Homotopy classification of ribbon tubes and welded string links

Abstract : Ribbon 2-knotted objects are locally flat embeddings of surfaces in 4-space which bound immersed 3-manifolds with only ribbon singularities. They appear as topological realizations of welded knotted objects, which is a natural quotient of virtual knot theory. In this paper we consider ribbon tubes and ribbon torus-links, which are natural analogues of string links and links, respectively. We show how ribbon tubes naturally act on the reduced free group, and how this action classifies ribbon tubes up to link-homotopy, that is when allowing each component to cross itself. At the combinatorial level, this provides a classification of welded string links up to self-virtualization. This generalizes a result of Habegger and Lin on usual string links, and the above-mentioned action on the reduced free group can be refined to a general “virtual extension” of Milnor invariants. As an application, we obtain a classification of ribbon torus-links up to link-homotopy.
Type de document :
Article dans une revue
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 2017, 17 (2), pp.713-761. 〈10.2422/2036-2145.201507_003〉
Liste complète des métadonnées

Littérature citée [49 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01017350
Contributeur : Benjamin Audoux <>
Soumis le : vendredi 5 février 2016 - 09:11:57
Dernière modification le : jeudi 8 mars 2018 - 09:31:48
Document(s) archivé(s) le : samedi 12 novembre 2016 - 10:37:40

Fichier

wSL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Benjamin Audoux, Paolo Bellingeri, Jean-Baptiste Meilhan, Emmanuel Wagner. Homotopy classification of ribbon tubes and welded string links. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 2017, 17 (2), pp.713-761. 〈10.2422/2036-2145.201507_003〉. 〈hal-01017350v2〉

Partager

Métriques

Consultations de la notice

357

Téléchargements de fichiers

102