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Abstract

Most models of reading aloud have been constructed to explain data in relatively complex orthographies like English and
French. Here, we created an Italian version of the Connectionist Dual Process Model of Reading Aloud (CDP++) to examine
the extent to which the model could predict data in a language which has relatively simple orthography-phonology
relationships but is relatively complex at a suprasegmental (word stress) level. We show that the model exhibits good
quantitative performance and accounts for key phenomena observed in naming studies, including some apparently
contradictory findings. These effects include stress regularity and stress consistency, both of which have been especially
important in studies of word recognition and reading aloud in Italian. Overall, the results of the model compare favourably
to an alternative connectionist model that can learn non-linear spelling-to-sound mappings. This suggests that CDP++ is
currently the leading computational model of reading aloud in Italian, and that its simple linear learning mechanism
adequately captures the statistical regularities of the spelling-to-sound mapping both at the segmental and supra-
segmental levels.

Citation: Perry C, Ziegler JC, Zorzi M (2014) CDP++.Italian: Modelling Sublexical and Supralexical Inconsistency in a Shallow Orthography. PLoS ONE 9(4): e94291.
doi:10.1371/journal.pone.0094291

Editor: Benjamin Xu, The National Institutes of Health, United States of America

Received August 13, 2013;Accepted March 14, 2014;Published April 14, 2014

Copyright: � 2014 Perry et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by grants from the Australian Research Council (DP120100883) to CP and the European Research Council (210922-
GENMOD) to MZ. JZ was supported by the Labex BLRI (ANR-11-LABX-0036) managed by the French National Agency for Research (ANR), Investments of the
Future A*MIDEX (ANR-11-IDEX-0001-02). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ConradPerry@gmail.com

Introduction

The way orthographies represent sound differs markedly across
languages. English, for example, is generally thought to have
a comparatively complex orthography (e.g., [1]). One promising
strategy to investigate how differences across orthographies may
shape the functional architecture of the reading system is to
develop full-blown computational models of reading for different
languages using a common framework and the same core
processing components (e.g., [2,3]). This strategy is pursued here
in the context of the Connectionist Dual Process Model of
Reading Aloud (CDP) [4–11], a model that was originally
developed for English. The latest versions of this model (e.g.,
CDP++ [5]) have been shown to provide the most comprehensive
account of the empirical data, outperforming all of their
competitors by an order of magnitude in terms of quantitative
performance (i.e., goodness of fit).

Unlike English, Italian is characterized by relatively simple (i.e.,
transparent) relationships between orthography and phonology. It
therefore provides an interesting contrast with respect to the bulk
of research on the far less transparent English orthography (see e.
g., [12] for a discussion). As is often the case, simplicity at one level
comes at the price of complexity at another level. Finnish is a good
example of this, where grapheme-phoneme relationships are
extremely simple (fully consistent) but the morphological system is
highly complex. In Italian, complexity can be found at the

suprasegmental (word stress) level (e.g., [13]). That is, words with
the same syllable structure and similar spellings can have stress in
different locations (syllables) and where stress goes is not always
predictable from the sublexical information. For example, in the
database that is used below, 77.2% of 3-syllable words have stress
on the penultimate syllable (e.g.,do’mani[tomorrow]), 13.2% have
stress on the antepenultimate syllable (e.g., ’macchina[machine]),
and 9.6% have stress on the ultimate syllable (e.g.,socie’tà[society/
group]).

Apart from Italian stress being interesting in its own right, it is
interesting to compare stress assignment in English and Italian as
this comparison makes it possible to investigate whether the same
mechanism can be used to assign stress in languages that differ in
terms of complexity. Cross-language differences between English
and Italian show that not only are the linguistic ‘‘rules’’ of how
stress is assigned quite different (cf., e.g., [13] and [14]), but so are
other factors. These include morphology (c.f., [13] and [15]) and
orthographic markers that help predict stress (e.g., [16–18]). For
example, with orthographic markers, Italian uses a diacritic (à) to
mark stress in word-final position which English does not
commonly use and both languages have orthographic sequences
that are correlated with certain stress patterns. The existence of
different cues that may have different weights in different
languages is a challenge for a model like CDP++ because it uses
the same architecture and learning mechanisms in different
languages. Thus, the model needs to find the ‘‘right’’ cues solely
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on the basis of the statistical spelling-to-sound properties in the
training corpus. Similarly, if there are patterns in the data that are
seemingly best accounted for by a rule system, such as that which
has been suggested for predicting the stress of Italian verbs [13],
CDP++ and other connectionist models (e.g., [5,6,19,20]) must
learn to approximate these patterns without the use of a rule-based
mechanism.

There are now a fairly large number of published studies that
have investigated different aspects of word and nonword reading
in Italian, many of which are specifically concerned with how
stress is computed. This means that it is possible to thoroughly test
computational models of Italian reading aloud [12]. A key
prediction of the CDP approach is that the relationships between
spelling and sound as well as spelling and word stress can be learnt
via a simple linear learning mechanism. Given the complexity of
word stress in Italian, it remains a challenging question whether
such a simple mechanism can correctly predict stress assignment
along with a number of other effects that have been reported. We
therefore constructed an Italian version of CDP++ and assessed its
descriptive adequacy both qualitatively and quantitatively.

In terms of the scope of data to test the model on, we focused on
skilled adult reading. We selected all studies that used a simple
naming or priming paradigm with literate adults, for which the
authors provided the list of items used. Only those studies that
used more than 12 items in each cell were chosen. We also
examined the largest study that investigated the effect of stress in
acquired dyslexia in Italian [21]. Developmental studies were not
used to test the model because there are a number of issues to do
with development that make simulating these data beyond the
scope of the current work (for a discussion of these issues and
a developmental CDP++ model, see [22–24]).

The Model: CDP++.Italian
The architecture and the processing assumptions of the model

are identical to those of the latest version of the English CDP++
[6], except that rather than only using words with a maximum of
two syllables, words with three syllables were also used. In line with
its dual-process framework, the model includes two main routes
between spelling and sound, a lexical and a sublexical route (see
Figure 1). The lexical route is identical to all versions of CDP
(apart from the earliest version), excluding the database used and
its properties. The new database (see below) meant that 35
phonemes used and 32 letters (including a null letter) were used.
The feature level of the model contained 14 features, although the
parameters were set so that feature overlap had essentially no
effect on the performance of the model in any way. In terms of the
other parts of the lexical route of the model, the same frequency
counts were used in both the orthographic and phonological
lexicons since the database we used only had one set of frequency
counts. In addition, all of the words used a frequency count that
was the same as those given in the database plus 2. This was done
because some words have a frequency value of zero and we take
log values of frequencies for some computations. This means all
frequency values always end up being greater than 0.

The sublexical route consists of a graphemic parser and a two-
layer associative (TLA) network. The graphemic parser is designed
to segment letter strings into graphemes as well as categorize the
graphemes into onset, vowel, and coda categories. This catego-
rization process allows the graphemes to be placed into the
graphosyllabic template of the TLA network (i.e., its input
representation), and the TLA network is then able to generate
phonology from them. The two different routes converge at the
phoneme output buffer, where phonemic activation is integrated,

as well as at the stress output buffer, where word stress activation is
integrated.

At present, learning only occurs in the sublexical route when the
model is in training mode. In this mode, the graphemic parser is
presented with a set of letter strings generated from each word.
These strings are constructed based on the idea that anattentional
windowmoves over letter strings from left to right, with the model
learning which grapheme is at the start of each letter string within
the attentional window (i.e., a set of letters is presented and the
parser produces a grapheme that can be one or more letters long
as an output). Apart from just learning which grapheme is at the
start of a string, the graphemic parser also learns what type of
grapheme it is (onset, vowel, or coda). In running mode, this allows
the graphemes to be placed in a syllable-like template (i.e., the
graphosyllabic template of the TLA network) based on their
categorization, since if an onset grapheme follows a vowel or
a coda grapheme, it means that it must be placed into the next
syllable of the template after the vowel. Finally, the parsing
network has a memory for previous graphemes it has parsed. This
allows some amount of context sensitivity to be learnt even when
the letters in the attentional window are the same, which is
important for languages like English (see [6]). The parser is
displayed in Figure 2.

In Italian, because the correspondences between spelling and
sound are less complex and have less contextual sensitivity
compared to English, the attentional window is only 3 letters
wide (in English, we used 5). This means that with the word
maglione[jumper], for example, six strings of letters would be given
to the network as input patterns:mag, agl, gli, ion, ne*, e**(note that
the * represents no letter is in the window). The teaching signal (i.
e., desired output) presented to the network during learning is the
first grapheme occurring in each letter string, as well as its category
(for the example above: m, onset; a, vowel; gl, onset; etc.). The
three categories are represented in the output by simply
duplicating the set of graphemes three times, and the grapheme
is put in the set that represents the category it belongs to. Once the
network has learnt relationships between the letter strings and the
first grapheme in the strings, the parser can break strings of any
length down into graphemes as well as place them into their
correct position in the graphemic buffer. Thus, in running mode,
the constituent graphemes for any string of letters (regardless of
whether it is a known word, a novel word, or a nonword) are
generated in an entirely bottom-up fashion.

The orthography-to-phonology mapping is learnt by the TLA
network, which is presented with graphemes (inputs) and, during
learning, phonemes and stress information (outputs). In learning
mode, all of the information is presented at the same time, and the
model learns simple associations between inputs and outputs using
the delta rule (this is equivalent to the Rescorla-Wagner learning
rule [25]). In running mode, the graphemes are placed in the
graphemic buffer of the TLA network in a position determined by
the graphemic parser, and the model generates phonology and
stress information based on the simple associations it has learned
during training. The information from the output of this network
is then used in conjunction with activation produced by the lexical
network to generate a pronunciation.

Database
The lexicon of the model was constructed from all words up to 3

syllables and 8 letters long that were in the Adsett et al. [26]
database (N = 63,438). This database consists of a large number of
Italian words, and morphologically simple and morphologically
complex word forms are represented separately. Letters in the
database with a diacritic (accent) mark were coded as an entirely

CDP++.Italian
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separate letter, which meant there were 31 separate letters plus
one for the ‘blank’ letter. In terms of phonology, stress was coded
based on syllable position (i.e., 1st, 2nd, or 3rd), and there were 32
phonemes in the database, of which 23 were consonants, 7 were
vowels, and 2 were semi-vowels. Frequency counts were obtained
by entering the words into the Google search page on the 15/8/
2008 and counting the hits for each word, with an Italian language
restriction. Whilst it is known that Google counts may not be
perfect [27], the log frequencies of the counts correlated
reasonably well with the log frequencies in the CoLFIS database
[28] using all items that were shared, r = .77 (N = 21279). In
addition, when frequency alone was used as a predictor on the
Barca et al. [29] database of written word naming latencies, an
almost identical sized correlation (r =2 .24) was found with both
the CoLFIS frequencies and Google counts. There are a number
of very low frequency words in the Adsett et al. database that are
unlikely to be known by most of the Italian speaking population, as
well as a number of loan words. These words were left in the
database for the sake of simplicity and generality. There is also
a reasonable amount of variation in different Italian dialects, and
the examples used here are taken directly from the Adsett et al.
database, and thus may differ as a function of regional dialects.

Graphosyllabic Template
The basic idea of the graphosyllabic template is to allow

graphemes to be put into a syllable-like structure. In learning
mode, where exemplars are presented to the model and the
structure is learnt, this graphemic structure is derived by trying to
align graphemes with lexical phonology, although other methods
could certainly be used (see [6] for a discussion). This means that
identical letter sequences can potentially be coded differently if
those sequences map to different lexical phonology. To code these
sequences, a number of assumptions were made about graphemes
and how they are placed in the graphosyllabic template.

First, in terms of the set of multi-letter graphemes, these were
selected based on trying to find the minimum set that could be
used to describe the Italian orthography under the assumption that
single graphemes generally map onto single phonemes. Based on
this strategy, 5 consonant and 9 vowel graphemes that had more
than one letter were used (gl gn gh ch sc ia ie io io´ iu iá ié iù ii).
These graphemes could potentially occur in any place of the
graphosyllabic template, and the template was organized into
a CCCCVC structure for each of the three possible syllables it
could contain. This structure was chosen because there are

Figure 1. CDP ++.Italian. Note f = feature, l = letter, S = Stress, o = onset, v = vowel, c = coda. Numbers correspond to the overall slot number with
the letter and feature nodes or the particular slot within an onset, vowel, or coda grouping for the rest of the representations. The thick divisors in the
Phoneme Output Buffer represent syllable boundaries. The grapheme and phoneme nodes in the TLA network are simply used as an example, and
do not correspond to the actual set of graphemes used in the network.
doi:10.1371/journal.pone.0094291.g001
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maximally 4 onset graphemes in Italian (e.g.,Austria[Austria],
which uses the onset /strj/ in the second syllable). One coda
consonant was used because, excluding a small number of loan
words, only a single grapheme can occur in that position.

A second assumption concerned the coding of geminates. They
are represented in the phonology of the database as a single coda
consonant followed by a single onset consonant. In the orthog-
raphy they often correspond to a sequence of two identical letters
(e.g., -ss incasse[boxes]). Accordingly, these were coded as two
single letter graphemes split between the two orthographic
syllables. Conversely, when the geminates corresponded to non-
identical letter sequences like –gl (e.g.,maglione[jumper]), these
were coded with a single grapheme that was put in the first onset
slot of the second syllable which the geminate spanned. Such
a distinction is consistent with the conventional splitting of end-of-
line words (when the line is out of space) in Italian printed text,
which is also explicitly taught to children for handwriting. That is,
the geminate letters are split (e.g.,cas-se, with segoing to the next
line), whereas two consonant letters forming a grapheme are not
split (e.g.,ma-glioneis a legitimate split butmag-lioneis not).

A third assumption that was made was that the semi-vowels /j/
and /w/ were coded by a single grapheme in an onset position.
Thus, it was assumed that even if a letter is nominally a vowel, it
does not necessarily have to be placed in a vowel position of the
template. Rather, it was assumed that a vowel letter may occur in
the onset position after a consonant when it is representing a semi-
vowel phoneme. Thus, for example,partiate[leave], which has the
phonology /par.tja.te/, was coded as p(o).a(v).r(c).t(o).i(o).a(v).t(o).e
(v) and not p(o).a(v).r(c).t(o).ia(v).t(o).e(v) (o = onset; v = vowel;
c = coda). Using these vowels in onset slots of the graphemic
template allows only one-grapheme-one-phoneme correspon-
dences to be used.

An alternative to using vowel graphemes in onset positions
would have been to use vowel graphemes with two letters (e.g., -ia)
including ones that are not necessary with the current coding
scheme (e.g., -uo). Apart from having to use many more
graphemes, if this strategy was used then, in some cases, a single
grapheme would have needed to map to both a vowel and the

semi-vowel phoneme. Using vowel letters in onset positions
therefore reduces the number of graphemes a great deal and also
means that single graphemes map to single phonemes in these
cases. For example, the –ia grapheme may either fall in a syllable
without a /j/ in the onset associated with it or it may fall in one
with a /j/. With the word partiate(/par.tja.te/), for example, there
is a /j/ after the /t/. With the current coding scheme (p.a.r.t.i.a.t.
e), because –i maps to /j/ in a one-to-one fashion, there is no
inconsistency. Alternatively, when words without a /j/ are used,
such asangoscia[anguish] (/ang��� a/), the –ia is not split, and thus
there is no ambiguity either.

One advantage of the present coding scheme is that it naturally
accounts for context sensitivity, which reflects the fact that the
pronunciation of an onset consonant is affected by the vowel that
follows it. For example, the letter –g is usually pronounced /g/
when followed by ana, o, or, u, or / � / when followed byeor i
[30]. This means that in a word likeseguo[follow] (/segwo/),
currently coded as s.e.g.u.o, the –u needs to combine with the –g
to activate the correct phoneme. It also needs to activate the /w/
phoneme. The –o is then left to activate the vowel. Alternatively, if
the vowel was instead coded as two letters (s.e.g.uo), the –uo would
need to perform all three functions – help activate the correct
context sensitive onset, activate /w/, and activate a vowel.

Creating the Training Databases
The graphemic structure of the training database was created in

the same way as in Perry et al. [6], where words were first divided
into contiguous consonant and vowel sequences. These were then
parsed using the longest possible graphemes. To identify cases
where vowel letters functioned as semi-vowels, all words where the
initial parsing of the graphemes caused there to be less vowel
graphemes than vowel phonemes were identified. When this
occurred, the onsets of syllables were scanned for /j/ and /w/. If
the vowel that came after them started with either an –i or a –u,
this vowel was placed in an onset position (N = 7076). Other more
minor changes included:

Figure 2. The graphemic parser. Note: t = time; L = Letter.
doi:10.1371/journal.pone.0094291.g002
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1) the –sc onset was split into –s and –c when it corresponded to
/sk/ (e.g., scappa /skappa/; N = 855).

2) –gl was split as –g and –l when it corresponded to /gl/ (e.g.,
gloria /gl� rja/ [glory]; N = 836).

3) If there were less orthographic vowels than phonological ones,
the string was scanned for all of the multi-letter vowels and the
vowel grapheme was split if one was found (N = 813). For
example avvia /avvia/ [start] has the consonant-vowel
sequence [a][v][v][ia], and three phonological vowels. To
get the number of orthographic and phonological vowels the
same, the –ia was split. Thus, the final graphemes were a.v.v.i.
a.

4) The onset –sch was split as –s and –ch (e.g.,scherzo /sketso/
[joke]; N = 329).

5) The vowel sequence –iuo (e.g.,giuoco/ � wok� / [play], N = 6),
was split as –iu and –o.

This left 191 words which could not be coded, almost all of
which were loan words (e.g.,delphi). Therefore, the final training
database contained 63360 words. From these words, the training
database for the graphemic parser was constructed by taking each
word and creating the set of 3-letter sequences that represented the
letters in the attentional window with a grapheme that needed to
be parsed at the start (the input patterns). These were paired with
the grapheme that occurred at the start of each sequence (the
output patterns). See above for an example of this. This meant that
there were 417,622 training exemplars. The training database for
the TLA network was constructed by simply aligning the
graphemes in the graphosyllabic template of the network (the
input patterns) and pairing this with the phonology of the words
(the output patterns).

Training the Graphemic Parser
The graphemic parser was created in the same way as Perry et

al. [6], where a simple two-layer network with a 3 grapheme
memory was trained to select graphemes from the start of strings of
letters and also categorize them into onset, vowel, and coda
categories. Training was also done in an identical fashion to Perry
et al. [6], where different networks were trained on the whole
database as well as a number of smaller subsets of words (500,
1000, and 2000 words). The input patterns were the three letter
sequences that could be derived so that a grapheme was at the
start of each sequence, and the actual graphemes used were those
derived from lexical phonology as described above. The output
patterns were simply the grapheme and its classification (i.e., onset,
vowel, coda). See above for an example of the patterns created for
the wordmaglione.

The input layer of the graphemic parser consisted of three main
sections that contained 32 letter nodes each (i.e., 31 letters plus one
‘‘null’’ letter). These were designed to represent any possible
sequence of letters that could occur in an attentional window that
is 3 letters wide. The output layer consisted of all possible
graphemes. These were repeated 3 times so any grapheme could
potentially be classified into an onset, vowel, or coda category.

Graphemic Parser Results
There were far fewer errors in Italian than in English – indeed

there were only 1001 (.24%) errors for the patterns that were used
in training. The errors were not random, which makes it possible
to look at the individual types of errors, and these appear in the
Materials S1 in File S1.

Whilst the results suggest that the model is not perfect, this is at
least in part because there are inconsistencies in the way

graphemes are split in Italian, and the errors can help identify
predictions that the model makes. For example,esempii[examples]
and capii[I understood] both use an -ii letter sequence, but with
esempii, the -ii functions as a semi-vowel and vowel, whereas with
capiithere are two vowels. This type of inconsistency causes the
model to make errors with the -ii letter. This means that CDP++
predicts that people will also give a distribution of responses when
confronted with the –ii pattern, since it is something which is
ambiguous in Italian, and some of the responses will therefore
have a different number of syllables to the other ones. Another
example of this is the –ia vowel sequence, which can also be parsed
into different categories (e.g.,previa /prevja/ [subject to] (semi-
vowel/vowel) vs.rinvia /rinvia/ [reject] (vowel/vowel)).

Apart from the results of the fully trained model, the models
trained on a small number of exemplars also showed reasonable
performance (see Figure 3). Even when the model was trained on
only 500 words, it was able to get most correspondences correct.
This suggests that choosing the correct graphemes in words in
Italian is fairly simple, and can be done with relatively minimal
information about the entire database, which might explain in part
why reading acquisition is a lot quicker in Italian than in English
[31].

Training the Sublexical (TLA) Network
The TLA network was trained for 20 cycles using the same

parameters as in Perry et al. [6]. Phonemes and graphemes were
aligned in the same way as in CDP++ (i.e., into syllables).

CDP++.Italian: Results
The items used for all of the studies simulated below were

identical to those in the original studies (The exact results were not
reported in a small number of the experiments. When this was the
case, we estimated the results from the figures). When words were
used that did not exist in the database, they were excluded from
the analysis, as were nonwords that were in the database (i.e.,
nonwords that were actually words). A 3 standard deviation (SD)
cut-off was also applied to all of the results, and these items were
considered outliers, as were all words that took more than 250
cycles to produce. The number of items removed from the
statistics and the reason is reported after each experiment in
square brackets. All data sets were run using the same parameter
set (see the Materials S2 in File S1) unless otherwise stated. Due to
computational constraints, we restricted the lexicon of the model.
This was done by only using words in the lexicon that were

Figure 3. Percentage of graphemes selected incorrectly with
networks trained on different numbers of exemplars over 15
cycles of training.
doi:10.1371/journal.pone.0094291.g003
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identical to the one being run, except for the pseudohomophone,
neighborhood, and Job et al. [30] simulations, where we used the
full lexicon. This was necessary since, with more than 60,000 items
in the lexicon, it is very hard to find an optimized parameter set
within a reasonable amount of time. In addition, our previous
work has shown that whilst examining some properties of feedback
in the model is useful, feedback has little impact on data sets that
do not need it [4,8].

Database Comparisons
The first set of results we examined were those from Barca et al.

[29], a database with the reaction times for 625 nouns, 501 of
which were in the model’s lexicon (most of the others were 4-
syllable items). We used a two-step regression analysis to predict
the human reaction times. In the first step, we added the onset
characteristics of the first phoneme of the words. These were taken
from the database of Barca et al. In the second step, we added the
naming latencies of the model (in number of cycles). The
performance of the model was compared with a number of
different regression analyses that used the onset characteristics of
the words, log word frequency from the same database which the
model used, orthographic neighborhood calculated using Le-
venshtein Distance [32], number of letters, number of syllables,
and word stress. The results showed that the model plus onsets
captured slightly less variance compared to the regression equation
with all of the terms in it (52.3% versus 53.6%), somewhat more
than onsets plus frequency (50.6%), and more than just onsets
alone (46.4%). Unfortunately, as can be seen via the difference
between the full regression equation and just the onsets, the
amount of variance that could be captured above just simple onset
characteristics was relatively small (for a similar finding in French,
see [11])

Words, Frequency, and Nonwords
Perhaps the simplest question of all that could be asked about

the model is whether it reads aloud real words more quickly than
nonwords, and whether high frequency words are read aloud
faster than low frequency words. Given that the Italian orthog-
raphy is very regular, it is conceivably possible that at least the
segmental phonology of words could be generated without lexical
input, which, ignoring word stress, would predict that nonwords
and words would be read aloud at a similar speed. This is not what
is found [33], however, and it is been shown that not only are
nonwords read aloud more slowly than words, but low frequency
words are read aloud more slowly than high frequency ones. This
suggests that lexical input is important in Italian reading. Using the
same stimuli as Pagliuca et al. [33] where both high and low
frequency words were examined as well as nonwords, we
examined whether the model would also show this pattern. The
results showed that, just like the data, words were read faster than
nonwords,t(85) = 14.70,p, .001, and high frequency words were
read faster than low frequency words,t(44) = 3.83,p, .001 (High
Frequency Words: 70.7; Low Frequency Words: 80.4; Nonwords
derived from high frequency words: 120.0; Nonwords derived
from low frequency words: 125.5) [2 words not in the database, 7
nonwords in the database].

Stress Regularity/Consistency
Perhaps the results that are the most important in Italian

reading are those to do with how reaction times are affected by
stress regularity and stress consistency – that is, whether people
give slower responses to words with atypical stress due to them not
having a possible default stress (regularity – typically assumed to be
penultimate in Italian) or due to them having a different stress

pattern compared to words with similar spellings (consistency,
typically measured as a friends vs. enemies ratio where friends
share the same orthographic sequence and phonology but enemies
only share the same orthographic sequence). The results of the
model on all of the experiments reported below to do with stress
regularity and consistency appear in Figure 4.

Colombo [34] ran one of the seminal studies on stress effects in
Italian. In her first experiment, she examined stress regularity in
both high and low frequency words and found that words with
irregular stress were slower to read aloud than words with regular
(i.e., penultimate) stress, but that this was restricted to low
frequency words. CDP++ showed the same pattern, with a main
effect of Frequency,F(1, 101) = 75.41, p, .001, Stress Regularity,
F(1, 101) = 6.46,p, .05, and an interaction between the two,F(1,
102) = 9.31, p, .005. Two t-tests showed that the difference
between the high frequency words was not significant,t, 1, but
the difference between the low frequency words was,t(47) = 2.88,
p, .01. (High Frequency Regular: 80.6; High Frequency Irregular:
79.9; Low Frequency Regular: 88.7; Low Frequency Irregular:
96.7). [9 words were not in the database, 1 outlier].

Apart from just stress regularity, Colombo [34] also examined
whether other properties of stimuli interacted with the stress
regularity (her Experiment 4). She found that stress consistency,
which she defined as the extent to which the last 3 letters of a word
shared the same stress pattern with other words with the same 3
letters (i.e., stress neighbors), was important. With words that were
stress inconsistent (i.e., had more stress enemies than friends), RTs
were slower than when they were consistent, but only when the
words were also stress irregular. When the words were stress
regular, no effect of stress consistency was found. CDP++ showed
a relatively similar pattern, with main effects of Stress Consistency,
F(1, 55) = 9.34, p, .005, no effect of Stress Regularity,F(1,
55) = 1.32,p= .26, which was unlike the data of Colombo where
a significant effect was found, and, importantly, an interaction
between the two,F(1, 55) = 5.17,p, .05, which appeared to be
caused by the inconsistent words with irregular stress being
especially slow (Stress Consistent/Stress Regular: 94.25; Stress
Consistent/Stress Irregular: 92.6; Stress Inconsistent/Stress Reg-
ular: 97.0; Stress Inconsistent/Stress Irregular: 105.6) [5 words
were not in the database].

Burani and Arduino [18] (their Experiment 1) also examined
the effect of stress consistency and regularity. They ran an
experiment that was similar to that of Colombo [34] where stress
consistency was examined, but suggested that their stimuli were
better matched than those of Colombo for a number of different
reasons (see Burani and Arduino for a list of these). Interestingly,
they found effects of stress consistency for both stress regular and
stress irregular words. CDP++, showed a main effect of Stress
Consistency,F(1, 42) = 8.94, p, .01, but not Stress Regularity,F(1,
42) = 1.73, p= .20, nor an interaction between the two,F, 1
(Stress Consistent/Stress Regular: 92.6; Stress Consistent/Stress
Irregular: 97.1; Stress Inconsistent/Stress Regular: 101.8; Stress
Inconsistent/Stress Irregular: 104.8) [15 words were not in the
database, many of which were 4 syllables long]. This pattern is
therefore very similar to the one reported by Burani and Arduino.
The successful simulation of both sets of results suggests that the
seemingly inconsistent results between these two studies can
potentially be explained once the properties of items are taken into
account.

Apart from stress consistency, Burani and Arduino [18] also
looked at the overall number of words that share a particular letter
sequence, which they called numerosity. They found that stress
irregular words with a high numerosity were named faster than
stress regular words with a low numerosity. CDP++ predicted
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a null effect with this dataset,t, 1 (Regular words: 97.2; Irregular
words: 97.6) [8 words were not in the database].

One final study looking at stress neighborhood was run by
Sulpizio, Arduino, Paizi, and Burani [35]. They examined the
effect of stress neighborhood with nonwords, defined in a similar
way to Colombo [34]. With their three-syllable stimuli, they found
that having a consistent stress neighborhood had a weak effect on
nonwords when the neighborhood favored penultimate stress, but
had a strong effect when it favoured antepenultimate stress. They
suggested that rather than these results reflecting just stress
consistency, as defined by the proportion of stress friends versus
enemies, they were likely to occur because of a difference in the
numerosity of friends versus enemies. That is, with their nonwords,
those in an antepenultimate neighborhood shared a greater
number of stress friends and stress enemies than those in
a penultimate neighbourhood, even though the consistency ratio
was similar for both types of words (for example, a word with 12
friends and 6 enemies has a higher numerosity than a word with 6
friends and 3 enemies, even though both have the same
consistency). CDP++ showed a similar pattern to the data,
although tended to over-predict the effect of having a consistent
stress neighborhood (Experiment 1 (Penultimate vs. Antepenulti-
mate responses), Human: Penultimate Neighborhood: 53% vs.
47%; CDP++: 73% vs. 27%; Antepenultimate Neighborhood:
25% vs. 75%; CDP++: 16% vs. 84%; Experiment 2, Human:
Penultimate Neighborhood: 58% vs. 42%; CDP++: 66% vs. 34%;
Antepenultimate Neighborhood: 25% vs. 75%; CDP++: 14% vs.
86%) [Experiment 1: 2 nonwords were 4-syllables long].

Apart from studies specifically looking at the comparison
between different types of stress dominance, there are also two
sets of nonwords run by Colombo and Zevin [36], and hence the
proportion of nonwords given penultimate stress can be examined
(note that Experiment 1 and 2 in their study used the same
nonwords), as well as a set of nonwords used in Colombo [34]
(Experiment 5). With the nonword set used by Colombo, 69.8% of
nonwords that participants gave reasonable responses to (i.e., were
not errors) were given penultimate stress. CDP++ gave a result
close to this, giving 61.9% of the stimuli penultimate stress [1 4-
syllable nonword]. With the first and second experiment of
Colombo and Zevin, the nonwords were deliberately chosen to be
biased to give penultimate stress, and this pattern was found with
CDP++ and in the real data (CDP++: 78%; Experiment 1: 76%;
Experiment 2: 83%). Alternatively, in the fourth Experiment of
Colombo and Zevin, a balanced set of items in terms of type of
likely stress was chosen, although people produced somewhat
more antepenultimate (63.2%) than penultimate responses. CDP+
+ produced the opposite result, favouring penultimate responses
(66.3%) [Experiment 1: 2 outliers; Experiment 4: 1 nonword in the
database].

Orthography-Phonology Consistency
A second type of consistency that can be found in Italian relates

to the orthography-phonology mapping. Job, Peressotti, and
Cusinato [30] examined this by constructing nonwords that used
consonant graphemes that could only be correctly read if the
following vowel was taken into account (see the final paragraph in
Graphosyllabic Templateabove for the set of vowels that affect some
consonants and how these are coded in CDP++). They did this by
choosing words with one of these consonants in it, and then
constructing two types of nonwords by changing a single vowel in
them. In one case, the nonwords kept the same consonant
pronunciation as the words they were derived from (the consistent
nonwords; e.g.,mercoto/merkot� /, which was derived from

mercato /merkat� /) whereas in the other case they did not (the
inconsistent nonwords; e.g.,merceto/mer t�et� /).

The results of Job et al. [30] showed that when the nonwords
were mixed with words, there was an effect of consistency, with the
consistent nonwords being read aloud faster than the inconsistent
ones, but this did not occur when the nonwords were not mixed
with words. CDP++ showed a significant result with this set of
items, t(46) = 2.12,p, .05 (148.1 vs. 164.5 cycles) [1 outlier, 4
Errors, 14 4-syllable nonwords, 1 nonword in lexicon]. To
simulate the change of strategy as a function of list composition
(i.e., no consistency effect with nonwords only), we reduced the
threshold at which phonemes and stress nodes needed to be
activated before naming can be finished to .5. This was done
because, as noted in Perry et al. [4], it is a reasonable way of
simulating lists where only nonwords are used. This is because
nonwords tend to generate less activation than words and hence
people may reduce their response criterion accordingly when
reading blocks of them. With this change, the model did not
produce a consistency effect,t(49) = 1.42, p = .16 (120.1 vs. 126.1
cycles [2 Errors, 14 4-syllable nonwords, 1 nonword in lexicon]).
Job et al. also ran an additional experiment that was the same as
the other where the stimuli were run in a nonword only block,
except a different set of nonwords were used. The results they
found showed no significant difference between the consistent and
inconsistent nonwords. CDP++ did not display a significant
difference between those two groups either, even using the normal
parameters,t, 1 (150.9 vs. 146.9 cycles) [1 outlier].

A more recent set of experiments that assessed whether words
including complex (contextual) print-to-sound rules are named
more slowly than words with no contextual rules was run by
Burani, Barca, and Ellis [37]. In contrast to Job et al., they
examined simple versus complex spelling-sound patterns in words
rather than nonwords. In their first experiment, they found that
people were slower reading aloud the words with consonants that
required a context to predict their phonology correctly. CDP++
predicted the same result,t(39) = 2.20,p, .05 (89.4 vs. 94.4 cycles)
[15 words not in lexicon]. In their second experiment, they added
the additional factor of word frequency. Their results were
somewhat mixed, presumably because with the complex rule
words there was a lower density of complex letter clusters relative
to Experiment 1 (See Procedure, Experiment 2), with no effect
with high frequency words and the results with low frequency
words being much weaker than the previous experiment. This
caused the main ANOVA to fail to reach significance by items.
The absolute size of the effect with the low frequency words was
also smaller than the first experiment (11 ms vs. 24 ms). CDP++
predicted that there should not be a significant effect of consistency
with either the high or low frequency items (botht’s, 1; High
Frequency Consistent: 77.4; High Frequency Inconsistent: 78.0 [2
words not in the database]; Low Frequency Consistent: 86.8; Low
Frequency Inconsistent: 87.2 [3 words not in the database]).

Other Effects
Apart from consistency, there are a number of different effects

that have been reported in Italian. These include the effect of
morphology, pseudohomophony, and orthographic neighbor-
hood. Morphological effects are interesting because CDP++ has
no explicit morphological processing layer. Thus, if CDP++ were
to capture effects that are presumably due to morphological
processing, it would suggest that some of these effects can be
explained by factors correlated with morphemic status, such as
frequency, rather than some sort of explicit morphological status
or the semantics associated with particular morphemes (see e.g.,
[16]). Burani, Marcolini, De Luca, and Zoccolotti [38], examined
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this in reading, and they found that a number of different groups,
including normal adult readers, read nonwords that were
composed of a root and suffix more quickly than morphologically
simple nonwords. CDP++ displayed the same result,t(29) = 2.40,
p, .05 (144.5 vs. 158.5 cycles) [1 nonword in lexicon]. Alterna-
tively, when a similar manipulation was examined with words,
skilled readers did not show any differences. CDP++ displayed this
result also,t, 1 (93.1 vs. 92.6 cycles) [44 4-syllable words not in the
database], although there were a large number of items in the
stimuli that it was not able to use. A very similar set of nonwords as
Burani et al. [38] was examined by Burani, Marcolini, and Stella
[39]. Similar results were also found, except that there was an
exceptionally large error rate (21.7%) on the morphologically
simple nonwords, which was presumably due to the different
composition of the lists the nonwords were part of in the two
studies. CDP++ not surprisingly gave very similar results with
these nonwords compared to the previous ones,t(28) = 2.03,
p= .052, and also made no errors (144.2 cycles vs. 156.7 cycles;
note that one nonword that was actually an exceptionally low
frequency word was treated as a nonword rather than removed
due to the small number of items and thus the importance of each
item in the final significance value). Whilst the difference in the
error rate between the model and the real data is interesting,
creating errors with CDP++ to try to simulate this aspect of this
particular data set is beyond the scope of the current work.

Pseudohomophone effects, where people read aloud nonwords
with phonology that sounds like a word faster than nonwords
where it does not, are interesting because they are generally
believed to show that there is feedback from sublexical phonology
in reading (see [4] for a review). Peressotti and Colombo [40]
examined this in Italian using pseudohomophones that were
orthographically often very strange (e.g.,cjfra) and similarly
matched nonwords, with the idea being that using nonwords with
strange sequences of letters meant that none of the effects they
found could be due to orthographic similarities between
pseudohomophones and the words that they sounded like. They
also compared the results to more orthographically normal non-
pseudohomophonic nonwords. The results they found showed that
the pseudohomophones were read aloud faster than their controls,
but the difference between pseudohomophones and the nonwords
with more normal spellings was not significant.

Despite the strange orthographic patterns used by Peressotti and
Colombo [40], we presented their stimuli to CDP++. Not
surprisingly, the model had a high error rate, since it simply
could not produce a reasonable answer for some of the nonwords,
such as when a –j was used as a vowel. Initial inspection of the
results showed that these errors were not distributed evenly across
the groups. In the pseudohomophone and nonword control group,
the model made 36 and 44 errors, compared to 13 with the
orthographically normal nonwords. Because the groups were very
large, however (119 items in each cell), we could still examine the
RTs from the correct responses. However, rather than using
between-group comparisons, as we generally do, we only used
within-group comparisons. This is reasonable because stimuli
triplets were matched across the groups (e.g.,ansja, antja, andantia).
The results showed that, like the human data, CDP++ predicted
that the pseudohomophones would be read aloud faster than the
control nonwords,t(57) = 2.52,p, .05 (133.0 vs. 143.0 cycles) [80
Errors, 2 outliers]. Unlike the data, however, the pseudohomo-
phones were slower than the orthographically more normal
nonwords,t(58) = 2.29,p, .05 (135.5 vs. 126.2 cycles) [49 Errors, 2
outliers, 9 nonwords in database]. Apart from just the error rates,
these results should be taken with great caution because, unlike
Perry et al. [5,6], we allowed the network to run even if

a correspondence was very poorly learnt. That is, it triggered
many ‘‘dead nodes’’ [5], which we ignored (see [41] for evidence
suggesting that nonwords with very strange spellings are not
processed by the normal reading system and hence reasonable to
ignore). This allowed slower responses in the pseudohomophone
and matched nonword control condition that would typically be
excluded, and hence is likely to be responsible at least in part for
the difference in reaction times between the pseudohomophones
and orthographically normal nonwords.

Another way that phonological feedback can be examined was
done by Mulatti et al. [42]. They examined nonwords by changing
a single letter either in the first position or a latter position of
a word (e.g., a word likeserpe[serpent] was changed to formberpe
and babbo[dad] was changed to formbabro). They found that
nonwords created from a first letter change were slower to read
aloud than nonwords created from a latter letter change. They
suggested that this was caused by serial processing of sublexical
phonology and the way that activation produced at different times
interacted with lexical activation. CDP++ was not able to replicate
this effect,t, 1 (124.4 vs. 128.6 cycles). [2 errors, 2 nonwords in
lexicon of model]

Finally, neighborhood effects [43], where the effect of words
with similar spellings to the one being read aloud is examined, are
interesting because they may provide some insight into both
learning (e.g., [12]) and the way the lexical system functions (e.g.,
[43]). In Italian, Arduino and Burani [44] reported that nonwords
with many orthographic neighbors (i.e., words that differ by
a single letter) were read aloud faster than nonwords with few
orthographic neighbors, and that whether the nonwords had
a high frequency neighbor or only low frequency ones did not
appear to affect the results. When their stimuli were presented to
CDP++, there was a significant main effect of whether a nonword
had high frequency neighbors,F(1, 51) = 4.39,p, .05, with the
nonwords with high frequency neighbors being named more
slowly than those with only low frequency neighbors, as well as
a significant interaction,F(1, 51) = 5.81 (High Neighborhood/
High Frequency Neighbors: 132.8; Low Neighborhood/High
Frequency Neighbors: 123.6; High Neighborhood/Low Frequen-
cy Neighbors: 116.5; Low Neighborhood/Low Frequency Neigh-
bors: 113.8). [4 errors, 1 nonword in the lexicon of the model].
Two t-tests examining the nonwords with high and low frequency
neighbors separately were not significant (high:t(25) = 1.60,
p= .12; low: t(26) = 1.86,p= .075). It is unclear to us exactly why
the model shows the incorrect pattern with the nonwords.
However, CDP++ has not been able to simulate neighborhood
effects all that well in previous simulation work (e.g., [4,5]), and
thus this may represent a problem with the model. As noted by
Pagliuca and Monaghan [12], there might also be a lack of power
because there were only 15 items in each cell.

Acquired Dyslexia
Different types of acquired dyslexia have been reported in

Italian, including both surface and phonological dyslexia (e.g., [45-
47]). One particular area of interest has been word stress (e.g.,
[21]). In the largest study examining this, Colombo et al. [21]
examined 22 patients with Alzheimer’s Disease (AD), and classified
them into 3 groups based on how advanced their cognitive decline
was as measured by the Mini Mental State Examination (MMSE)
[48]. They then examined their reading performance on high and
low frequency words and nonwords. The words they used were
divided into what they called dominant and subordinate stress,
with the former defined as those with penultimate stress and the
latter defined as those with ante-penultimate stress. The groups
were also balanced on stress neighborhood (see [18,34]) with the
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dominant words having high stress consistency and the sub-
ordinate words low stress consistency.

The results Colombo et al. [21] found showed that the
performance of the groups was related to their performance on
the MMSE, with the group that scored the lowest also performing
the worst. With that group, stress errors accounted for around
35% of all of the errors, and the percentage of correct responses
was affected by both frequency and stress type (Dominant stress,
High Frequency: 92.2%; Low Frequency, 83.0%; Subordinate
stress: High Frequency: 79.2%; Low Frequency: 45.3%). A more
complex pattern was found with nonwords, where the most severe
group had an average error rate of 25%, and the more severe the
AD, the more likely they were to give subordinate stress on the
nonwords.

At present, we only simulated the effect of word stress, since
simulating the nonword results would have required more than
simple parameter changes, which is beyond the scope of this
paper. This simplification is reasonable because, whilst phonolog-
ical deficits and nonword processing problems are often found to
co-occur in AD [49], phonological dyslexics have been reported
with no obvious phonological processing problems [50,51].
Caccappolo et al. [50,51] suggest that this means that sublexical
and lexical mechanisms may not be directly linked. In addition, in
one of the classic cases on acquired surface dyslexia in Italian [52],
a patient was described with ‘‘virtually normal’’ (p. 283)
performance when reading nonwords, but made many stress
errors reading some types of words.

To simulate the word results of Colombo et al. [21], we simply
used the same strategy for simulating surface dyslexia we have
used elsewhere [4–6]. We did this by increasing the frequency
scaling of the lexicons to .75, with the idea that this simulates
additional difficulties in lexical access. We also reduced the
amount of activation going into the phoneme output buffer by
changing the excitation and inhibition parameters from the
phonological lexicon to the phoneme output buffer to .03 and2
0.03. For the sake of simplicity, we did not reduce the level of
activation going to the stress output nodes under the assumption
that the generation of phonemes in AD is more difficult than the
generation of stress information. Obviously, in the future, it would
be possible to examine the effect of reducing activation to both
phoneme and stress output nodes should the data dictate it.

With the parameter changes noted, CDP++ produced results
very similar to those of the severe group on overall error rates
(Correct %, Dominant stress, High Frequency: 91.2%; Low
Frequency: 77.1%; Subordinate stress, High Frequency: 82.9%;
Low Frequency: 54.3%). The distribution of errors was also very
similar, with 44% of the errors due to stress and 56% coming from
other sources. These results suggest that the effects of frequency
and stress dominance are inherent properties that the model is
sensitive to, and that when it is parameterized such that it does not
perform at near perfect accuracy, the most likely items it makes
errors on are also the most likely ones that people do after
cognitive decline due to AD.

Priming
All of the previous simulations relied on getting the model to

produce output in a simple naming task, with each item run
entirely independently of the others. However, there is also some
data on stress priming in Italian, where the effect of being primed
with a word that has the same or different stress to the one being
named has been examined. At present we will not try to simulate
all aspects of priming, as there are a number of non-trivial issues
that would need to be considered to do this. These include how
decay in representations should be set (i.e., the amount activation

in representations reduces from one word to the next), how primes
should be treated when a second word appears on top of them,
and how to implement aspects of the prosodic processes not
currently implemented, such as how stress is stored in the linguistic
system over time.

Despite the problems of modelling priming, the type of results
the model would predict ignoring more intricate matters can be
examined. In terms of simple priming where a prime precedes
a target word, Sulpizio, Job, and Burani [53] found that when
a prime was presented for 83ms before a target with the same
stress pattern, the target word was named faster than if the
preceding word had a different stress pattern. They found that this
occurred irrespectively of whether the target word had penulti-
mate or antepenultimate stress. Our explanation is the same as
offered by Sulpizio et al., which is that this may be explicable via
the pre-activation of stress information (stress nodes in the model),
which would then either reach threshold faster if the stress
information is congruent or more slowly if it is incongruent. To
examine this, we ran the model using the words of Sulpizio et al.
with a reduced stress criterion (.58 instead of .68), which simulates
the ability of the model to reach the stress threshold faster. The
results showed that the size of the reaction time differences
between the model with the normal and low stress criterion were
relatively similar across the words with penultimate and antepen-
ultimate stress (Penultimate Stress, Normal/Low, 99.9, 94.6;
Antepenultimate Stress, Normal/Low: 106.3, 98.6; Priming effect:
Penultimate: 5.3; Antepenultimate: 7.7) [9 words not in lexicon].
Note that due to the repeated nature of the comparison and the
fact that the model is entirely deterministic, statistics are not
reported since even the smallest of priming effects are almost
always significant.

Apart from standard priming, Colombo and Zevin [36]
examined the effect of priming across a number of trials. In
particular, they used a paradigm where a set of words or nonwords
with the same stress would occur before a target word and the
effect of the prime words examined. The results they found
suggested that the main change caused by the prime words and
nonwords was a change in the dominance between lexical and
sublexical processing, with people making more errors on words
that did not have a dominant stress pattern when the primes
caused more sublexical processing. To simulate this, we ran the
words of Colombo and Zevin’s first experiment, where they
examined the effect of nonwords typically given penultimate stress
on words with antepenultimate stress. With the normal parameter
set, the model makes no stress errors. To simulate a change of
dominance between lexical and sublexical routes, we increased the
excitation strength of the TLA to phoneme output and stress
output buffer to .12, and reduced the strength of the parameters
from the phonological lexicon to the stress output buffer by .02.
The results showed that this increased the error rate on the words
to 14.3%, which is very similar to the experiment of Colombo and
Zevin. Obviously, there are many ways we could have changed the
balance between the two routes, but the results here show that
a change of balance is likely to cause stress errors in the way
Colombo and Zevin predicted.

The Role of Sublexical and Lexical Process
An important facet of the results that we have not explored is to

what extent the lexical and sublexical parts of the model are
responsible for the results. One way to examine this is to look at
the performance of the model without sublexical or lexical input.
This isolates the extent to which the results are simply caused by
one route or the other. We first did this on the large database we
first examined [29], removing all sublexical input. This caused the
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amount of explained variance to drop from 52.3% to 49.4% (note
that just onsets alone account for 46.4% of the variance and the
correlations without onset coding arer= .39 for the model with
sublexical phonology andr= .24 for the model without sublexical
phonology). We then examined all of the stress consistency studies
without sublexical phonology. None of them even produced
a trend towards a significant stress consistency effect, and nor was
there an orthography-phonology consistency effect with Burani et
al.’s [37] words. Next, we removed lexical activation from the
pseudohomophone simulations of Peressotti and Colombo [40],
and there was no longer a pseudohomophone effect (t, 1). These
results basically suggest two things. First, that phonology plays an
important role in the quantitative performance of the model, as it
does in other versions of CDP (e.g., [4]). Second, that stress
consistency effects are caused by the interaction of lexical and
sublexical processing and that pseudohomophone effects are
caused by feedback from sublexical to lexical phonology and back
again.

Inconsistent Findings
Whilst the model produced reasonable results across a broad

spectrum of experiments, there were a number of results that the
model produced that were qualitatively different to the human
ones that were not discussed. These include (a) no significant
difference between nonwords created by changing one letter at the
start of a word compared to the end of a word as reported in
Mulatti et al. [42]; (b) no stress regularity effect in Experiment 4 of
Colombo [34]; (c) no significant difference between the high
numerosity irregular and low numerosity regular words in
Experiment 2 of Burani and Arduino [18]; and (d) no significant
difference with the low frequency words with complex versus
simple rules in the Experiment 2 of Burani et al. [37].

Whilst we have no definitive explanation for why the model did
not capture these, in all cases, the absolute size of the effect
reported in the studies was small. In Mulatti et al. [42] it was 15
ms, in Colombo (Experiment 4) [34] it was 13 ms, in Burani and
Arduino (Experiment 2) [18] it was 18ms, and in Burani et al.
(Experiment 2) [37] it was 11 ms. Alternatively, the size of the
effects in all of the experiments where the model did find
a significant result, excluding the frequency effect reported in
Pagliuca et al. [33], was larger (Colombo [34] (Experiment 1):
43 ms; Colombo [34] (Experiment 4): 24 ms; Burani and Arduino
[18] (Experiment 1): 24 ms; Job et al. [30] (Experiment 1): 21 ms;
Burani et al. [37] (Experiment 1): 24 ms; Burani et al. [38]: 48 ms;
Peressotti & Colombo [21]: 35 ms). Given this, it suggests that it
would be worthwhile investigating ways to make the model more
sensitive to smaller effects in the future.

Actually finding ways to increase the sensitivity of the model
may be particularly challenging, especially for the nonwords of
Mulatti et al. [42]. This is because, even though one group of their
nonwords differed from their basewords only on the first letter,
they often shared start sequences with many other words, and
hence their uniqueness to any other words based on serial position
may not be as much as the examples in the title of their article
might suggest (zeadingvs. reazing). For example, the first nonword
reported in their stimuli set,berpe, differs in the first letter
compared to the basewordserpefrom which it was created.
However, it only differs in the 4th letter withberci[yell] (there are in
fact 102 other words that start withber). This can be compared
with the controlbabro, which differs in the 4th letter compared to its
baseword (babbo). This means that any early effects of phonological
feedback generated serially would activateberciand babboto
a similar amount, and thus a positive feedback loop from these
words being activated should help both nonwords similarly. The

main difference then is thatbabbois a closer neighbour tobabro
than berciis toberpe(one vs. two letters different). This means that,
after the 5th letter is parsed and activation generated,babrois likely
to be activated more thanbercisince two phonemes would differ
from the nonword compared to one. Such fine differences may be
very hard for computational models such as CDP++ to capture via
a lexical feedback loop.

Discussion and Conclusions

The present simulations show that CDP++ did a reasonable job
predicting many of the different data patterns that have been
reported in the literature. The two most important effects have to
do with stress and orthography-phonology regularity/consistency.
Stress regularity/consistency is important for the development of
a comprehensive model of reading aloud but these effects have
received little attention in languages other than Italian (but see
[19,54]), probably because most modelling studies have focused on
monosyllables (but see e.g., [6,19,55]). Orthography-phonology
regularity/consistency is important because, historically, it has
been the crucial benchmark effect that challenged rule-based
models (e.g., [56]) in favour of connectionist models (e.g., [4]). For
both of these theoretically important effects, whilst not perfect,
CDP++ has captured the data remarkably well.

The ability of CDP++ to simulate various aspects of stress in
Italian suggests that the mapping of orthography onto stress nodes,
as implemented in the Italian and English CDP++ [5] model, is
a powerful and general mechanism that does not seem to be
specific or restricted to a given language. The ability of the model
to simulate consistency effects in Italian provides yet another
demonstration that the CDP family of models is highly sensitive to
consistency, as has been shown by the English model on a number
of large and exceptionally well-controlled data sets (e.g., [57]).
Together, this suggests that graded consistency effects are likely to
be an inherent property of the type of network and learning
algorithm used, and not something that is specific to a particular
orthography.

It is worthwhile comparing the results of CDP++ to those of the
PDP model of Pagliuca and Monaghan [12]. Our model differs
from theirs in a number of important ways. In particular, we used
a lexical route under the assumption that the sublexical route
cannot learn all relationships between orthography and phonol-
ogy. Thus, at least when reading words, our model can perform
essentially flawlessly. Alternatively, the model of Pagliuca and
Monaghan was only able to read 93.7% of words correctly. It
seems likely that if the network of Pagliuca and Monaghan was
trained for longer or with a more powerful algorithm, better
accuracy could probably be obtained. However, whether the
model would still capture nonword stress consistency effects with
additional training would need to be explored.

When comparing the two models on the results of the
experiments described above, it also becomes clear that CDP++
provides a better fit of the available empirical data than the PDP
model of Pagliuca and Monaghan [12]. CDP++ was able to
correctly simulate all of the results that were correctly simulated by
Pagliuca and Monaghan as well as many others that Pagliuca and
Monaghan did not examine. There were also effects that were
correctly simulated by CDP++ but not Pagliuca and Monaghan’s
model (e.g., the effect of stress consistency effect using Burani and
Arduino’s [18] items).

Given there are some similarities between the models, one
might try to isolate why CDP++ performs better than Pagliuca and
Monaghan’s [12] model. One possibility is that CDP++ uses
graphemes and not letters in the input layer. However, given the
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simplicity of the Italian orthography, and given that Pagliuca and
Monaghan organized the representations of their model into
a syllable structure (as we did with CDP++) which allowed their
model to generalize to nonwords very well, the effect that
graphemes have over simply letters may not be especially large.
Given this, the other alternative is that the relationships people
learn between spelling and sound and spelling and stress are
relatively simple, and are hence approximated well via a linear
network. This would mean that using a 3-layer network that allows
complex and more specific non-linear relationships to be learnt
may allow the network to learn things that people do not (see Perry
et al. [11] for a further discussion about this in terms of the French
orthography). It also means that knowing whether a PDP model
trained to be almost perfect on words would behave similarly to
the current model of Pagliuca and Monaghan or whether it would
learn additional non-linear relationships is important. In this case,
additional learning to improve the overall performance of the
model on words might also cause it to over-fit the data and hence
learn more complex relationships that people do not.

In addition to nonword consistency and stress regularity, we also
investigated pseudohomophone, morphology, and neighborhood
effects. CDP++ was able to produce a pseudohomophone effect,
and, like Pagliuca and Monaghan’s model, it captured a morpho-
logical effect but failed to capture the full pattern of neighborhood
effects in Arduino and Burani [44]. The pseudohomophone effect
is interesting as it has always been difficult for PDP models to
simulate this class of effects, and has generated a reasonable
amount of debate (see [4] for a discussion). The morphological
effect with nonwords confirms that both CDP++ and the model of
Pagliuca and Monaghan are sensitive to morphology even though
they do not have morphological processing layers. CDP++ also
showed that, like the real data, the reaction times it produces with
words were not affected by morphology. Finally, with the
neighborhood effect, Pagliuca and Monaghan showed that their
model was sensitive to this variable. However, they used a larger
and currently untested stimuli set, and they also suggested that
different versions of their network might be differentially sensitive
to this. Obviously, a mega-study of Italian words would be useful
for investigating these effects further.

Apart from simulating data of normal readers, we also
investigated data from acquired dyslexia. Whilst we did not try
to model all of the patterns that exist, we did show that, with two
very simple parameter changes, CDP++ can produce a stress
dominance effect that is of a similar level to the group of patients
that produced the largest effect in Colombo et al. [21] – that is, it
showed the most errors on low frequency words with subordinate
stress. The model also produced an overall error rate that was very
similar to that group. Whether a PDP model is able to

approximate this is currently unknown, and represents an
interesting challenge given that simulating surface dyslexia has
historically been a problem for such models (see e.g., [58]).

An important added value of the present modelling enterprise is
the fact that CDP++ was able to simulate seemingly discrepant
findings, where conflicting results have been reported using
essentially the same manipulation. One of the most disconcerting
discrepancies was the one between the results reported by
Colombo [34] and Burani and Arduino [18] with respect to stress
regularity/consistency, with Burani and Arduino suggesting that
the difference may be due to the items that were used. CDP++
correctly simulated both sets of results, which shows that their
discrepant findings may indeed be due to the actual items selected.

Finally, the model was also able to simulate quite complex
findings that depended on list context manipulations (see also [4]).
For example, in Job et al.’s [30] first two experiments, the authors
found a nonword consistency effect in mixed lists of words and
nonwords but not in pure lists of only nonwords. They suggested
that this occurred because nonword reading can benefit from
lexical feedback, and modulating the proportion of nonwords
affects the extent of this lexical influence.

Our suggestion, alternatively, is that modulating the proportion
of nonwords affects people’s response criterion (i.e., when they are
willing to name the word), and this produces in the model the
same pattern observed in the human data and is also consistent
with other strategic manipulations that have been reported [4].

In summary, the present work has shown that CDP++ can be
easily transposed to a regular orthography with a fairly complex
stress system, including mechanisms to do with grapheme parsing
and learning. The model is available on-line and can be used to
predict results before actually running the critical experiments.
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