Nonparametric Hierarchical Clustering of Functional Data

Abstract : In this paper, we deal with the problem of curves clustering. We propose a nonparametric method which partitions the curves into clusters and discretizes the dimensions of the curve points into intervals. The cross-product of these partitions forms a data-grid which is obtained using a Bayesian model selection approach while making no assumptions regarding the curves. Finally, a post-processing technique, aiming at reducing the number of clusters in order to improve the interpretability of the clustering, is proposed. It consists in optimally merging the clusters step by step, which corresponds to an agglomerative hierarchical classification whose dissimilarity measure is the variation of the criterion. Interestingly this measure is none other than the sum of the Kullback-Leibler divergences between clusters distributions before and after the merges. The practical interest of the approach for functional data exploratory analysis is presented and compared with an alternative approach on an artificial and a real world data set.
Type de document :
Chapitre d'ouvrage
Guillet, Fabrice and Pinaud, Bruno and Venturini, Gilles and Zighed, Djamel Abdelkader. Advances in Knowledge Discovery and Management, Springer International Publishing, pp.15-35, 2014, Studies in Computational Intelligence, 978-3-319-02998-6. <10.1007/978-3-319-02999-3_2>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01017553
Contributeur : Fabrice Rossi <>
Soumis le : mercredi 2 juillet 2014 - 16:46:37
Dernière modification le : dimanche 8 février 2015 - 01:01:24
Document(s) archivé(s) le : jeudi 2 octobre 2014 - 11:50:42

Fichiers

boulleguigouresetal2014nonpara...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Marc Boullé, Romain Guigourès, Fabrice Rossi. Nonparametric Hierarchical Clustering of Functional Data. Guillet, Fabrice and Pinaud, Bruno and Venturini, Gilles and Zighed, Djamel Abdelkader. Advances in Knowledge Discovery and Management, Springer International Publishing, pp.15-35, 2014, Studies in Computational Intelligence, 978-3-319-02998-6. <10.1007/978-3-319-02999-3_2>. <hal-01017553>

Partager

Métriques

Consultations de
la notice

251

Téléchargements du document

107