
HAL Id: hal-01017050
https://hal.science/hal-01017050

Submitted on 2 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Composite Feature Models to Support Agile
Software Product Line Evolution

Simon Urli, Mireille Blay-Fornarino, Philippe Collet, Sébastien Mosser

To cite this version:
Simon Urli, Mireille Blay-Fornarino, Philippe Collet, Sébastien Mosser. Using Composite Feature
Models to Support Agile Software Product Line Evolution. International Workshop on Models and
Evolution in MODELS Conference, Sep 2012, Innsbruck, Austria. pp.1-6. �hal-01017050�

https://hal.science/hal-01017050
https://hal.archives-ouvertes.fr


Using Composite Feature Models to Support Agile
Software Product Line Evolution

Simon Urli
UNS, CNRS (I3S - UMR 7271)

Nice, France
urli@i3s.unice.fr

Mireille Blay-Fornarino
UNS, CNRS (I3S - UMR 7271)

Nice, France
blay@i3s.unice.fr

Philippe Collet
UNS, CNRS (I3S - UMR 7271)

Nice, France
collet@i3s.unice.fr

Sébastien Mosser
SINTEF ICT
Oslo, Norway

sebastien.mosser@sintef.no

ABSTRACT
Managing continuous change in a Software Product Line
(SPL) is one of the challenges now faced by the SPL en-
gineering community. On the one hand, the SPL paradigm
captures the intrinsic variability of a software based on a sys-
temic vision of the software to model. On the other hand,
Agile Software Development advocates the incremental de-
velopment of software based on constant interaction with a
customer community. In this paper, we present an approach
based on Composite Feature Models (CFM) to support the
agile evolution of a SPL. This study is driven by the refac-
toring of a daily used application (information broadcasting
system), in the context of a nationally funded project. Pre-
liminary results show that CFMs support the incremental
development of a SPL based on interactions with a commu-
nity, tackling the challenge of SPL continuous evolution.

Keywords
Software product line, Agile, Evolution, Feature model

1. INTRODUCTION
In many domains software maintenance and evolution lead
to abstract the domain concepts in a model-driven engi-
neering process while supporting variability and extension
points. The latter corresponds to the application of the
Software Product Line (SPL) paradigm, which consists in
systematically reusing development assets in an application
domain [8], reducing time-to-market and improving quality.

Still willing to improve software development efficiency, Ag-
ile Software Development (ASD) advocates the incremen-
tal development of a software based on constant interaction
with a customer community [12]. Contrary to SPL tech-
niques, in ASD the focus is neither on scoping, predictability
nor reuse. ASD primarily aims at addressing the immedi-

ate customer demands with development efforts at a smaller
scale. While both approaches aim at handling variability,
they are not built to be directly used together, even if some
studies have been already conducted [7, 15, 13].

Nowadays software-intensive systems are built in a day-to-
day manner through communities that follow the rules of an
architectural framework, similar to a SPL. A crucial issue is
then to evolve towards a community-driven SPL, following
agile principles. The community would constantly provide
new requirements and change requests, while the reasoning
and generative capabilities provided by the SPL framework
should be preserved or adapted accordingly, following agile
principles. Based on our current experience on the reengi-
neering as a SPL of a concrete and daily used application, an
information broadcasting system, we propose in this paper
an approach to support the agile evolution of an SPL.

After discussing the current state of the art on agile SPL
evolution (see Section 2), we introduce our case study and
discuss issues related to its reengineering as a SPL (see Sec-
tion 2). We show that current variability modeling tech-
niques are not powerful enough to handle the faced prob-
lems. We discuss how the evolution of domain objects can
be managed by introducing an extension of feature mod-
els [16], (a widely used formalism for variability modeling),
called Composite Feature Models (CFM, see Section 4). To
manage dependencies between these evolving objects, we de-
scribe a model-driven configuration process (see Section 5).
We then conclude by discussing remaining difficulties in our
proposal and by evoking future work (see Section 6).

2. ON AGILE SPL EVOLUTION
The SPL paradigm models the intrinsic variability of a fam-
ily of software systems based on a systemic vision of the
software to model. It usually relies on reusable artifacts
that encapsulate both common and variable aspects so as
to facilitate planned and systematic reuse [8]. An SPL is
by nature scoped, i.e., it handles changes inside the soft-
ware family by configuration, providing a tailored product.
This means that all the changes are known in advance and
captured in some variability models, such as Feature Mod-
els (FM) [16]. Evolving an SPL out of its original scope is
therefore a challenging activity, as it breaks the closed world
assumption.



Some recent work focuses on providing safe evolution princi-
ples for SPLs [19], but are restricted to change patterns that
follow a refinement notion. At the FM level, we observe
the application of classic software engineering approaches:
reasoning on FM edits [20], providing some consistency no-
tions when FM evolves [14] or semantically differentiating
FMs [3]. But in many domains now, several factors raise
the stakes on the SPL engineering techniques and call for
appropriate evolution management techniques: third party
components are used, software ecosystems are moving to
open-source and community-based management, thus con-
tinuous requirement changes must be handled [5]. In this
context, managing continuous change in an SPL becomes a
crucial challenge, to which agility provides answers [12].

The interactions between SPL engineering and agility has
been studied according to several viewpoints. The usage of
agile techniques when tailoring a product within the fixed
scope of a SPL was investigated in [7]. Different industrial
studies show some complementarity in the planning, with
long-term strategy devoted to SPL management and short-
term tactical decisions with agile principles [15], as well as
some need to change team organisation according to the
compositional form of today SPLs [5]. Besides a test-driven
approach is also proposed in [13], where the variability is in-
crementally introduced into software by refactoring existing
code in a agile way.

To the best of our knowledge, no approach has been provided
to handle the evolution of a SPL (especially community-
driven), following agile principles. We advocate that this
problem can be tackled by managing the evolution of sev-
eral notions and software artifacts. First, as the domain is
constantly evolving, the evolution management of domain
objects must be handled, taking into account the complex-
ity of both the objects and their variability models. Second,
dependencies between these domain objects must be han-
dled, facilitating both the direct usage of simple users of the
SPL, and the long-term management of the SPL by their
architects.

3. FROM JSEDUITE TO YOURCAST
This section presents our case study, the re-engineering of a
broadcasting system as a SPL.

3.1 JSeduite : the legacy system
The development of the jSeduite1 system started in 2004.
Used to broadcast information in academic institutions, the
system is connected to academic partners (e.g., transporta-
tion network, cafeterias) that act as sources of informa-
tion. This information is then dispatched to multiple de-
vices (e.g., public screens, smartphones) that render it. The
system is implemented as a Service-Oriented Architecture
(SOA), and has been recognized as a prototypical usage of
SOA [18], used as a validation case study in the Faros na-
tional project. The final version of jSeduite was released in
2010, and counts circa 70,000 lines of code. This system is
today used in several french campuses.

Two kinds of persons interact with jSeduite. On the one
hand, final users (e.g., students, lecturers) see the broadcast-

1http://www.jseduite.org

ing devices. They express their needs in terms of informa-
tion delivery (i.e., a“product configuration”according to the
SPL terminology) using their own vocabulary, e.g., “I want
to display the timetable and the news from the University
on cafeteria’s screens”. On the other hand, developers work
at the code level to implement web services (e.g., timetable
provider, news feed reader) and business processes orches-
trating these services to support information broadcasting
(e.g., aggregating the two services to merge their informa-
tion streams). Developers also interact with the code of the
display client, customizing it to their institution (e.g., logo,
color codes, layout).

One of the interesting dimension of jSeduite is that the sys-
tem federates a community of users and developers. The
system was started as an engineering school project, and
was quickly enriched through student initiatives, adding new
sources of information to the system. Several broadcasting
policies were empirically identified to manage the growing
set of available information on the screens (e.g., restricting to
the latest ones, prioritizing certain kinds of information dur-
ing breaks). Two institutions dedicated to visually impaired
children are involved in this community, which triggers new
challenges in the way information is rendered through the
GUI (e.g., text-to-speech, dedicated fonts and color codes).

3.2 YourCast: toward an agile SPL
The jSeduite system suffered from several issues. First, it
was originally targeting small institutions. Thus, we en-
countered scalability problems while deploying a jSeduite
instance on large institutions (e.g., multiplicity of users, vari-
ability of devices). The second issue is triggered by the rich-
ness of the source set and their associated parameters, which
make it difficult to customize as is. Empirically, we identi-
fied that the customization of a jSeduite instance by an end
user is tedious and error-prone.

The YourCast project2 aims to address these two issues,
using a SPL approach to support end-users. An end-user
wishing to have a broadcasting system selects the wanted
features, and the YourCast engine generates the final prod-
uct based on this selection. This is directly related to the
first agile principle: “satisfy the customer” [12, principle 1].
Moreover this SPL should evolve to include the contributions
of a community of developers, creating new pieces of soft-
ware, or modifying them to enrich and maintain the product
family. We can make a parallel here with two other agile
principles: the need to “embrace change” and to “give fre-
quent deliveries” [12, principles 2 and 3]. Each contribution
of the community to evolve the SPL comes from a change
and must give at least a new usable delivery of the system.

We distinguish two groups of stakeholders: (i) users of the
SPL itself that create a Broadcasting System (BS) by se-
lection and then generate it. We call them BS-User; (ii)
developers who enrich the SPL. They form a community
and we note them BS-Dev.

From the perspective of a BS-User, we identified the follow-
ing concepts: a BS is composed of a set of sources, each one
being formatted to their liking to be displayed (renderer) in
a layout. Before it can be processed by one policy or more

2http://www.yourcast.fr, ANR EMERGENCE



Source Renderer

LayoutPolicy BroadcastingSystem

1..* 1..*

1..10..*

1..1 1..1

1..*

1..1

1..1

0..*

Figure 1: Simplified domain model of BS

to filter or sort pieces of information. We represent in Fig. 1
a simplified version of the domain model. Each class of the
model represents the domain concepts. The arrows and the
cardinalities in bold represent the requirements to make a
valid broadcasting system (e.g., “at least one source”). The
other lines and cardinalities represent dependencies between
concepts (e.g., “a source need to be connected with exactly
one renderer”).

The purpose of a BS-User is to create a BS that is aligned
with her information system and the sources she finds on
the web, while benefiting from a display in adequacy with
her context of use, e.g., graphic standard, type of population
(e.g., young, disabled, corporate), or field conditions. Goals
of developers (BS-Dev) are multiple, e.g., to add or adapt
sources, create its own renderers, offer new layouts. These
developments are driven by the consideration of technologi-
cal changes and by needs from the field experiments.

4. EVOLUTION OF DOMAIN OBJECTS
The evolution of the Web 2.0 increases the possible sources of
information (e.g., RSS feeds, user-driven news channels) by
the publication of shared or legacy services. This evolution
translates into a reduced time-to-market for new business
solutions. The YourCast SPL must in turn support this
evolution by demonstrating its ability to absorb evolving
requirements and priorities.

4.1 Requirements
R1: Reactivity to domain evolution. Broadcasting sys-
tems embrace different sub-domains (e.g., sources, visual-
ization technique, display, policies) that are in constant evo-
lution. Our developer community aims to integrate these
new domain objects in existing or new broadcasting systems.
Yourcast must support the integration of these various do-
main objects. For example, if a new service to share pictures
is widely used, a BS-Dev might decide to implement software
assets to use it in a broadcasting system. These assets have
to be reified in the SPL.

R2: Reactivity to domain objects evolution. Adding new
domain object is not sufficient to support the evolution of
the SPL. Services on the web are constantly evolving: APIs
are changing and new features appear. The BS-Dev have
to modify the SPL, reifying the changes. For example, the
previously defined service offers now the capacity to manage
secured picture albums, and a BS-Dev adds this feature in
the SPL.

R3: Human understability. For a simple broadcasting sys-
tem, we need to use many concepts. Each concept has com-

mon and variant parts that represent the different domain
objects available. But even the domain objects have their
own variability that has to be represented. For example, a
source like Picasa must be represented with all the relevant
ways to use it: it is possible (the list is not exhaustive) to
use the service as a search engine, or to get a precise pic-
ture album, to sort pictures by date or by alphabetic order.
That means a simple domain object could be represented
by a large FM reflecting what the BS-User wants to manip-
ulate (e.g., the Picasa source corresponds to 18 features in
the running system). In the end, getting the variability of
all the domain objects quickly leads us to a very complex
FM. So BS-Dev need some ways to manage that complex-
ity. In our example, 7 domain object sources correspond to
27 features and 36 valid configurations, 35 domain object
renderers correspond to more than 50 features.

R4: User-driven vocabulary. The last need concerns the
vocabulary employed in the SPL. Empirically, the introduc-
tion of objects in the SPL requires to characterize the do-
main objects in terms faimiar to the BS-User. This step
is difficult. Therefore it is necessary to support vocabulary
changes in the SPL itself following the experiments. For
example, the “screen name” term comes from Twitter API
and is used to filter information (thus modeled as a feature).
But it is not as clear as “pseudonym” to a user who does not
know the Twitter API.

4.2 Solution: Composite Feature Models
This section describes the solution defined in the context of
the YourCast national project to address these requirements.
This solution is based on the definition of Composite Feature
Models, according to the following pillars: (i) separation
of concerns, (ii) bottom-up modeling and (iii) automated
refactoring.

Separation of concerns. The usual way to represent a sys-
tem using a FM consists in gathering information about the
domain and the existing system and in creating a FM with
this knowledge. In case of evolution, the designer of SPL
knows all about the FM and computes the changes. Our first
requirement (R1) triggers two challenges: first, we need to
manage different domains for each concept used in the global
SPL; second, in each of these domains new domain objects
appear and should be modeled in the SPL. Moreover, the
third requirement (R3) is directly linked to the “keep things
simple” agile principle [12, principle 10]. Splitting a large
problem into many small ones is a well known solution to
manage complexity and is widely encouraged in software
engineering generally through principles like separation of
concerns.

SPLs do not intrinsically support separation of concerns. In
front of the need to model a SPL using several models to be
composed, the notion of multiple SPL was identified [10, 3].
According to this principle, we propose to create a FM for
each domain concept of the SPL. The set of FMs forms the
Composite Feature Models (CFM). In our case study, we
have a FM to represent sources, renderers, policies and lay-
outs. As a consequence, we manipulate smaller FMs in the
order of few tens of features and each FM is dedicated to a
precise domain and not to the large domain of broadcasting
systems. The complete SPL is thus composed of a set of



Source

TypeInfo Criteria

PictureAlbum Tweet...

...

FlickR Picasa Twitter

...

Renderer

TypeInfo Elements

PictureAlbum Tweet

MosaicAlbum SlidesAlbum ScrollingTweets

...

...

...

Key

Mandatory 
feature

Optional 
feature

XOR

OR

Figure 2: Partial FMs for Source and Renderer

FMs, each one corresponding to a different domain concept.

Fig. 2 depicts two examples of partial FMs for Source and
Renderer. We can see three domain objects of source rep-
resenting the services Picasa, FlickR and Twitter in the
FM Source; the FM Renderer shows three domain objects
of renderer usable with tweets and picture albums: the two
renderers for picture albums represented them in different
ways, MosaicAlbum displays albums in a picture mosaic
while SlideAlbum displays slides of pictures. As a BS-User,
it is now possible to focus on these domain concepts inde-
pendently. While configuring a system, a BS-User interested
in rendering mechanisms opens the Renderer FM, and can
select the expected features without being overwhelmed by
the other domain concepts (e.g., sources of information).

Bottom-up modeling. Separating general and domain ob-
ject specific functionalities is non trivial a priori [6]. Even
with smaller FMs evolutions are tedious and error prone.
Modifying a FM to reflect a change in a domain object as
it is specified in the second requirement (R2) needs to per-
fectly understand the whole FM. But it is contradictory with
the idea of a community making evolutions: in that kind of
process, each member of the community has a little piece of
knowledge. Moreover, the third requirement (R3) empha-
sizes the need for complexity management.

To address this point, we assume that each element to be
added or modified exists as a software artifact. Thus, it is
possible to model this artifact and the associated ones as
a FM, based on the local knowledge. The integration of
this “partial” FM dedicated to a given evolution into the
composite feature model is delegated to an automated algo-
rithm used to merge them together [2]. The algorithm can
be used in union, intersection or diff mode to compute a fea-
ture model supporting respectively: the union of configura-
tions providing by feature models in input ; the intersection
of configurations existing in feature models in input ; and
the difference of possible configurations. We use it here in
union to propagate the evolution of the domain objects into
the existing FM, freeing the BS-Dev from this tedious task.
The operation will automatically add the new available con-
figurations to the old ones.

Source

TypeInfo

PictureAlbum

FlickR

Source

TypeInfo

PictureAlbum

Picasa

Source

TypeInfo

Tweet

Twitter

Source

TypeInfo

PictureAlbum Tweet

FlickR Picasa Twitter

Figure 3: Using a merge algorithm to build a FM

So the creation of FMs which are used in SPL is an in-
cremental and automated process: if a change in a domain
object has to be reflected in FMs, the BS-Dev only makes
modifications in the domain object FM and then do a merge
of the set of FMs. If a domain object is deleted, the BS-Dev
just has to delete the associated feature model and to create
a new feature model by merging the others. We illustrate in
Fig. 3 how the merge algorithm is used to build a simplified
source FM. Each software artifact related to a source exists,
and defines a feature (e.g., Picasa, FlickR, Twitter). These
features are modeled as independent FMs, and the merge
algorithm is used to build the final FM that captures the
associated variability.

Automated refactoring. Finally we now are able to man-
age the evolution of SPL FMs, but we still have to deal with
the evolution of vocabularies (R4). FMs are not created and
used by the same people, so we need to be sure that they
all share the same vocabulary and if not, we have to give
tools to modify this vocabulary: this need is directly linked
to the agile principle which stands that every project needs
to support “face-to-face conversation” with customers [12,
principle 6]. Furthermore, in feature modeling the notion of
vocabulary is essential, all their usage usually standing on
feature names.

As SPL FMs are obtained by merging smaller ones, a change
in a vocabulary may imply modifications in lots of FMs. The
process of renaming each FM is still tedious and error prone.
Moreover the usage of text editor operations, like regular ex-
pression replacement, is not always sufficient: a change in a
domain vocabulary may imply to add a finer granularity or
on the contrary to abstract things. Then we use a feature
modeling language (Familiar [1]) offering scripting capabil-
ities to automate these refactoring tasks. We are then able
to rename a feature in a set, to add or remove features and
so on, in a simple and explicit way.

5. MANAGING DEPENDENCIES
According to Bosch [5], the product line’s success causes a
significant increase in the number and complexity of depen-
dencies among components in the SPL. Dependency man-
agement is thus essential to the consistency of a SPL and



should not be an obstacle to its evolution. Our first solution
to manage complexity of SPLs was to split its representa-
tion into several feature models corresponding to domain
concepts. In a FM, constraints are then automatically de-
duced from the merging of domain objects FMs, making
their maintenance transparent to the BS-Dev. However the
domain concepts are themselves interrelated. It is there-
fore necessary to support the expression and management
of these dependencies so that the agility gained is preserved.

5.1 Requirements
R5: Implicit modeling of dependencies and inferences.
The domain modeling induces dependencies among domain
concepts. For example, a renderer processing a particular
type of information can only be linked to a source providing
the same type of information. The SPL should take care of
these dependencies to facilitate and ensure a rapid and con-
sistent evolution of the SPL. Thus, BS-Dev in charge of ren-
derers implementation focus on their artifacts, and the SPL
tooling ensures that only adequate sources are connected
with the renderers.

R6: Helping the BS-Dev to express dependencies. Some
evolutions related to the integration of new domain objects
require the management of specific dependencies (e.g., adding
a new source corresponding to a legacy information system
may require the use of a dedicated renderer). Similarly,
changing optional features of a concept may involve the es-
tablishment of new dependencies to guide the selections by
BS-User (e.g.,, adding a title as a feature of some zone may
imply to only accept renderers supporting such a feature).
As it is necessary to handle dependencies between domain
concepts, it is also necessary to allow the BS-Dev to express
dependencies between specific domain objects.

R7: Enforcing SPL consistency. The number of compos-
ite configurations in which a domain object can be used is
substantial. If it cannot be used in any composite configu-
ration, it is useless and should not be part of the SPL. Veri-
fying compatibility of a new domain object with all contexts
in which it can be used, and more generally how changes im-
pact the valid composite configurations is a challenge that
we face.

5.2 Solution: Model Driven Evolution Process
It is known that FMs are not as expressive as metamod-
els: “Feature models are well adapted to capture simple se-
lections from predefined (mostly) boolean choices within a
fixed choices within a fixed (tree) structure; and metamodels
support making new structures by creating multiple instances
of classes and connecting them via object references.” [4]. In
accordance with the identified needs and the previous ob-
servations, we choose to make explicit the relationships at
model level. Their role is then to lead the configuration
process. The proposed solution relies on (i) a metamodel-
ing approach, (ii) the definition or restriction functions on
models and finally (iii) the definition and verification of a re-
alizability property to ensure the validity of the configurable
products.

Metamodeling. To manage the relationship between FMs
we have defined a metamodel that supports the definition of
domain models as a composition of concepts corresponding

to FMs and reifies the dependencies between them. These
different elements support expression of cardinalities described
in our case study. The metamodel is accessible from the pro-
ject website3. Figure 1 is a simplification of a domain model
conforms to our metamodel. This approach preserves a sim-
ple view of the product line from the BS-Dev viewpoint.

Restriction functions. Relations between the FMs lead the
process of construction of composite configurations. Select-
ing a configuration in a FM can reduce the set of available
selections in other linked FMs. To support these opera-
tions, restriction functions are associated to relations be-
tween FMs. A function is defined by a Familiar script [1]
that makes explicit how FMs are related. These functions
are defined by BS-Dev using composition operators between
FMs. If the implementation of certain operators can be com-
plex, it is hidden. Implementation and understanding of de-
pendencies is then facilitated promoting the consideration of
change. These functions meet the requirements R5 and R6.

A propagation algorithm based on these functions has been
defined. It supports automatic propagation of user choices
in building different contexts according to the cardinality
defined at the level of models. For example, the choice of a
source reduced locally all renderers that may be associated.
This selection does not change the set of possible renderers
for other sources. Conversely, the selection of some layouts
may globally prohibit selecting some sources. When a source
and a renderer are associated it is no longer possible to as-
sociate them with a different source or renderer.

Realizability checking. If the individual understanding of
dependencies is simple, their composition can be very com-
plex, making the strength of the approach. To ensure that
the selection of a configuration does not prohibit the con-
struction of a valid composite configuration (see R7), we
check this realizability property [17] after each addition or
modification.

A minimal kernel is initially created in which a composite
configuration is always possible for all selected configura-
tions. The FMs are then considered as sets of configurations.
Adding or editing a set of domain objects thus implies to
check the existence of valid configurations containing these
domain objects. We proceed by a traversal of the graph cor-
responding to the domain model from those domain objects.
The non-existence of a valid composite configuration leads
to the refusal of the element.

6. CONCLUSION AND PERSPECTIVES
Feature-oriented modeling advocates the definition of fea-
ture models to support the variability of large software and
SPL. However, the need for evolution in these feature mod-
els is not widely studied for now. In this paper, we used a
large piece of software, started eight years ago and currently
reengineered as a SPL, to illustrate such a need. Based on
this example and the encountered evolutions, we focused on
two points: (i) the evolution of domain objects captured in
the feature models and (ii) the evolution of dependencies
between the domain objects in the models. For each point,
we expressed its requirements based on our field experience

3http://www.yourcast.fr/me12/



and proposed a solution to address these requirements. Our
solutions rely on the definition of composite feature models,
and the use of a model-driven evolution process to support
it on large real systems.

One of the immediate perspectives of this work is to apply it
to other software in order to strengthen its empirical valida-
tion. We plan to use SensApp4, a scalable application used
to collect data provided by sensors, supporting the definition
of “Internet of Things” pieces of software. We also plan to
address several difficulties encountered while implementing
composite feature models. First of all, keeping aligned the
vocabulary used in the different models is challenging with-
out support from the semantics domain. We plan to use
ontologies and associated alignment mechanisms to support
such a task [9, 11]. Another challenge we plan to address is
how to maintain consistency between the different elements
of a composite feature model and the associated configura-
tion set. For example, adding a new constraint in the feature
models may restrict the set of available configurations. How
one can detect such a situation, and take accurate decisions
with respect to the existing set of products already derived
from the modeled product line?

Acknowledgments
The work reported in this paper is partly funded by the ANR
YourCast project under contract ANR-2011-EMMA-013-01.

7. REFERENCES
[1] Mathieu Acher, Philippe Collet, Philippe Lahire, and

Robert France. A domain-specific language for
managing feature models. In SAC’11, pages
1333–1340. PL Track, ACM, 2011.

[2] Mathieu Acher, Philippe Collet, Philippe Lahire, and
Robert France. Separation of Concerns in Feature
Modeling: Support and Applications. In
Aspect-Oriented Software Development (AOSD’12).
ACM, March 2012.

[3] Mathieu Acher, Patrick Heymans, Philippe Lahire,
Clément Quinton, Philippe Collet, and Philippe
Merle. Feature Model Differences. In Proceedings of
the 24th International Conference on Advanced
Information Systems Engineering (CAiSE’12), volume
2012, pages 1–16, 2012.

[4] K Bak, K Czarnecki, and A Wasowski. Feature and
Meta-models in Clafer: Mixed, Specialized, and
Coupled. Proceedings of the Third international
conference on Software language engineering, pages
102–122, 2010.

[5] Jan Bosch. Toward Compositional Software Product
Lines. IEEE Software, 27(3):29–34, 2010.

[6] Jan Bosch and Mattias Högström. Product
Instantiation in Software Product Lines: A Case
Study. Lecture Notes in Computer Science,
2177:147–162, 2001.

[7] Ralf Carbon, Mikael Lindvall, Dirk Muthig, and
Patricia Costa. Integrating Product Line Engineering
and Agile Methods : Flexible Design Up-Front vs.
Incremental Design. In 1st International Workshop on
Agile Product Line Engineering / SPLC 2006, 2006.

4http://sensapp.modelbased.net

[8] Paul Clements and Linda M. Northrop. Software
Product Lines : Practices and Patterns.
Addison-Wesley Professional, 2001.

[9] Krzysztof Czarnecki, Chang Hwan Peter Kim, and
Karl Trygve Kalleberg. Feature Models are Views on
Ontologies. In 10th International Software Product
Line Conference SPLC06, volume 1, pages 41–51.
IEEE Computer Society, 2006.

[10] Sascha El-Sharkawy, Christian Kröher, and Klaus
Schmid. Supporting Heterogeneous Compositional
Multi Software Product Lines. Proceedings of the 15th
International Software Product Line Conference on -
SPLC ’11, page 1, 2011.

[11] Martin Fagereng Johansen, Franck Fleurey, Mathieu
Acher, Philippe Collet, and Philippe Lahire. Exploring
the Synergies Between Feature Models and Ontologies.
In International Workshop on Modeldriven Approaches
in Software Product Line Engineering MAPLE
2010SPLC10 Volume 2, volume 2 of SPLC’10 (Volume
2), pages 163–171. Lancester University, 2010.

[12] Martin Fowler and Jim Highsmith. The agile
manifesto. Software Development -San Francisco-, Vol
9:28–35, 2001.

[13] Yaser Ghanam and Frank Maurer. Extreme Product
Line Engineering — Refactoring for Variability : A
Test-Driven Approach. Processes in Software
Engineering and Extreme, 2010.

[14] Jianmei Guo and Yinglin Wang. Towards Consistent
Evolution of Feature Models. In Proceedings of the
14th international conference on Software product
lines going beyond, SPLC’10, pages 451–455.
Springer-Verlag, 2010.

[15] Geir K. Hanssen and Tor E. Fæ gri. Process Fusion:
An Industrial Case study on Agile Software Product
Line Engineering. Journal of Systems and Software,
81(6):843–854, June 2008.

[16] K. Kang, S. Cohen, J. Hess, W. Novak, and
S. Peterson. Feature-Oriented Domain Analysis
(FODA). Technical Report CMU/SEI-90-TR-21, SEI,
November 1990.

[17] Andreas Metzger, Klaus Pohl, Patrick Heymans,
Pierre-Yves Schobbens, and Germain Saval.
Disambiguating the documentation of variability in
software product lines: A separation of concerns,
formalization and automated analysis. In RE’07,
pages 243–253, 2007.

[18] Sébastien Mosser, Gunter Mussbacher, Mireille
Blay-Fornarino, and Daniel Amyot. From
Aspect-oriented Requirements Models to
Aspect-oriented Business Process Design Models. In
10th international conference on Aspect Oriented
Software Development(AOSD’11), , Porto de
Galinhas, March 2011. ACM.

[19] Láıs Neves, Leopoldo Teixeira, Demóstenes Sena,
Vander Alves, Uirá Kulesza, and Paulo Borba.
Investigating the Safe Evolution of Software Product
Lines. In Ewen Denney and Ulrik Pagh Schultz,
editors, GPCE, pages 33–42. ACM, 2011.

[20] Thomas Thüm, Don Batory, and Christian Kästner.
Reasoning about Edits to Feature Models. In ICSE’09,
pages 254–264. ACM, 2009.


