Uniqueness of Nonnegative Tensor Approximations

Yang Qi 1 Pierre Comon 1 Lek-Heng Lim 2
1 GIPSA-CICS - CICS
GIPSA-DIS - Département Images et Signal
Abstract : We show that for a nonnegative tensor, a best nonnegative rank-$r$ approximation is almost always unique, its best rank-one approximation may always be chosen to be a best nonnegative rank-one approximation, and that the set of nonnegative tensors with non-unique best rank-one approximations form an algebraic hypersurface. We show that the last part holds true more generally for real tensors and thereby determine a polynomial equation so that a real or nonnegative tensor which does not satisfy this equation is guaranteed to have a unique best rank-one approximation. We also establish an analogue for real or nonnegative symmetric tensors. In addition, we prove a singular vector variant of the Perron--Frobenius Theorem for positive tensors and apply it to show that a best nonnegative rank-$r$ approximation of a positive tensor can never be obtained by deflation. As an aside, we verify that the Euclidean distance (ED) discriminants of the Segre variety and the Veronese variety are hypersurfaces and give defining equations of these ED discriminants.
Liste complète des métadonnées

Littérature citée [58 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01015519
Contributeur : Pierre Comon <>
Soumis le : mardi 12 avril 2016 - 14:39:42
Dernière modification le : lundi 9 avril 2018 - 12:22:48
Document(s) archivé(s) le : mardi 15 novembre 2016 - 01:20:51

Fichier

qi-comon-lim-HAL.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

Collections

Citation

Yang Qi, Pierre Comon, Lek-Heng Lim. Uniqueness of Nonnegative Tensor Approximations. IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2016, 62 (4), pp.2170-2183. 〈http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7422102&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F18%2F4667673%2F07422102.pdf%3Farnumber%3D7422102〉. 〈10.1109/TIT.2016.2532906〉. 〈hal-01015519v5〉

Partager

Métriques

Consultations de la notice

717

Téléchargements de fichiers

90