≠

⎛ ⎞∂ ⎟⎜= + − ⎟⎜ ⎟⎜ ⎟∂ ⎝ ⎠∑S
S S 1

S
                   (11) 

B. Maximum spatial dispersion constraint 

In real situations, abundance matrix is often very sparse 

because the materials are mostly grouped in separate regions 

even if the pure pixels. We note that reducing the data enclosing 

simplex volume is equivalent to increase the dispersion of the 

abundances fractions in the sum-to-one constrained subspace 

enclosing the abundances. Actually, the most impossible situation 

is the uniformly-mixed data. Therefore, as the mean value of 

abundances is 1/J, we defined the maximum spatial dispersion 

constraint as follows: 

2

2 1

1
( )k k I

F

D
J

=− −S S 1

                        

(12) 

This constraint encourages null abundance pixels and full pixels, 

as in real scenes, not all the endmembers are present in all pixels, 

and in contrast some pixels contain only one material. The 

gradient derivation of D2 with respect to Sk is 

2
1

( ) 1
2k

k I

k

D

J

⎛ ⎞∂ ⎟⎜=− − ⎟⎜ ⎟⎜⎝ ⎠∂
S

S 1
S                         

(13) 

C. Minimum spectral dispersion constraint 

This constrained function depends on A, encouraging the 

variance of each endmember spectrum to be as low as possible. 

This dispersion constraint is to improve the shape estimation of 

flat endmember spectra. Consequently, if the estimation of some 

spectra is improved, the estimation of the other spectra involved 

in the mixture will also indirectly be improved due to the 

parameter interdependences. We define the minimum spectral 

dispersion constraint as  
2

1

1
( )k LL LL k

F

D
L

⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜⎝ ⎠
A I 1 A

                       

(14) 

The gradient derivation of D1 with respect to Ak is 

1( ) 1
2k

LL LL k

k

D

L

⎛ ⎞∂ ⎟⎜= − ⎟⎜ ⎟⎜⎝ ⎠∂
A

I 1 A
A                     

(15) 

D. Minimum distance constraint 

In MVC-NMF [9], the volume of A is calculated as the 

constraint, which suffers from numerical instabilities [11]. Here, 

we choose the minimum distance constraint as a substitute in 

order to shrink the volume of the data enclosing the simplex. The 

distance is measured and summed up from every endmember to 

their centroid.  This constraint is defined as  
2

2

1 1
( ) ( )k LL LL k k i

i k F

D
L J ≠

⎛ ⎞⎛ ⎞ ⎟⎜⎟⎜= − − + ⎟⎟⎜⎜ ⎟⎟⎜ ⎜ ⎟⎝ ⎠⎝ ⎠∑A I 1 A A A
  

(16) 

The gradient derivation of D2 with respect to Ak is 

2 ( ) 1 1 1
2( )(1 ) ( )k

LL LL k k i

i kk

D

L J J ≠

⎛ ⎞∂ ⎟⎜= − − − + ⎟⎜ ⎟⎜ ⎟∂ ⎝ ⎠∑A
I 1 A A A

A   
(17) 

The final F-NMF update rules to minimize f with all these 

considerations are derived from (6), (9), (11), (13), (15) and (17). 

Thus  

( ) 2
1 1 1

2

1 2

[0,1]

( )T k

k I i I

i k
k

k

J
A X 1 S 1

S
A

αα

α α
≠

⎡ ⎤
⎢ ⎥+ − −
⎢ ⎥

← ⎢ ⎥
⎢ ⎥+ −⎢ ⎥
⎢ ⎥⎣ ⎦

∑  

( )

2

2 2

1 2

[0,1]

1 1 1
(1 )( )

1 1
( ) (1 )

k T

k LL LL i

i k
k

k LL LL LL

J J L

L J

X S I 1 A

A

S I I 1

β

β β

≠

⎡ ⎤
⎢ ⎥+ − −
⎢ ⎥

← ⎢ ⎥
⎛ ⎞⎢ ⎥⎟⎜+ − ⋅ + −⎢ ⎥⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

∑
 

(18) 

IV. SIMULATIONS ON SYNTHETIC DATA 

In this section, we present a batch of simulations to 

quantitively compare the F-NMF algorithms with different 

constraints. First, we present the used evaluation metrics. Then, 

we present the way we build simulated data. Finally, the 

experimental results of five F-NMF algorithms are given. 

A. Evaluation metrics 

1) To evaluate the abundance estimation, we define the 

abundance mean squared error (AME) as 
21ˆ ˆAME( , )
FJI

S S S S= −                    (19) 

2) To evaluate the endmember spectra estimation, we define 

the spectral mean squared error (SME) as 
21ˆ ˆSME( , )
FLJ

A A A A= −                  (20) 

3) To consider the global shape of the spectra, the spectral 

angle distance (SAD) is defined  as  

   1 ˆ
ˆSAD( , ) cos

ˆ ˆ

T

T T

a a
a a

a a a a

−
⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠

              (21) 

where a is the true spectral vector and â is its estimate. 

B. Synthetic data 

The HSI synthesis process is in three steps corresponding to 

the matrices A, S and the noise matrix N.  

First, the J endmember spectra are randomly selected among 

the U.S. Geological Survey (USGS) spectral library. The selected 

224-channel spectra constitute the columns of the matrix A.  

Then, the J-element column vector in S is generated 

following a Dirichlet pdf, with parameters equal to 1. The 

element maximal value of each column is controlled by a 

threshold ξ (0< ξ ≤1). This operation allows one to control the 

mixing or purity level of the data. In particular, the image can 

contain “pure” pixels when ξ = 1. We also introduce a sparsity 

parameter ι (ι > 0), which controls the sparsity of S. If ι is set at 

0.8, 20% of the J×I elements in S are selected randomly and set 

to zeros at first, and then the non-zero elements in each column 

vector of S are generated following the Dirichlet pdf with the 

STU constraint and the maximal threshold ξ. 
Finally, we add a noise matix N, assumed to be zero-mean 

white Gaussian. The noise is characterized by the SNR 
 

2

2
SNR 10 log F

LIσ

⎛ ⎞⎟⎜ ⎟⎜= ⋅ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

X  

where σ2 is its variance. 

Therefore, a synthetic HSI is characterized by J, the 

randomly selected endmember spectra, I, ξ, ι, and the SNR. The 

default configuration is given in Table 1. 

 

TABLE 1   
Parameter Default value 

J 4 

I 1000 

ξ 0.8 

ι 0.8 

SNR Inf 

 

C. Compared algorithms 

In our simulations, we compare the F-NMF algorithms with 

different constraints and the typical geometrical and Bayesian 

algorithms. All the algorithms are used with the same initial and 

stop conditions.  
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1) F1-NMF: the basic HALS-NMF with no extra constraint 

based on HALS optimization algorithm. Only the 

nonnegative constraints are guaranteed. 

2) F2-NMF: the HALS-NMF is improved with the STU 

constraint.  

3) F3-NMF: the HALS-NMF with the STU and maximum 

spatial dispersion constraints. 

4) F4-NMF: the HALS-NMF with the STU and minimum 

spectral dispersion constraints. 

5) F5-NMF: the HALS-NMF with the STU and minimum 

distance constraints.  

6) F35-NMF: the HALS-NMF with the combined 

constraints of F3 and F5. 

7) VCA: a popular geometrical algorithm proposed in [4]. 

8) BPSS2: an improved Bayesian algorithm addressed in [9] 

under non-negativity and full additivity constraints. 

9) MiniDisCo: a novel NMF-based algorithm with spectral 

constraint given in [16]. 

 

Note that the initializations of A and S for all the algorithms 

are chosen from a uniform distribution on the interval [0, 1]. 

D. Simulations 

The first simulation shows the behavior of the objective f 

function along the interations of two optimization algorithms. 

Experiments 2-7 present statistical simulations to compare the 

average behaviors of the five F-NMF algorithms while varying 

the parameters given in Table 1, and robustness to an 

overestimation of the endmember number J.  

1) The first experiment is to assess the choice of the 

optimization algorithm. We compare the convergence 

efficiency between the PG, which is widely used for NMF 

optimization, and the HALS algorithm. Here, the PG and 

HALS algorithms are regularized with the minimum spectral 

dispersion constraint. The PG-based algorithm is named 

MiniDisCo in [11], and HALS-based algorithm in this 

experiment is also called F4-NMF as above. The f value is 

calculated with the corresponding constraints and the 

perfomances of the two estimators are presented in Fig. 1. 

Note that both the curves result from the same HSI, with the 

same random initial conditions; thus, the only variablity is the 

optimization method. We note that the final value of f is 

almost the same with both algorithms, whereas the 

convergence speed of HALS is faster. 

 

0 200 400 600 800 1000
10

1

10
2

10
3

10
4

Iteration

f

MiniDisCo

F4-NMF

 
Fig. 1.   The f value along the iterations. 

 

The following experiments 2-7 present the behaviors of the 

F-NMF algorithms with different constraints while varying the 

parameters summed up in Table 1. The unmixing results are 

evaluated by AME, SME and SAD. The presented results are 

averages (bars) and standard deviations (error bars) resulting 

from 20 experiments. Note that all the considered algorithms are 

compared on the same sets of 20 HSIs. We perform preliminary 

Monte Carlo simulations to find relevant values for the 

regularized parameters. The retained values are α1 = 1, α2 = 0.1, 

β1 = 0.1 and β2 = 0.1, which are chosen to minimize the average 

evaluation errors for synthetic data. 

2) In the second experiment, the algorithms are compared when 

the number of endmembers J varies.  

In this experiment, we first test the efficiency of the 

algorithms. The F-NMF algorithms are compared with the 

PG-NMF with no contraint except positivity as F1-NMF, and 

J is set from 3 to 10 as the experiment in [11]. The 

performance metrics of SME are shown in Fig. 2. Note that 

the considered statistics do not necessarily include each of the 

results. Here, SME values higher than 0.5 are not included. In 

particular, the PG-NMF results are never considered while 

the F_NMF results are all included, because the SME values 

of PG-NMF are always greater than 0.5. With NMF 

algorithms, only a local minimum can be attained in general. 

In the case of random initializations and no constraints, 

HALS is able to obtain a better solution than PG. 

Then, we set J higher to 20 to test the performance of F-

NMF. The performance metrics are shown in Fig. 3. Note 

that the F1-NMF without constraints performs worse as the 

number of endmembers increases. In the case of the 

constrained F-NMF (F2, F3, F4, F5, F35), the results are 

much better. Fig. 3 puts forward the high robustness of the 

constrained F-NMF algorithms, when the basic F-NMF is 

sensitive to the number of endmembers. The combination of 

constraints F3 and F5, F35, gives good results. 

3 4 6 8 10
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0.05

0.1

0.15

0.2

0.25

0.3

Number of endmembers

S
M

E
PG-NMF

F1-NMF
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F4-NMF

F5-NMF

F35-NMF

 
Fig. 2.   Algorithm performances for different values of J.  
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(c) 

 

Fig. 3.   Algorithm performance for different values of J. (a) AME; (b) SME; 

(c) SAD. 

 

3) The purity level ξ is the topic of the third experiment. None 

of the considered algorithms are based on the hypothesis of 

one pure pixel for each endmember, but the un-mixing 

performance may vary with the purity. The obtained 

performance metrics are presented in Fig. 4. F3-NMF is 

particularly worse for AME when ξ = 0.6, because the low 

purity level make the maximum spatial dispersion constraint 

ineffective. F35-NMF also performs worse in term of AME 

due to the maximum spatial dispersion constraint. 

Fig. 5 shows a comparison of the proposed F35-NMF 

algorithm with the geometrical method (e.g. VCA), a BSS 

algorithm (e.g. BPSS2) and another NMF-based algorithm 

(e.g. MiniDisCo), with the variation of ξ. The two NMF-

based algorithms and BPSS2 are each initialized with VCA. 

The parameter of the spectral constraint is 0.1 for MiniDisCo. 

VCA performs better with higher purity level due to its 

assumption of pure pixels. MiniDisCo and F35-NMF both 

improve the unmixing results of VCA. Specifically, 

MiniDisCo and BPSS2 outperform F35-NMF in the sense of 

AME but the result is quite the reverse in the sense of SME, 

which is caused by different constraints in MiniDisCo and 

F35-NMF. In the sense of AME, F35-NMF performs worse 

as the purity level decreases, because the algorithm is 

regularized by the maximum spatial dispersion constraint, 

which improves the values of AME for the mixing data with 

high purity level. This could be verified by the results shown 

in Fig. 4(a). The algorithms with the maximum spatial 

dispersion constraint (F3-NMF and F35-NMF) give worse 

results than the other algorithms (F4-NMF and F5-NMF). We 

choose F35-NMF for comparison due to its better 

performances in SME and SAD. In the sense of SAD, 

MiniDisCo is better than F35-NMF with lower purity level, 

but F35-NMF performs better with purity level lower than 

0.7. The performance of BPSS2 is always worse. This may 

be resulted by the minimum distance constraint in F35-NMF, 

which plays an important role in the unmixing of highly-

mixed data. 

As it can be noted, the results can vary for the various 

metrics, i.e., some algorithms can be efficient for spectral 

estimation, and not for abundances, and vice-versa. We have 

chosen to keep the three metrics for the complement of 

information they bring. A small SAD indicates very similar 

spectral shapes, and is not sensitive to a scale factor, while 

SME also depends on the values and is sensitive to a scale 

factor. For abundances, only the values are relevant, because 

the sum-to-one constraint sets the scale factor. In one sense, 

SAD is the more meaningful metric, used to identify 

endmembers from spectral libraries. 
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Fig. 4.   Performance metrics for different mixing levels ξ. (a) AME; (b) 

SME; (c) SAD. 
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Fig. 5.   Performance comparison for different mixing levels ξ. (a) AME; (b) 

SME; (c) SAD. 

 

4) The fourth experiment studies the robustness to noise of the 

considered algorithms. The metric values obtained for 

various SNR are shown in Fig. 6. The F-NMF algorithms are 

all based on the RQE minimization, which is optimal for 

white Gaussian noise. Thus, the performances do not 

significantly depend on the noise. In accordance with the 

experiment 3, the F3-NMF and F35-NMF results are not 

good in AME, but better in the terms of SME and SAD. 
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Fig. 6.   Unmixing performances for various noise levels. (a) AME; (b) SME; 

(c) SAD. 

 

5) It is interesting to study the estimation quality in terms of the 

data spatial dimensions. Fig. 7 presents the influence of the 

number of observed spectral pixels. The F-NMF algorithms 

are both robust to a small number of spectral pixels and a 

large amount of data. It is interesting to see that a small 

number of spectral pixels globally improve the performances 

of the regularized NMF. The F4-NMF and F5-NMF 

outperform the other algorithms in AME, but the results of 

F3-NMF and F35-NMF algorithms are better in the terms of 

SME and SAD. In general, a large data set does not improve 

the results, so it is more efficient to use a small set of data 

(400 pixels). 
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Fig. 7.   Performance of algorithms for different numbers of spectral pixels. 

(a) AME; (b) SME; (c) SAD. 

 

6) This experiment tests the influence of the sparsity parameter ι. 
The results are presented in Fig. 8. All the algorithms are not 

very sensitive to the sparsity parameter. The F4-NMF and 

F5-NMF outperform the other algorithms in AME, and the 

maximum spatial dispersion constraint brings improvement 

in SME and SAD.  
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Fig. 8.   Algorithm performance as a function of ι. (a) AME; (b) SME; (c) 

SAD. 

7) Estimating the endmember number J is the first issue of the 

HSI analysis. On real data, existing methods to estimate J 

generally overestimate the number [22]. Thus, we study the 

robustness of the algorithms to an overestimation of J (Fig. 9). 

Here, we overestimate J by 1. The estimation errors show 

that constrained F-NMF algorithms are robust to an 

overestimation of J, while the basic F-NMF is sensitive to the 

number of endmembers. 
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Fig. 9.   Algorithm performances when J is overestimated by 1. (a) AME; (b) 

SME; (c) SAD. 

 

The following conclusions can be drawn from these 

experiments: 

1)  The optimized algorithm of HALS outperforms PG in 

convergence speed and efficiency. In [11], poor 

estimations due to local minimum affect the basic PG-

NMF, so the estimated values of SME higher than 0.5 are 

not included in the statistics. In F-NMF, the estimation 

performance is much better so all the results of the 

experiments are considered. 

2)  The performances of constrained F-NMF are better than 

the basic NMF, according to all the parameters (J, ξ, SNR, 

I and ι) and the different performance metrics. 

3)  The NMF algorithms with minimum spectral dispersion 

constraint (F4-NMF) and minimum distance constraint 

(F5-NMF) performs better in AME, while the algorithms 

with maximum spatial dispersion constraint (F3-NMF 

and F35-NMF) outperfom the other algorithms in the 

terms of SME and SAD. 

4)  The NMF algorithm with combined contraints (F35-NMF) 

performs better than the algorithm with one constraint 

(F3-NMF). 

5)  F-NMF algorithm can improve the unmixing results 

initialized by VCA.  

 

V. APPLICATION ON REAL HYPERSPECTRAL DATA 

We have applied the five F-NMF algorithms on a 

hyperspectral scene captured by the AVIRIS sensor. This sensor 

has a 20m spatial resolutions and a 10nm spectral resolution and 

acquires 224 spectral bands between 0.4 and 2.5μm. The 

analyzed reflectance image is a 99×99 pixel selection of the 

Cuprite geological data. A RGB representation of the scene is 

shown in Fig. 10. Some spectral bands have been removed due to 

noise corruption and atmosphere absorption, and only the data of 

the remaining 188 bands have been used. In this section, we 

choose SISAL as the compared algorithm because it is able to 

deal with the unmixing problem without the pure pixel 

assumption as the NMF algorithms.  

It is required to estimate the number of endmembers J before 

unmixing the image. In this paper, the number of endmembers is 

determined from the final RQE obtained after convergence for 

many preliminary experiences, and is set to J = 11; however, this 

value is only an approximation.  

 

 

Fig. 10.   Analyzed scene, a 99×99-pixel region of the Cuprite data. 

 

To improve the algorithm performances, we run the five F-

NMF algorithms with the VCA initializations [4] to obtain better 

local solutions. The estimated endmembers are associated with 

the closest ones contained in the USGS library in the SAD sense. 

To evaluate the stability of the algorithms and the ability to find a 

unique solution, we make 50 runs for each F-NMF algorithm and 

keep the 11 estimated endmembers at each run. In each run, a 

new HSI synthetic data is generated with the same parameters (J, 

I, ξ, ι, SNR), when the endmembers are selected randomly from 

the library. We should obtain the same 11 identified references in 

each experiment. However, the results vary in the 50 experiments. 

In order to compare the results with a minimum volume based 

algorithm, we choose SISAL for its good performances on 

simulated data and its high speed. Note that the F-NMF and 

SISAL algorithms are all based on the assumption that the 

endmembers, or at least some of them, are not in the data set. The 

references identified by F-NMF are presented in Table 2-7 and 

the results by SISAL in Table 8. The estimated endmembers are 

identified as the closest library spectra in the sense of SAD. It can 

be seen from the tables that F3-NMF gives 77 names for a total 

of 550 possible different answers, whereas the other four F-

NMFs give much more references. The top 11 responses of F3-

NMF and F35-NMF represent 66.7% and 68% respectively of all 

the answers. All these results show the stability of F3-NMF, due 

to the maximum spatial dispersion constraint. From Table 8, we 

can see that the SISAL identifies 146 names from 550 possible 

answers, which shows its serious instability. Therefore, the F-

NMF algorithms are more stable than SISAL. Otherwise, the 

mean SAD between the estimated endmembers and the closest 

references in the library is significantly lower with F-NMF than 

SISAL, so we can conclude that the F-NMF algorithms are more 

efficient in endmember identification for difficult real cases. 

Fig. 11 and 12 give the estimated endmember spectra and 

abundance maps by F-35 in one experiment. The endmember 

spectra resulting from the F35-NMF analysis in one experiment 

are shown in Fig. 11(a). In this figure, the y-coordinate tick (from 

j = 1 to J) corresponds to zero reflectance of the jth endmember. 

The associated spectral endmembers are the closest library 

spectra (Fig. 11(b)) in the sense of SAD. Note that 3, 7, 8 and 10 

spectra are all identified as Kaolin/Smect KLF508 85%K, whose 

proportion is 26% the first in Table 7. This is the reason of the 

low identification dispersion of F35-NMF in 50 runs. The 

estimated abundance maps are given in Fig. 12, where the 

maximum abundance value ξj of each endmember j is high due to 

the maximum spatial dispersion constraint. 

 

 

TABLE 2   

REFERENCES IDENTIFIED BY F1-NMF  
USGS reference name Percent (%) SAD 

Kaolin/Smect KLF508 85%K 21.273 5.0403

Andradite HS111.3B 7.6364 4.8941

Andradite WS488 3.8182 4.5956

Lepidolite NMNH105543 3.4545 6.9935

Goethite WS219 (limonite) 3.0909 6.8237

Sphene HS189.3B 3.0909 4.3982

Kaolin/Smect H89-FR-5 30K 3.0909 3.8384

Barite HS79.3B 2.5455 4.0984

Rectorite RAr-1 2.5455 3.5563

Kaolin/Smect KLF511 12%K 2.3636 3.1599

Almandine WS477 2.3636 5.8007

Sum of the top 11 55.273  

83 names 100 5.1017

 

TABLE 3   

REFERENCES IDENTIFIED BY F2-NMF 
USGS reference name Percent (%) SAD 

Kaolin/Smect KLF508 85%K 15.455 5.1444

Andradite HS111.3B 6.7273 4.5232

Andalusite NMNHR17898 5.4545 3.5174

Richterite HS336.3B 3.6364 3.6131

Andradite WS487 3.2727 3.8255

Kaolin/Smect H89-FR-5 30K 3.0909 3.7755

Kaolin/Smect KLF511 12%K 2.5455 3.3961

Lepidolite NMNH105543 2.3636 7.2303

Rectorite RAr-1 2.3636 3.5788

Nontronite NG-1.a 2.3636 4.3183

Goethite WS219 (limonite) 2.1818 6.8177

Sum of the top 11 49.455  

98 names 100 5.9825
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TABLE 4   

REFERENCES IDENTIFIED BY F3-NMF 
USGS reference name Percent (%) SAD 

Kaolin/Smect KLF508 85%K 26.545 4.5345

Andradite HS111.3B 9.0909 4.2029

Andradite WS487 6 3.6531

Andalusite NMNHR17898 5.0909 3.6367

Richterite HS336.3B 4.1818 3.2513

Kaolin/Smect H89-FR-5 30K 3.8182 3.295 

Illite IL105 (1Md) 2.9091 3.8568

Montmorillonite+Illi CM37 2.5455 3.1543

Barite HS79.3B 2.5455 3.2624

Kaolin/Smect KLF511 12%K 2.1818 2.719 

Rectorite RAr-1 1.8182 3.877 

Sum of the top 11 66.727  

77 names 100 5.1216

 

TABLE 5   

REFERENCES IDENTIFIED BY F4-NMF 
USGS reference name Percent (%) SAD 

Kaolin/Smect KLF508 85%K 16.364 5.1932

Andradite HS111.3B 6.7273 4.513 

Andalusite NMNHR17898 5.8182 3.5355

Richterite HS336.3B 4 3.674 

Kaolin/Smect H89-FR-5 30K 3.4545 3.829 

Andradite WS487 3.2727 3.8056

Kaolin/Smect KLF511 12%K 2.7273 3.3183

Lepidolite NMNH105543 2.5455 7.6882

Rectorite RAr-1 2.3636 3.518 

Goethite WS219 (limonite) 2.1818 6.8385

Nontronite NG-1.a 2.1818 4.2891

Sum of the top 11 51.636  

97 names 100 5.1216

 

TABLE 6   

REFERENCES IDENTIFIED BY F5-NMF 
USGS reference name Percent (%) SAD 

Kaolin/Smect KLF508 85%K 16 5.1622

Andradite HS111.3B 6.7273 4.5837

Andalusite NMNHR17898 5.8182 3.524 

Richterite HS336.3B 4.1818 3.6714

Andradite WS487 3.2727 3.806 

Kaolin/Smect H89-FR-5 30K 3.2727 3.7812

Lepidolite NMNH105543 2.5455 7.4252

Rectorite RAr-1 2.5455 3.6228

Nontronite NG-1.a 2.3636 4.3196

Kaolin/Smect KLF511 12%K 2.3636 3.3328

Goethite WS219 (limonite) 2.1818 6.828 

Sum of the top 11 51.273  

97 names 100 5.8524

 

TABLE 7   

REFERENCES IDENTIFIED BY F35-NMF 
USGS reference name Percent (%) SAD 

Kaolin/Smect KLF508 85%K 26.545 4.437 

Andradite HS111.3B 11.818 4.3172

Andradite WS487 6.7273 3.6406

Andalusite NMNHR17898 5.6364 3.6947

Kaolin/Smect KLF511 12%K 3.2727 2.8078

Montmorillonite+Illi CM37 2.9091 3.2787

Richterite HS336.3B 2.7273 3.4012

Illite IL105 (1Md) 2.3636 3.784 

Barite HS79.3B 2 3.0921

Perthite HS415.3B 2 2.774 

Sphene HS189.3B 2 3.6569

Sum of the top 11 68  

80 names 100 4.9158

 

TABLE 8   

REFERENCES IDENTIFIED BY SISAL 
USGS reference name Percent (%) SAD 

Kaolin/Smect KLF508 85%K 5.8182 7.1877

Acmite NMNH133746 4.9091 87.33 

Hornblende_Fe HS115.3B 4 24.591

Desert_Varnish GDS141 3.6364 6.5823

Limonite HS41.3 3.4545 29.357

Hematite FE2602 3.4545 4.6658

Lepidolite NMNH105543 3.2727 8.6374

Mordenite+Clinopt. GDS151 2.7273 3.1797

Almandine WS477 2.3636 5.2999

Rutile HS137.3B 2.1818 5.5928

Almandine HS114.3B 2.1818 27.247

Sum of the top 11 38  

146 names 100 15.808

 

We compare the references identified by F-NMF and SISAL 

with the available ground truth of the Cuprite scene from the 

website [23]. In Tables 2-8, the identified results, which appear in 

the ground-truth list, are highlighted. Each of the considered 

algorithms only can identify two or three ground-truth minerals. 

In particular, F-NMF and SISAL algorithms all detect Kaolin, 

and Goethite is detected by F1-NMF, F2-NMF, F4-NMF and F5-

NMF. In addition, Nontronite is detected by F2-NMF, F4-NMF 

and F5-NMF, and F35-NMF detects Montmorillonite and SISAL 

detects Hematite. The identified results illustrate the difficulty of 

the unmixing problem for real data. Three reasons can be 

explained as follows: 

1)  The analyzed Cuprite data is only a selection of the whole 

scene, which holds 18 endmembers; thus, the unmixing 

results are also incomplete. 

2)  It is difficult to find the right spectra in the considered 

library with a huge amount of references (500). Some 

priori knowledge should be used to reduce the number of 

references before the comparison. 

3)  We use a linear mixing model in this paper, but the 

radiative transfer is always non-linear in real scene [10]. 

4)  It is subjective to identify the endmembers with SAD. A 

more robust method for identification should make the 

decision jointly with several criteria. Moreover, the 

variability of real spectra has made their identification 

from library more difficult. 
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Fig. 11.   References identified in one experiment. (a) Endmember spectra 

estimated with F35-NMF; (b) Associated USGS references.  

 

   
(a) ξ1 =   0.50      (b) ξ2 = 0.98 (c) ξ3 = 0.90 

   
(d) ξ4 =  0.68       (e) ξ5 = 1.00 (f) ξ6 = 0.96 

   
(g) ξ7 = 1.00         (h) ξ8 = 1.00 (i) ξ9 = 0.23 

  
(j) ξ10 = 1.00        (k) ξ11 = 0.22 

 

Fig. 12.   Estimated abundance maps by F35-NMF. The maximum abundance 

value ξj of each endmember j is presented with the corresponding 

map. 

 

Finally, it is important to analyze the computation time of the 

F-NMF algorithms. Under the Matlab environment and 3GHz 

CPU, the computation times for an iteration of the F-NMF 

algorithms with the real data (99×99 pixels) are shown in Table 9. 

It is clear that the algorithms with spectral constraints (F4, F5, 

F35) are more time-consuming due to the computation of matrix 

inversion. If the number of iteration is more than a thousand, the 

running of any F-NMF algorithm will cost a few minutes. In the 

case of computation cost, geometrical methods (e.g. VCA and 

SISAL) are fast and efficient, while the NMF-based methods are 

always slow. 

 

TABLE 9   

Computation time of F-NMF algorithms (s) 

F1 F2 F3 F4 F5 F35 

0.23 0.24 0.24 0.40 0.40 0.40 

 

 

VI. CONCLUSION 

In this paper, we have proposed a NMF-based hyperspectral 

unmixing algorithm with flexible constraints, including the sum-

to-unity contraint, the maximum spatial dispersion constraint, the 

minimum spectral dispersion constraint and the minimum 

distance constraint. The optimization scheme is based on the 

HALS, whose convergence speed outperforms that of PG. The 

resulting algorithm, called F-NMF, is experimentally tested with 

different constraints. The estimation accuracy shows that the F-

NMF works stably in all experiments, overcoming the estimation 

instability of PG-NMF. In particular, the F-NMF algorithms are 

robust to high number of endmembers, low SNR, low number of 

observed pixels and overestimation of the number of 

endmembers.  

The F-NMF algorithms seem to be effective in the estimation 

of abundance maps, since they consider the sum-to-unity and 

maximum spatial dispersion constraints. The identified references 

of real data by F-NMF seem more stable and reliable than 

geometrical method like SISAL. However, the identified results 

of real data are unsatisfied so the identification method needs 

further investigation to impove the results. 
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