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Indifference fee rate for variable annuities

Etienne CHEVALIER * Thomas LIMT Ricardo ROMO ROMERO?

Abstract

In this paper, we work on indifference valuation of variable annuities and give a
computation method for indifference fees. We focus on the guaranteed minimum death
benefits and the guaranteed minimum living benefits and allow the policyholder to
make withdrawals. We assume that the fees are continuously payed and that the fee
rate is fixed at the beginning of the contract. Following indifference pricing theory, we
define indifference fee rate for the insurer as a solution of an equation involving two
stochastic control problems. Relating these problems to backward stochastic differential
equations with jumps, we provide a verification theorem and give the optimal strategies
associated to our control problems. From these, we derive a computation method to get
indifference fee rates. We conclude our work with numerical illustrations of indifference
fees sensibilities with respect to parameters.
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Introduction

Introduced in the 1970s in the United States (see [22]), variable annuities are equity-linked
contracts between a policyholder and an insurance company. The policyholder gives an
initial amount of money to the insurer. This amount is then invested in a reference portfo-
lio until a preset date, until the policyholder withdraws from the contract or until he dies.
At the end of the contract, the insurance pays to the policyholder or to his dependents a
pay-off depending on the performance of the reference portfolio. In the 1990s, insurers in-
cluded put-like derivatives which provided some guarantees to the policyholder. The most
usual are guaranteed minimum death benefits (GMDB) and guaranteed minimum living
benefits (GMLB). For a GMDB (resp. GMLB) contract, if the insured dies before the
contract maturity (resp. is still alive at the maturity) he or his dependents obtain a benefit
corresponding to the maximum of the current account value and of a guaranteed benefit.
There exist various ways to fix this guaranteed benefit and we refer to [2] for more details.
These products mainly present three risks for the insurer. First, as the insurer offers a put-
like derivative on a reference portfolio to the client, he is considerably exposed to market
risk. Moreover, variable annuity policies could have very long maturities so the pricing and
hedging errors due to the model choice for the dynamic of the reference portfolio and the
interest rates could be very important. The second risk faced by the insurer is the death
of his client, this leads to the formulation of a problem with random maturity. Finally,
the client may decide at any moment to withdraw, totally or partially, from the contract.
Throughout the paper we shall assume that there is a rate of partial withdrawal that could
be stochastic or not but we do not assume that it results from an optimal strategy of the
insured. In case of total withdrawal, the insured may pay some penalties and will receive
the maximum of the account facial value and of a guaranteed benefit minus the amount of
previous partial withdrawals.

With the commercial success of variable annuities, the pricing and hedging of these prod-
ucts have been studied in a growing literature. Following the pioneering work of Boyle
and Schwartz (see [§]), non-arbitrage models allow to extend the Black-Scholes framework
to insurance issues. Milvesky and Posner (see [I8]) are, up to our knowledge, the first to
apply risk neutral option pricing theory to value GMDB in variable annuities. Withdrawal
options are studied in [I0] and [2I], and a general framework to define variable annuities is
presented in [2]. Milevsky and Salisbury (see [19]) focus on the links between American put
options and dynamic optimal withdrawal policies. This problem is studied in [I1] where an
Hamilton-Jacobi-Bellman (HJB) equation is derived for a singular control problem where
the control is the continuous withdrawal rate. The GMDB pricing problem is described as
an impulse control problem in [3]. The authors model the GMDB problem as a stochas-
tic control problem, derive an HJB equation and solve it numerically. The assumptions
needed to get these formulations are the Markovianity of the stochastic processes involved
and the existence of a risk neutral probability. The variable annuity policies with GMDB
and GMLB are long term products therefore models for assets and interest rates have to be
as rich as possible. Moreover, as we obviously face an incomplete market model, the price
obtained strongly depends on the arbitrary choice of a risk neutral probability.



This paper attempts to get an answer to these issues. We shall not make restrictive assump-
tions on the reference portfolio and the interest rate dynamics. As a result, our problem is
not Markovian and we will not be able to derive HJB equations to characterize our value
functions. We overcome this difficulty thanks to backward stochastic differential equations
(BSDEs) following ideas from [12], [I5] and [20]. In our case, we have to solve BSDE with
random terminal time. For that we apply very recent results on BSDEs with jump (see
for example [I] and [I7]). Moreover, we shall not use non-arbitrage arguments to price and
hedge variable annuity policies. We will assume that the fees, characterized by a preset
fee rate, are continuously taken by the insurer from the policyholder’s account and we will
define an indifference fee rate for the insurer. Indifference pricing is a standard approach in
mathematical finance to determine the price of a contingent claim in an incomplete market.
This is a utility-based approach that can be summarized as follows. On the one hand, the
investor may maximize his expected utility under optimal trading, investing only in the
financial market. On the other hand, he could sell the contingent claim, optimally invest
in the financial market and make a pay-off at the terminal time. The indifference price of
this contingent claim is then the price such that the insurer gets the same expected utility
in each case. For more details, we refer to the monograph of Carmona (see [9]).

The paper is organized as follows. In Section 1, we define the market model, the random
times of death and total withdraw, then variable annuities with GMDB and/or GMLB
are defined. We recall the main examples of guarantees associated to. Section 2 is de-
voted to indifference fee rates. They are defined as solutions of an equality between two
regular stochastic control problems. These consist in maximizing the expected utility of
the terminal wealth of the insurer portfolio in two cases: when the insurer has not sold
variable annuities and when he has. Value functions of these two problems are respectively
characterized as initial values of BSDEs. This characterization is well known for the first
problem (see [I5] and [20]) but demands to solve some technical issues for the second one.
We conclude this section with a rigorous study of the existence of indifference fee rates in
the usual cases i.e. with roll-up or ratchet guarantee. Finally, in Section 3, we conclude our
paper with numerical illustrations of sensibilities of indifference fees with respect to model
and market parameters.

1 Model for variable annuities

This section is divided as follows, Subsection introduces the model for the underlying
financial market in which the insurer invests. Subsection [L.2] describes the terminal date of
a variable annuity policy. This one may be due to a total withdraw or to the death of the
insured. The variable annuity products and the dynamics of the different processes that
deal with are introduced in Subsection [L.3l

1.1 The financial market model

Let (©2,G,P) be a complete probability space. We assume that this space is equipped with
a one-dimensional standard Brownian motion B and we denote by F := (F;);>0 the right



continuous complete filtration generated by B.

We consider a financial market on the time interval [0,7] where T" > 0 corresponds to
the expiration date of the variable annuities studied. We suppose that the financial market
is composed by a riskless bond with an interest rate r and a reference portfolio of risky
assets underlying the variable annuity policy. The price processes SO of the riskless bond
and S of a share of the underlying risky portfolio are assumed to be solution of the following
linear stochastic differential equations

ds? = rS%t, vtelo,T], S)=1,
dS; = S,(udt+oidB;), Vte[0,T], So=s5>0,

where u, o and r are F-adapted processes satisfying the following assumptions.
Assumption Al.

(i) The processes p, o and r are P — a.s. bounded.

(ii) The process o is P — a.s. lower bounded by a positive constant o.

We shall denote by .S; the discounted value of S, at time t € [0,T7], i.e. Sy:=e" Jo rads G,

The insurer invests on this financial market. For ¢ € [0,7], we denote by 7y (resp. )
the discounted amount of money invested in the riskless bond (resp. the risky portfolio). We
suppose that the process 7 is F-adapted and satisfies the following integrability condition

T T
/ lwsus\ds—&-/ |msos?ds < 400, P—a.s.
0 0

Assuming that the strategy of the insurer is self-financed and denoting by X" the dis-
counted value of the insurer portfolio at time ¢ with initial capital z € R* and following
the strategy m, we have

t t
Xi'rﬂr _ ac—!—/ s (fs —rs)ds—i—/ msosdBs , VYt € [0,T].
0 0

If the initial capital is null we denote X7 the wealth instead of X"

We consider that the insurer wants to maximize the expected value of the utility of
his terminal wealth U(X7") on an admissible strategies set, where U(z) := —exp(—vz)
with v > 0. Both theory and pratice have shown that it is appropriate to use exponantial
utility functions. Since the decisions do not depend on the initial wealth of the insurer,
it is well adapted to our problem of pricing one set of policies. Moreover an appealing
feature of decision making using exponantial utility function is that decisions are based on
comparisons between moment generating functions. They capture all the characteristics of
the random outcomes being compared, so that comparisons are based on a wide range of
features. We refer to [5] for more details about this choice.

In the following definition, we define the set of admissible strategies for the insurer,



making usual restrictions that ensure some integrability properties for the processes in-
volved.

Definition 1.1. (F-admissible strategy). For any 0 < u < v < T, the set of admissible
trading strategies A"[u,v] consists of all F-adapted processes m = (7 )u<t<v which satisfy

E[/v ‘7Tt0't‘2dt:| < 00

and
{ exp(—7Xy"™), 0 is an F-stopping time with values in [u, v]}

is uniformly integrable.

1.2 Exit time of a variable annuity policy

We consider two random times 6% and 6% which respectively represent the death time of
the insured and the time of early closure of the insured account. We denote by 7 = 8% A ™.
The random time 7 is not assumed to be an F-stopping time. We therefore use in the
sequel the standard approach of filtration enlargement by considering G the smallest right
continuous extension of F that turns 7 into a G-stopping time (see e.g. [4, [I7]). More
precisely G := (G¢):>0 is defined by

gt = ﬂgt+85

e>0

for all t > 0, where G, := Fy V o(l,<y ,u € [0, 5]), for all s > 0.
We impose the following assumptions, which are usual in filtration enlargement theory.

Assumption A2. (H-hypothesis) The process B remains a G-Brownian motion.

The interpretation of the H-hypothesis is an assymetric dependance structure between B
and 7. From a financial point of view, it means that the exit time 7 may depend on the
financial market randomness represented by B. On the contrary, the financial market does
not depend on 7.

In the sequel, we introduce the process N defined by N = (1{T§t})o<t<T‘

Assumption A3. The process N admits an F-compensator of the form fd/\T Aedt, i.e.
N — fO'AT Aedt is a G-martingale, where X is a bounded F-adapted process.
tAT

M denotes the G-martingale defined by M; := Ny — o Asds, for all ¢t > 0.

If the investment strategy of the insurer depends on this exit time, we shall enlarge the set
of admissible strategies through the following definition.

Definition 1.2. (G-admissible strategy). For any 0 < u < v < T, the set of admissible



trading strategies A® [u, v] consists of all G-predictable processes © = (7;)u<i<y which satisfy

E[/U ‘matfdt} < o0

and
{exp(—vX;M), 0 is a G-stopping time with values in [u,v]}

is uniformly integrable.

1.3 Variable annuity policy

Let T := (¢;)o<i<n be the set of policy anniversary dates, with tg = 0 and ¢, = T'. We also
denote 41 = +00.

The first process to consider is the discounted account value AP. The dynamic of the process
AP is as follow

dA} = AV[(p—ri—& —p)dt+0vdBy] , Vte[0,T],

with initial value Ag, p is the fee rate taken by the insurer from the account of the insured
and the process £ is a G-predictable, non-negative and bounded process. & represents the
withdrawal rate chosen by the insured at time ¢ € [0,7]. We emphasize that £ is not
necessarily a process resulting from an optimal control of the insured as, for example, in
[3], [11] and [19].

For any 7 € A®[0,T], we extend the definition of the process X*™ where X;" is the
discounted wealth of the portfolio invested in the financial market at time ¢ € [0, 7] and we
set

dX;B’ﬂ— = 7rt(,ut — Tt)dt + mopdBy, Vit € [0, T] R

with X" = .

The second quantity to define is the pay-off of the variable annuities. Let p > 0, the pay-off
is paid at time T'A 7 to the insured or his dependents and is equal to the following random
variable

F(p) = Ff0)rery + EP0)1mpacry + FY (0)1(r—gupt, r<ry - (1.1)

ﬁ% (p) is the pay-off if the policyholder is alive at time 7" and has not totally withdrawn his
money from his account. P (p) is the pay-off if the policyholder is dead at time 7. W (p)
is the pay-off if the policyholder totally withdraws his money from his account at time
7. We suppose that F'L (p), FD (p) and FW(p) are bounded, non-negative and G-adapted
processes.



Including partial withdrawals in the pay-off, we shall use the following notations

FPW () = e 0 (BP0 pacry + B ()L g <o, <))
+/ €A ds (1.2)
Fzé(p) — e fo ruduFL / é“SAPdS (13)
Tan R TAT
F(p) = e ko ”“d“F(p)+/ SsAgds - )
0

Notice that F(p) is Gra--measurable.

Usual examples of variable annuities are GMDB and GMLB. In that case, there exist G (p)
and GL (p) non-negative processes such that, for any @ € {D, L}, we have

FtQ (p) = AP v G? (p), where A? = elors ds AP

The usual guarantee functions used to define GMDB and GMLB are listed below (see [2]
for more details).

— Constant guarantee: we have G%(p) = Ay — fg ¢,A% ds on [0, T, and

_(Tar, g TAT R TAT
F(p) = A}, Ve Jo " 3(/10 — / £ AL ds) —i—/ EsAV ds
0 0

TNAT ThT
= Ag“/\q—( ) (e_fo rstAo—f-/ fSAg,BS ds) , (1,5)
0
where A%, (0) = A}, + fTAT A ds and By =1 —e™ JTrsds gor ¢ € [0, T A T].

— Roll-up guarantee: for n > 0, we have G’? (p)=(1+n) <A0 — fg (ffmé ds) on [0,77,

and

F(p) = A ve—fo“”st(lm)T”(Ao— / s ds)+ / TATgApds
Inr 0 (1+mn)s 0 B

AT TAT
= A’%AT(O)V(e*foT s Ao + / @Ai’ﬂ?@), (1.6)
0

where 7 =r; —In(1 +17) for all t € [0,7] and 8] =1 — e~ JTrlds gor ¢ e [0, A T].

— Ratchet guarantee: the guarantee depends on the path of A in the following way:
G’?(p) = max(ap(t),...,ak(t)) on [ty,tkt1), for all 0 < k < n, where we have set




- fttk &AL ds. We get

TAT . 4 TAT
Fp) = AI’}/\T Ve Joreds OIE%L (af(T A T)]l{tiST/\T}) * /0 §sAL ds

P *fT/\TT’ ds Ap ThT
= A2 (0)V ( max [e o s Ati(o)n{tigm} + /O £,AP3, ds)(l.?)

0<i<n
where flfl (0) = fli + fotl &AL ds for all i € {0, ..,n}.

Remark 1.1. In the usual cases, the terminal pay-off F(p) is non-increasing w.r.t. p.

At this point we also notice that, in usual cases, the pay-off F(p) may not be bounded. This
assumption is crucial from a mathematical point of view, since it leads to existence and
uniqueness of a solution of the BSDEs that we will consider (see Remark . However,
our methodology can be applied to such unbounded pay-offs. Indeed, from a numerical point
of view, one just has to introduce a positive constant m and replace the pay-off F(p) by
F(p) Am. Form large enough, we will get a good approximation of the indifference fee rate
as limy, 400 P(sup,ejo 7] At > m) = 0.



Figure [I] represents the evolution of roll-up and ratchet guarantees on a path.

Account Process

2 e Ratchet Guarantee

- = = Roll-up Guarantee | e

0 2 4 6 8 10 12 14 16 18 20
Anniversary Dates

Figure 1: Guarantees and Account Value.

2 Indifference pricing

The objective of this section is to find, if it exists, a level p* such that if the fee rate is
greater than p*, the insurer prefers to sell the policy and he has better not to do so if the
fee rate is below this level. To determine p* we have to study the solution of the following
equation

wp E[U(XEM] = swp E[U(XET - RG] 25)
me AF[0,T] T€AC[0,T)
A solution of the equation will be called an indifference fee rate. Notice that if
there exist solutions to the previous equation, they will not depend on the initial wealth
invested by the insurer but only on the initial deposit Ap made by the insured since U(y) =
—exp(—7yy). Therefore, solve the equation is equivalent to solve

sup E[U(XT)] = sup E[U(Ao+ X7 —F(p")].
m€AF[0,T] TeAC[0,T)

To solve this equation, we shall compute the following quantities

Ve:= sup E[U(XF)] and Vg(p):= sup E[U(Ao+XF—F(p))].
weAF[0,T] weACG[0,T)

VF is a classical optimization problem, that may be solved thanks to BSDEs like in [15]
or [20]. We recall the results on this problem in Subsection then in Subsection we
solve the optimal control problem Vg(p). We will use the tools of BSDEs with respect to



the Brownian motion B and to the jump process N to solve it. Finally, in Subsection [2.3]
we will use the results of Subsections [2.1] and [2.2] to find indifference fee rates if they exist.
An additional difficulty with respect to the classical indifference pricing theory is that fees
are continuously paid by the insured. Therefore, one can not use algebraic properties of the
utility function to get a semi-explicit formula for the indifference fee rate. We will prove
that the function p — Vi (p) is continuous and monotonic on R, then use the intermediate
value theorem to prove that there exists or not a solution of the equation .

2.1 Utility maximization without variable annuities

The objective of this part is to compute the value of the maximum expected utility of the
terminal wealth at time 7" when the insurance company has not sold the variable annuity
policy. We recall that the maximum expected utility problem is defined by

W = sup E[U(XF)] .
meAF[0,T)

Thanks to Theorem 7 in Hu et al. [15], we are able to characterize the value function Vg
and the optimal strategy 7* by mean of BSDEs. For that we introduce the following sets.

— Sg is the subset of R-valued, cad-lag, G-adapted processes (Y3).co,r] essentially
bounded i.e.

Ylse = | sup il <
t€[0,T]

— L2 is the subset of R-valued, G-predictable processes (Zt)tefo,r) such that

T 1/2
— 2
1Zll; = (E[/O 1Z,| dtD < .
— LZ(X) is the subset of R-valued, G-predictable processes (Up)e[o ) such that
TAT 1/2
HW%W::(MA AP ) < oo

Proposition 2.1. The value function Vi is given by Vi = —exp(yyo), where (y, z) is the
unique solution in SZ X Lé of the following BSDE

{ dy; = (g n utzt>dt+ %dBy, Ytel0,T], 29)
yr = 0 )
with v, = & t” Moreover, the optimal strateqy associated to this problem is defined by
o= 4 2 veeo,T].
Yot Ot

For the proof of this proposition we refer to [I5] or [20].
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2.2 Utility maximization with variable annuities

We now study the case in which the insurance company proposes the variable annuity
policy. We recall that in this case the value function associated to the maximum expected
utility problem is given by

Ve(p) = sup E[—exp(—’y(Ao—FX%—F(p)))] , (2.10)
TEAC[0,T]

where F'(p) is defined by ([1.4)).

Since we aim at characterizing Vg (p) as a function of the initial value of a BSDE, the
first step consists in carefully setting the terminal value of the BSDE. Therefore, we need to
deal with the following difficulty: we notice that the random variable X7 is Gr—measurable
and F(p) is Grar—measurable. The following result allows us to rewrite the problem with
a terminal date equal to T" A 7.

Lemma 2.1. For any p € R, we have

Velp) =  sup  E[—exp(—y(X20" —H(p))], (2.11)
T€AC[0,TAT]

with H(p) := F(p) + % log { ess inf ¢ 46/ prm) E[exp (- 'yAX;_T’T) ‘gT/\T] } )
where we have set

T T
AXTp = / ms(s — 7s)ds +/ 7s0sdBs .
TNAT TNAT

Proof. First we prove that

Vi(p) < sup  E[—exp(—~v(Xp0" — H(p)))] .
T€AC[0,TAT]

Let ' € A® [0,T]. By the tower property and since F'(p) is Grar-measurable, we get

Elexp (= y(X7°" = F())] = E|exp (=v(X75 = F(p))E[exp(—yAXT7)|Grnr]|
> Elexp (—1(X27 = F(0)))V|Grar]]

where we have set

V i= esinf E[exp(—7yAXTr)|Grn]

Therefore, it follows from the definition of H(p) that for any 7’ € A®[0, T], we have

Blep (= (X7 = F@)] > it Elexp (= (X327 - HE))] -

11



This obviously implies that

Va(p) < sup  E[—exp(—~y(XpT — H(p)))] -
T€AC[0,TAT]

Now, we shall prove that

Ve(p) > sup  E[—exp(— (X2 — H(p)))] -
T€AC[0,TAT]

From Lemma we deduce that there exists 77 € A®[T A 7, T] such that

E[exp (—7AXT7)|Grnr] = essinf  E[exp (—yAXT7)|Grne] -

For any 7 € A®[0,T A 7] we define the strategy = € A®[0, T] by

e ift<TAT,
Ty =
7r2<’7 ift>TAT.

‘We obtain

Vi(p) > sup B[ —exp (— (X207 — F(p)))]

T AC[0,TAT]

= sup  E[—exp(— (X3l +AXIY — F(p)))]
T€AC[0,TAT]

= sup  E[—exp(—v(X27 - H(p)))] .
TeAC[0,TAT]

O]

Now, we have to solve the optimization problem ([2.11)) and for that we look for a family of
processes {R(™, 7 € A®[0,T A 7]} satisfying the following conditions

() RY), = —exp(—y(X12 — H(p))), for any 7 € AC[0,T A 7).
(i) R(()Tr) = Ry is constant for any m € A®[0,T A 7].
(iii) R(™ is a G-supermartingale for any = € A®[0,T A 7].
(iv) There exists a 7* € A®[0,T A 7] such that R™) is a G-martingale.

If such a family exist, we would have

R(()”*) = sup E[—exp(*V(X?Rf*H(p)))] ’
T€AC[0,TAT]

Indeed, from (i), (ii) and (iii), we might have for any = € A®[0,T A 7],

Ry =R > E[RY)] = E[-exp(—y(Xph7 —H®))].  (212)

12



Moreover, it would follow from (i) and (iv) that
Ry = E[—exp(—~(X20™ —H(p)))] . (2.13)
Therefore, from and ([2.13), we would get for any m € A®[0,T A 7]
E[—exp (—y(Xp0l — Hp))] < R =E[—exp (- (X700 — H(p))] -
We can see that it would lead to

Ry = swp  E[—exp(—v(X207 ~ HD))] -
TEAC[0,TAT]

Thanks to solutions of BSDEs with jumps, we shall construct a family {R™) 7 € A®[0,TA
7]} satisfying the previous conditions. Let f be a function defined on [0,7] x Q x SZ X
L% x L% () and assume that there exists (Y (p), Z(p),U(p)) in S x L& x LZ()) solution
of the following BSDE: for any ¢ € [0, T,

TAT

TAT
Yip) = H@)+ [ 56 Yio) 20 Ui - [ 2B~ [ UL,
tAT tAT tAT
In this case, for any = € A®[0,T A 7], we set
R™ = —exp(—y(X" ~Y(p))), (2.14)

and look for a function f for which the family {R(™, 7 € A®[0,T A 7]} satisfies the
conditions (i), (ii), (iii) and (iv). In order to calculate f, we apply It6’s formula and get

ARV = dM] + dK]
where M™ and K™ are defined by

AM] = —yR"™ (oym; — Zi(p))dB; + R (71 ®) —1)dM,

ngr = —’YR,: [Wt(ﬂt - Tt) + f(t,Y}(p),Zt(p), Ut(p)) - 5(0157& - Zt(p)) - )\tf dt .

As we hope that R(™ is a supermartingale the process K™ must be non-increasing, hence
f should satisfy

() g 2 -1
B [ = ) + (4 Yi0), Z0), Ui 0) = S (0vm = Z(p)? = v ———] < 0,
and since —WR?) > 0, it would lead to
v ) eUi(p) — 1
[t Yi(p), Ze(p), Ur(p)) < §(Ut7rt — Z(p))” + )\tf — me(pe — 1) -

13



Moreover, for some particular 7* € A®[0, T A 7], we hope that R(™") is a martingale so the
process K™ must be constant, hence f should satisfy

B ) y ) eUi(p) _ 1
JYip), Ze0) Up)) = essint {S(ovm = Zuw))? + —milm =)}
and 7}, such that dK7 = 0, would be defined by

o M Zi(p)
K YOt Ot
Hence f would be the following function
T _q 2
f(t7y7zau) = Ate _Uit_ytza

defined on [0,7] x  x S x L% x L& (\).

The following proposition asserts that the following BSDE with jump
TAT eUs(p) _ 1 2 TAT
Yip) = H(p) +/ e e A / Z,(p)dB,
tAT Y 27 tAT
TAT
- / Us(p)dN, , Vi€ [0,T], (2.15)
t

AT

admits a solution in S x L& x L& (N).

Proposition 2.2. Recalling notations (1.2), (1.3) and (1.4), the BSDE (2.15)) admits a
solution (Y (p), Z(p), U(p)) € SF x L& x L4 (N\) given for any t € [0,T] by

Yilp) = Y (p)Licr + FTD’W(p)]ngt )
Zi(p) = Z{(p)li<r , (2.16)
Up) = (F2" () - Y ()<, ,

where (YO(p), Z°(p)) is the unique solution in ST x L% of the following BSDE

Vo -vPe) 2

0 S 0 0
—dYy(p) = {)\t 5 5 -z (p)}dt — Z)(p)dB
Y2(p) = Ff(p).

(2.17)

Proof. From Theorem 2.1 in [6] and Theorem 1 in [I4], we know that there is a unique

solution (Y°(p), Z°%(p)) € S x LZ to the BSDE (2.17).
From Theorem 4.3 in [I7], we know that (Y'(p), Z(p), U(p)) defined by ({2.16)) is a solution

of the BSDE (12.15)). O]

Remark 2.2. To apply Theorem 2.1 in [6] or Theorem 1 in [T]|] and get existence result
for a solution of the BSDE 1) the terminal condition F%“(p) must be bounded and the
process FPW (p) must be also bounded.
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We conclude this section with its main result which is the following verification theorem.

Theorem 2.1. The value function of the optimization problem (2.10)) is given by

Ve(p) = —exp(v(Yo(p) — 4o)),

where Yo(p) is defined by the initial value of the first component of the solution of the BSDE
(2.15) defined in Proposition .

Moreover there exists an optimal strategy ©* € A®[0,T] and this one is defined by

v Z Z
o= 4 t(p)]ltgm + 2 Nyornr, VEE([0,T], (2.18)
YOt Ot Ot

with Z(p) (resp. Z7)) defined by the solution of the BSDE (2.15)) described in Proposition
(resp. Lemmal[A.d)).

Notice that Yp(p) = Y (p) since the insurer can not withdraw his money at time 0.

In the proof of Theorem the additional space of BMO-martingales intervenes: BMO(P)
is the subset of (P, G)-martingales m such that

Imllesioey = sup||E[m)r — (mbolds] 7| < oo,
0€T:[0,T] o

where Tg[0,T] is the set of G-stopping times on [0, 7).

Before proving Theorem [2.1, we need the following lemma.

Lemma 2.2. Let (Y°(p), Z°(p)) € S x L% be the solution of the BSDE , and let *
be the strategy given by (2.18)). The processes [, Z2(p)dBs and [joswidB,s are BMO(P)-
martingales.

The proof of this technical lemma is given in Appendix
Corollary 2.1. The strategy 7 defined in ([2.18)) belongs to A®[0,T] .
Proof. 7* is G-measurable by definition, now using Assumption A1 and ([2.2)) we have that

sl [t = w7 - aw)a] s [) (20

< c—f—cE[/OTAT‘Zt(p)th} +cE[/TT ‘Zt(T)‘th}
AT

< oo,

where c is a positive constant.
It follows from Lemma and properties of BMO-martingales (see for example [16]) that
the family

{ — exp ( — ng*), 0 is a G-stopping time with values in [0, T]}

15



is uniformly integrable. O
Now, we are able to prove Theorem

Proof. First we check that the family {R(™, 7 € A®[0,T]} defined in (2.14) satisfies
properties , , and .

Properties and directly follow from the definition of R(™. To prove that condition
is satisfied, we apply It0’s formula and get

ngﬂ) — _ryREW) [Wt(ﬂt — ’I”t) - 7; — VtZt(p) — %(Uﬂrt _ Zt(p))z} dt
R oy, — Zy(p))dB, + R (V1) — 1)dM, .

This last equation has an explicit solution given by

¢ t
R™ = ROS< / (Zs(p) — ms05)dBs + / (70) — 1)dMS>
0 0
! v: g 2
X exp ( - (Trs(,us —Tg) — o0 vsZs(p) — =(osms — Zs(p)) )ds) ,

0 Y 2
where £ denotes the Dolean-Dade exponential. Since 7 € A®[0,T], the process M™ :=
E(Jov(Zi(p) — oym)dBy + (V) — 1)dMy) is a local martingale. Hence, there exists a
sequence of G-stopping times (6,,)nen satisfying lim,, oo 0, = T'A 7 P — a.s. and such that
M7, 1s a positive martingale for each n € N. Moreover, since

eUi(p) _ 1

Ft,Yi(p), Zu(p), Us(p)) < —(owm — Zi(p))* + )\tf —me(pe —1t)

N2

the process exp (=7 f; (ms(ps —7s) — % — Zs(p)vs — (0575 — Z(p))?)ds) is non-decreasing.
As Ry < 0, we get that R(;\rzn is a supermartingale and, for any 0 < s <t < T, we have

E[R{) 1G] < R

sAOp °

This implies that, for any set A € G5, we have the following inequality

E[R) 14] < E[RY), 14].

tAOn

Since 7 is admissible and Y is bounded, we remark that (REK)QH)TLGN and (RS\)G")HGN are

uniformly integrable, hence we may let n goes to +oo and get
E[R™1,) < E[R(M14], VAeg,.

This implies the claimed supermartingale property of R(™.

Finally, we know from Corollary that 7* is admissible and from construction of 7*,
we have R(™) = M™ | therefore R(™) is a martingale. This proves that condition is
satisfied.

16



Hence, for any 7 € A®[0,T A 7], we obtain that
E[—exp (= (X707 — H(p))] < By = R = B[ —exp (= (X707 — H(p))] -

Therefore, Vi (p) = —exp(y(Yo(p) — Ap)) and 7* is an optimal admissible strategy. O

2.3 Indifference fee rate

In this section, our goal is to determine indifference fee rates i.e. positive numbers p* such
that

sup E[ — exp ( — 'y(Xj’ilO’7r — F(p*)))] = sup E[ — exp ( — fer_"pr)] .
T€ACG[0,T) meAF[0,T)

It follows from results of Subsections [2.1]and [2.2] that the previous equation can be rewritten
in the following way

Yo(p*) — Ao = o -
To study this equation we introduce the function % : R — R defined as follows

Y(p) = Yolp)—yo— Ao, VYpeR.

There may exist three cases depending on the coefficients values.

(i) For any p € R, we have 1(p) > 0. That means that, for any fee rate p, we have
V@(p) < V.

Therefore, the insurer’s expected utility is always lower if he sells the variable annu-
ities. Thus, he should not sell it.

(ii) For any p € R, we have ¢(p) < 0. That means that, for any fee rate p, we have
Velp) > Vr.

Therefore, the insurer’s expected utility is always higher if he sells the variable annu-
ities. Thus, he should sell it whatever the fees are.

(iii) There exist p; and ps such that 1 (p1)1(p2) < 0. In this case, we prove in the remainder
of this section that there exist indifference fee rates thanks to the intermediate value
theorem applied to the function .

We now give useful analytical properties of the function 1.
Proposition 2.3. The function v is continuous and non-increasing on R.

Proof. We first show that v is non-increasing. Let p1,p2 € R with p; < ps. By definition
of the process AP, for any ¢ € [0, 7], we have

APt > A2 P —as.

17



It follows from the monotonicity of L, F'P and FW that F(p1) > F(p2) P-a.s. Hence, for
any 7 € A®[0, T, we have

E[—exp (—y(X7"" = F(p1))] < E[—exp (= v(Xp"" = F(p2)))] -

Since this inequality holds for any 7 € A®[0, T], we get

Ve(p1) < Ve(pe) -

As Vi (p) = —exp(v(Yo(p) — Ap)) and v > 0, it follows that 1 is non-increasing.

We now prove that v is continuous on R. For that we prove that the solution of the
BSDE (2.17)) is continuous w.r.t. the terminal condition by adapting a usual approach
presented for example in [13]. Let p; < ps and consider the solutions (Y°(py1), Z%(p1)) and
(YO(p2), Z°(p2)) associated to the BSDE with respectively parameters p; and ps. We
define the processes 6Y (p1,p2) := Y%(p2) — Y% (p1) and §Z(p1,p2) := Z°%(p2) — Z°(p1). By
applying It'l';)%’s formula to the process (eat|6Yt(p1,p2)\2)0<t<T, we get that, for any o > 0,

d(eat|5Yt(p17p2)|2) = ae™|6Yi(p1,p2)|Pdt + 2e*'5Y;(p1, p2)d(6Yi(p1, p2))
+eo‘t]5Zt(p1,p2)|2dt )

By usual arguments, we get

T
5o, po) P+ E[ [ e loZutor,p0)ds| 7] <
t

T T
E[e*T|6Yr(p1, po)|? — a/ e™®|6Ys(p1, p2)|*ds — 2/ 6“851’5(191,p2)5Zs(p1,pz)ds’ft}
t t

T
N QE[/ )\Seaséys(phm)(ey(FSD,W(pg)—Ys(pz) _ eW(FJDvW(m)—Ys(pl))) ’]:t} .
v t

By using Young’s inequality, we get

T
531, o) < B[V (pr,p2) 2] + (1 B[ [ e I6Yi(p1, ) 5|7
t

T
n EE[ / A6 (p1, p2)<67(FsD’W(p2)—Ys(p2) _ev(EeD’W(m)—Ye(m)))‘ ft} '
y t

Moreover, we know that Y'(p;) and Y (p2) are lower bounded, hence there exists a constant
k such that Y;(p1) > k and Yi(p2) > k for any ¢ € [0, T]. Since the function exp(—vy(yVk)) is
Lipschitz continuous, the process ) is bounded and the processes FP?'W (p;) and FP-W (py)
are bounded, we can assert that there exists a positive constant C' such that

T
e 13Yi(p1,p2) P < E[eT 10V (pr, p2) | Fi] + (C — @)E| / |8V, (p1, p2) ds| Fi|
t

18



Hence, for a = C, we get

0Yo(p1,p2)> < E[e“T[6Yr(p1,p2)?] -

We conclude the proof by recalling that qu (p), the terminal condition to the BSDE (| ,
is continuous on R w.r.t. p as we have assumed that the function F~ is continuous on
R. O

We now consider the cases of usual guarantees.

Corollary 2.2. Ratchet guarantee
Let m > Ag. Recalling notations of the equation (1.7)), we assume that

TAT . gs A TNT
F(p) =mA |:AII)“/\7—( )V (max [e_ Jo "Trs SAZ-(O)]I{WST/\T}} +/0 EsAP B dS)] .

0<i<n

There ezists p* € RU{—o0} such that for p > p* we have Vg (p) > Vi and for p < p* we
have Vg (p) < Vr.

Proof. From Proposition we just have to show that lim, . 1¥(p) <0.

It would follow from the intermediate value theorem and the monotonicity of ¢ that there
exists p* € RU{—o0} such that ¥ (p) <0 for p > p* and ¢ (p) > 0 for p < p*. First, notice
that we may deduce from Assumption that there exists a positive constant C' such that,
for any ¢ € [0, 7], E[A}] < CeP. Therefore, as AY > 0, we get

lim A? =0 a.s. for any t € (0,77 .

p——+00

We now study the limit of ) at +00. We have
1
v(p) +yo = S In(~Vg(p)) -
On the other hand, for any 7 € A®[0, T, we have

Vo(p) > E[—exp(—y(XT+ 40— F(p))] -

Hence, it follows from the monotone convergence theorem that

Jm o) +yo = iln( i Ve ()
< }yln(Eﬂ exp(—y(XF + Ao~ lim_F(p))])
_ flyln(E exp(—y(XF + Ag(1 — e~ o rst))D
< iln(E[exp(—vX%)]). (2.19)

We recall that yo = = ln( Vr) and that, from Proposition there exists 7* € A¥[0,T] C
AC[0,T], such that yo == 1n(E[exp(—7X{,5*)]). Therefore, we obtain that lim,_, - ¥(p) <
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0 if we choose 7* in ([2.19).

Corollary 2.3. Roll-up guarantee
Let m > Ag. Recalling notations of the equation (1.6)), we assume that

p — [TAT 11 gs T P
F(p) =mA |:AT/\T(0) \ <€ 0 ° AO +/(; ésAng dS> :|

There exists n. > 0 such that for any n € [0, 1], there exists p* € RU {—oo} such that for

p > p* we have Vi (p) > Vi and for p < p* we have Vg(p) < Vi.

Proof. Let n > 0. From Proposition there exists 7* € A¥[0,7] c A®[0,T], such
that yo = %ln(E[exp(—'ngi*)]). Following the proof of Corollary we deduce from the

monotone convergence theorem that

o _ 1 3
PRt = (= m, Ve)

1 - :

< ; In <E[exp(—’y(XT + Ao — pEEIOOF(P)))}
1

= —In(® ,
N (@(n))

where we have set
* —fTAT rdds
®(n) = E[exp ( —v(XF +A(1—eJo T )))] .

Obviously, ® is continuous and non-decreasing on R™. Moreover, we have

®(0) < E[exp(—’yX}E*)] =0 and lim ®(n) = +oo.

n—+oo

From the intermediate value theorem, we may define 7, > 0 as
Nw = SHP{U > 07 (I)(T,) = e'yyo} :

We conclude the proof by noticing that for 0 < n < 7., we have

lim w(p) < }Yln(‘b(ﬁ))—yoﬁ()-

p——+00

3 Simulations

In this section we present numerical illustrations of parameters sensibility for indifference
fee rates. We compute solutions for both optimization problems: Vg, the utility maxi-
mization problem without variable annuities, and Vg (p), the utility maximization problem
with variable annuities. We simulate the BSDEs involved, using the discretization scheme

20
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studied in [7]. For the computation of the conditional expectations, we use non-parametric
regression method with the Gaussian function as kernel. Following a dichotomy method,
we find p such that the equality Vg = Vz(p) is satisfied.

We assume that r and p are Markov chains taking values in the states spaces S" =
{0, 0.01,...,0.25} and S* = {0, 0.01, 0.02,...,0.3}. Their respective transitional ma-
trix are QT = {q{,j}lgi’jSQG and Q“ = {qgfj}lgi,jg?)l are given by

3 if i =7, (3 if i= 7,
% if i=1andj=2, $if i=1and j=2,
. . . 1 . . .
0= ? ?f .z:‘27 and j ‘:26, and g — ? ?f ‘z:.32 and j .:31,
’ 7 if i=j+1andi<26, J 7 if i=j+landi<3l,
3 if  i=j—landi>2, 1 if  i=j—landi>2,
0 else, L 0 else,

Initial values pp and rg will be precised later. For simplicity, we assume that there are no
carly withdrawals i.e. we set (&)i>0 = 0, except for Figure[9] We shall give the following
numerical values to parameters

v=13, A=0.05, T=20, Ag=1,
and, for the financial market parameters
ro =0.02, po=20.15, o=0.3.

We divide our numerical study in three parts. First, we consider a product with a ratchet
guarantee and describe the dependence with respect to the market parameters: the initial
interest rate (see Figure , the initial drift (see Figure |3)) and the volatility (see Figure [4]).
In a second part, still with ratchet guarantee, we give illustrations of the dependence with
respect to the longevity parameters: the contract maturity and the exit time intensity. In
the last part, we consider the case with a roll-up guarantee and compute the sensibilities
of indifference fees to variations of the initial value Ag, the roll-up rate n and finally to
variations of the withdrawal rate &.

3.1 Market risk

In this first part, we want to understand the impact of market risks on the indifference fee.
For that we consider the case of ratchet guarantees.

Figure [2] plots the indifference fee rates when the initial interest rate ro ranged from 0.01
to 0.055.
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Figure 2: Indifference fee rate w.r.t. rg

We notice that indifference fee rates increase with interest rate. This is due to the guarantee
structure of the product: a growth of interest rate will lead to a growth of the quantity
Vi (p) with respect to Vg and to compensate this growth we will have to increase p, as
p — Vi (p) is non-increasing.

Figure [3| plots the indifference fee rates when the initial drift o ranged from 0.02 to 0.3.

03 q

0.25 7

0.2 4

0.1 q

0.05- 7

0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 3: Indifference fee rate w.r.t. pg

Notice that indifference fee rates decrease with respect to the initial drift. The bigger is the
drift the less usefull are the guarantees, then the fees payed to get these guarantees have
to decrease.

Figure [4] plots the indifference fee rates when the volatility ¢ ranged from 0.1 to 0.4.
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Figure 4: Indifference fee rate with respect to o

Once again, we can get a financial interpretation of the monotonicity of the fees w.r.t.
market volatility. The bigger is the volatility the more usefull are the guarantees, then the
fees payed to get these guarantees have to increase.

3.2 Longevity risk

In this second part, we emphasize the impact of longevity risks on indifference fees for
ratchet guarantees. Figure [5| plots the indifference fee rates when the intensity A ranged
from 0 to 0.25.

0 0.05 0.1 0.15 0.2 0.25
A

Figure 5: Indifference fee rate with respect to A
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Figure [] plots the indifference fee rates when the terminal time of the contract T' ranged
from 7 to 28.
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Figure 6: Indifference fee rate with respect to the maturity

Notice that the more it remains time or expected time to maturity, the more the insurer
will receive fees. Hence, fee rate should decrease when time or expected time to maturity

increases.

3.3 Roll up guarantee risk

To end this numerical section, we consider the roll-up guarantee case. We presents some
sensibilities of indefference fee rates to the roll-up rate 7, to the initial investment Ay and
to the withdrawal rate &.

Figure [7] plots the indifference fee rates when the roll-up rate n ranged from 0 to 0.05.

0.2

a 015

01

I I L I L I
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
n

Figure 7: Indifference fee rate with respect to n
We remark that the indifference fee rates are increasing with respect to the roll-up rate
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7 with an exponential growth. The insurer has to be carefull when he offers a roll up
guarantee: if he proposes a rate n too high (for example > 0.05), the guarantee could be
not rentable to sell, at any price.

Figure [§] plots the indifference fee rates when the initial value Ay ranged from 0.5 to 2.
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Figure 8: Indifference fee rate with respect to Ag

As expected, indifference fee rates are decreasing with respect to the initial investment Ag.
If Ag is too small it could be not interesting for the insurer to sell the product, whatever
the fees are.

Figure [0 plots the indifference fee rates when the withdrawal rate £ is constant and ranged
from 0 to 0.3. It shows that indifference fee rates are lineary increasing w.r.t. the withdrawal
rate &.

0 0.05 0.1 0.15 0.2 0.25 03
3

Figure 9: Indifference fee rate with respect to ¢
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A Appendix

A.1 Utility maximization between T'A 7 and T

Lemma A.1. There exists a strategy 77 € A®[T A 1,T] such that

*,T

inf B[exp(—yAXT ;] = E[exp(—yAXT .-
LSt [exp(—7AXT7)|GrAr] [exp(—yAXT 7 )|Grar]

Moreover, there exists a process Y7 such that

inf E - AXTI’ . — Y(T) ,
wei%S[Y{f\lT,T] [eXp( Y T/\T7T)‘gT/\] exp(’y T/\T)

where (Y7, Z(7) is solution of the BSDE
(7) vi (1) (1)
a0 = L4z |a+ z0aB;,
v\ = 0.

Proof. We look for a process Y (7) such that the family of processes {J(7) (7), 7 € A®[T A 7,T]}
defined for any 7 € A®[T A 1,T] by

J(m) = exp (—y(AXT, - V)
satisfied the following conditions
(i) J}T) (m) = exp(—yAXT 7).

(i) J{7)

1 r-(m) is a random variable Gra--measurable and independent of 7.

(iii) J()(x) is a submartingale for any © € A®[T A 7,T] on the time interval [T A 7, T].

(iv) There exists a strategy 77 such that J(7)(7*7) is a martingale on the time interval
[T AT,T).

The process Y (7) is looked under the form

—av" =,y zdt — z7aB,
" = o,

and we are bounded to choose the function f for which .J(7)(r) satisfies the previous con-
ditions. Classically we obtain

and the candidate to be 7*7 is given by

1 .
nT o= —[2+27], weranT).

y

~

ot
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The end of the proof is identical to the one in [15]. O

A.2 Proof of Lemma 2.2

We denote the upper bound of the uniformly bounded process Y°(p) by k. Applying It'ig)%’s
formula to (Y°(p) — k)2, we obtain, for any G-stopping times § < T,

T T
V2w — k| = Y2w) — K2 = 2 / (¥2(p) — kK)dY2(p) + / 12°(p)|ds
0 0

Taking the conditional expected value, we get

5[ [ |20 ala] = 28] [ 6 v20)[2 +nzbe) -

+E||FF () - kP|G0) — YO 0) — K[

Due to Assumption A1 and the fact that Y°(p) € S&°, there exist two positive constants
c1 and ¢y such that

[ [ oo

IN

T
c1+ ClE[/e Zg(p)ds‘ge}

01+61E[/9T( : ‘ZS(P)|2+%2)dS)ge] :

2¢

IN

Therefore, there exists a positive constant ¢ such that

E[/HT‘ZS(p)}zds‘gg] < ec.

Hence [, Z2(p)dBs is a BMO(P)-martingale. By definition of 7*, Assumption A1 and using
the results of [15] for Z(7), it follows that Jo 0smid By is a BMO(P)-martingale, since the
processes u, o, v and r are bounded.
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