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Full-dimensional diabatic potential energy surfaces including dissociation:
The 2E ′′ state of NO3
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A scheme to produce accurate full-dimensional coupled diabatic potential energy surfaces including
dissociative regions and suitable for dynamical calculations is proposed. The scheme is successfully
applied to model the two-sheeted surface of the 2E′′ state of the NO3 radical. An accurate potential
energy surface for the NO−

3 anion ground state is developed as well. Both surfaces are based on high-
level ab initio calculations. The model consists of a diabatic potential matrix, which is expanded to
higher order in terms of symmetry polynomials of symmetry coordinates. The choice of coordinates
is key for the accuracy of the obtained potential energy surfaces and is discussed in detail. A second
central aspect is the generation of reference data to fit the expansion coefficients of the model for
which a stochastic approach is proposed. A third ingredient is a new and simple scheme to handle
problematic regions of the potential energy surfaces, resulting from the massive undersampling by the
reference data unavoidable for high-dimensional problems. The final analytical diabatic surfaces are
used to compute the lowest vibrational levels of NO−

3 and the photo-electron detachment spectrum
of NO−

3 leading to the neutral radical in the 2E′′ state by full dimensional multi-surface wave-packet
propagation for NO3 performed using the Multi-Configuration Time Dependent Hartree method. The
achieved agreement of the simulations with available experimental data demonstrates the power of
the proposed scheme and the high quality of the obtained potential energy surfaces. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4879655]

I. INTRODUCTION

The dynamics of chemical systems in the presence of
strong state-state interactions is a fascinating topic and its
fundamental understanding is of high significance. Particu-
larly, the presence of conical intersections and the resulting
breakdown of the Born-Oppenheimer approximation has been
of great interest.1 It has been recognized early on that a dia-
batic or rather quasi-diabatic representation of the electronic
Hamiltonian and corresponding potential energy matrix is of
considerable advantage for the full treatment of the coupled
states problem.2–14 Utilizing the diabatic representation in its
simplest form by the linear vibronic coupling model has been
an early and extremely successful approach for the explana-
tion of many phenomena in ultra fast nuclear dynamics.15 Un-
fortunately, the success of the standard linear vibronic cou-
pling model has been limited to processes that are entirely
dominated by the short-time dynamics because in this case
only a very small part of the coupled potential energy sur-
faces (PESs) is of importance and needs to be described qual-
itatively correctly. Many processes are not of this kind and
would require accurate PESs over an extended nuclear config-
uration space. For this reason it is important to develop meth-
ods to generate and represent coupled PESs that are accurate
over a larger range of nuclear configurations.
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b)Current address: LPCQ, UMR 5626, CNRS & Université Paul Sabatier,

F-31062 Toulouse, France.
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Before we give an overview over various approaches
known in the literature, we would like to point out a few
aspects of relevance to our development. Good overviews
over the topic of the diabatic representation and diabatiza-
tion can be found in Ref. 1 (especially Chaps. 1 and 4) and
Refs. 2, 14, and 15. First of all it is to be understood that
there is no direct access to a diabatic representation of the
electronic Hamiltonian.1 All approaches are necessarily based
on transformations of adiabatic data, which can be obtained
by standard electronic structure calculations.5, 16 A unique
and truly diabatic representation cannot be strictly defined
in general and it might be better to speak of a quasi-diabatic
representation.8, 14 In the following we will still use the term
“diabatic” rather than “quasi-diabatic” simply out of conve-
nience for the reader. The requirement for a suitable diabatic
representation is that it minimizes the remaining derivative
coupling among the states in the model and the states not
included into the model to a degree that it can be neglected
like in the standard Born-Oppenheimer approximation.14 All
strong nonadiabatic couplings among the states of interest,
particularly the singularities in the coupling operators at con-
ical intersections, are transformed to nondiabatic couplings,
which renders the diabatic potential matrix non-diagonal. The
advantage of the diabatic representation is that all diabatic
energies and couplings must be smoothly varying functions
of the nuclear coordinates and one can assume fairly simple
functional forms for them.15 This will be of importance later
on. Since nonadiabatic effects and strong state-state couplings
usually go hand in hand with complicated electronic structure,

0021-9606/2014/140(22)/224109/17/$30.00 © 2014 AIP Publishing LLC140, 224109-1
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we must be aware of the problem of data acquisition.17 We
might face problems with the required ab initio calculations in
terms of convergence of data points as well as with computa-
tional cost. Therefore, we seek for a method that can be based
on a minimal number of ab initio data points. For the same
reason we would like to avoid the time consuming evaluation
of nonadiabatic coupling elements, which anyway becomes
cumbersome in the vicinity of state intersections. If the num-
ber of data points can be reduced, the accuracy of each data
point may be increased, which is another reason for this re-
quest. In this respect, the symmetry of the system is of major
importance because it usually poses tight restrictions on the
form of the diabatic potential matrix since the total Hamilto-
nian must transform as the totally symmetric irreducible rep-
resentation of the symmetry transformation group.18 This can
and must be utilized in any accurate representation of the elec-
tronic Hamiltonian. Finally, one must keep in mind that for
a full treatment of the system in question dynamics calcula-
tions are to be performed, which have to evaluate the poten-
tial energy matrix many times. Thus, a final requirement for
a suitable diabatic representation is that it can be evaluated
efficiently.

Among the few established methods to treat the cou-
pled states problem, the linear vibronic coupling approach by
Köppel, Domcke, and Cederbaum is by far the most widely
used and successful.15 It is certainly the most efficient way
to represent the diabatic Hamiltonian of a strongly coupled
system because only very few ab initio data are required
to determine the fairly few coupling and potential parame-
ters. Only adiabatic energies are needed and the adiabatic-
diabatic transformation is determined by the diabatic ansatz.
Unfortunately, the suitability of this approach is limited to
processes, which are entirely dominated by the short-time
dynamics as mentioned above. In some cases, this prob-
lem might be overcome by using the scheme of the regular-
ized diabatization.19 Other early methods also use an ansatz
for the diabatic potential matrix elements, though a much
more flexible one than just linear or quadratic couplings.10, 20

The smoothness of electronic properties like dipole and tran-
sition moments have been utilized to find the appropriate
adiabatic-diabatic transformation.7, 21 A lot of scientific ef-
fort has been devoted to direct diabatization techniques by
which diabatic energies and nondiabatic couplings can be de-
termined from the electronic wave functions within the frame-
work of electronic structure methods.22–34 Some of these
methods rely on a reference point for the diabatization while
others compute and annihilate the nonadiabatic coupling ele-
ments. For the latter approaches the advent of analytic evalu-
ation techniques of the derivative couplings within the frame-
work of multiconfiguration-reference configuration interac-
tion (MRCI) has been of major importance.35 The ab ini-
tio determination of diabatic matrix elements may be used
directly in direct dynamics applications if their evaluation
is sufficiently fast.36, 37 However, for accurate quantum dy-
namics treatments this direct evaluation quickly becomes un-
feasible and a representation of the diabatic Hamiltonian in
closed form is much more suitable. Therefore, one faces the
same problems as for the generation of global PESs for a sin-
gle uncoupled state. The main difference is that a represen-

tation of each diabatic matrix element is required. A major
breakthrough in the representation of high-dimensional global
PESs was achieved by Collins and Parsons38 by introduc-
ing redundant coordinate sets and the full use of the com-
plete nuclear permutation inversion (CNPI) symmetry com-
bined with a modified Shepard interpolation scheme.39 Such
Shepard interpolations were then extended to the represen-
tation of diabatic Hamiltonians by Evenhuis and Collins.40–42

Another modern method to represent high-dimensional global
PESs in a more or less generic way was developed by Braams
and Bowman43 and is based on similar principles of redun-
dant coordinates and use of the complete nuclear permutation
(CNP) symmetry. The main difference is that symmetry in-
variant polynomials are used to expand and fit the PES rather
than interpolating it. This method has been applied to repre-
sent a diabatic Hamiltonian only very recently.44–46 A very
recent modification of the method by Bowman and Braams43

is the use of neural networks in connection with CNP invari-
ant polynomials but so far this method is limited to single
adiabatic PESs.47, 48 Another possibility is the double many-
body expansion by Varandas and co-workers.20, 49 Our own
approach is closely related to the use of symmetry invariants
but originates from vibronic coupling theory. So far we have
used point group symmetry (which in our case is isomorphic
to CNPI symmetry) and expanded the diabatic Hamiltonian in
properly symmetrized coordinates and polynomials for typi-
cal Jahn-Teller systems.50–53 This strategy was also followed
by some other groups.54–57 The present work is an extension
of our method to allow for a highly accurate representation of
Jahn-Teller systems including the proper direct dissociation
asymptotes.

Our system of choice is the nitrate radical (NO3), which
offers a wide range of complications and makes it an ideal
test case. There is also considerable interest in this radi-
cal due to its importance in atmospheric chemistry,58 which
we will not focus on in the context of the present study.
The first problem is the very complicated electronic struc-
ture that requires special treatments to avoid artifacts. Even
the electronic ground state is not easily computed by stan-
dard ab initio methods due to a very strong tendency to ar-
tificial symmetry-breaking of the electronic wave function.17

The first two excited states are both doubly degenerate, giving
rise to fairly strong Jahn-Teller couplings and the second ex-
cited state interacts strongly with the ground state by pseudo-
Jahn-Teller coupling. A reliable computation of the adiabatic
energies of this system requires a fairly elaborate and com-
putationally demanding MRCI treatment of the first five elec-
tronic states.59 A single-reference treatment of the dissocia-
tive PESs is inappropriate and will lead to artifacts and quali-
tatively wrong results.60 The vibronic coupling problem of the
ground state has been treated successfully before61, 62 within
the linear vibronic coupling approach but no extended PES
has been developed. The treatment of the first excited state
was by far less satisfactory63–66 and thus this state will be our
main target of the present study. This first excited state of 2E′′

symmetry, though predicted before theoretically,67 was first
observed in a photoelectron detachment spectrum in 1991.68

Much later it was also measured in direct absorption by cavity
ring-down spectroscopy.69, 70 Both spectra are fairly resolved
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but show complicated perturbations due to the strong nonadi-
abatic interactions. Thus, such spectra are an excellent test for
the accuracy of the coupled surfaces developed in the present
work and may allow for a deeper insight into the complicated
dynamics involved in the process.

II. THEORY

A. Coordinates

The importance of the choice of coordinates is well
known in quantum dynamics. A wise choice of the coordinate
system is as important for the accurate analytic representa-
tion of PESs. Any suitable coordinate system to represent a
global PES needs to allow for the correct description of the
complete nuclear transformation symmetry as well as for the
right asymptotic behaviour. The set of all inverse pairwise dis-
tances between atoms of a molecule, which is overcomplete
for systems with more than 4 atoms, fulfills most of these con-
ditions. It is not suitable in general to represent inversion mo-
tions properly. This was already recognized by Collins and
co-workers, who introduced dot-cross product coordinates to
avoid this problem.42 However, the correct treatment of inver-
sion symmetry by the coordinate set only matters for func-
tions, which transform antisymmetrically with respect to in-
version, which explains why inverse pairwise distances can be
used for the representation of a single uncoupled PES. For a
diabatic representation of a set of electronic states the proper
inversion behaviour might be required as in the present case
of NO3. Therefore, a signed coordinate is required and in-
troduced, which describes the inversion motion properly. The
definition of the coordinates used for expressing the PES in
the present work is displayed in Fig. 1.

The three oxygen atoms are labeled clockwise and the
corresponding distances to the central nitrogen atom are la-
beled r1, r2, r3. The trisector is a line going through the nitro-
gen atom, which is defined such that the angles between the

FIG. 1. Definition of the primitive coordinates of NO3 in terms of distances
ri, projected valence angles αi, and the trisector angle ϑ .

trisector and each of the N–O bonds are identical. It is indi-
cated as a vertical dashed line in Fig. 1. The corresponding
unique angle is the trisector angle ϑ and our special, signed
inversion coordinate θ is this trisector angle phase shifted by
π /2 so that θ = 0 corresponds to a planar nuclear configura-
tion. This coordinate could be added to an overcomplete set of
coordinates and the remaining motions might be expressed by
inverse pairwise distances. However, it turns out that this is a
fairly poor choice in the present case and probably in general
for bound state problems. If we are willing to assume that the
harmonic approximation is not totally wrong for a fairly stiff
system like NO3, we will acknowledge that, according to the
harmonic normal coordinates, there are bending and stretch-
ing modes, which mix only moderately and are well separated
in level energies. However, with a coordinate set of all inverse
pairwise distances, the two types of motions cannot be sepa-
rated in general. This means that complicated coupling terms
are required to describe the potential energy along predomi-
nant molecular motions in such a set of coordinates. We found
during the present work that the coordinate correlations when
using only inverse pairwise distances corrupt the accuracy of
the PES fits. Therefore, we devise a different strategy by parti-
tioning the coordinate set into stretching, bending, and inver-
sion coordinates to take into account the different characteris-
tics of the various types of nuclear motions. For the bending
motions, the angles αi are used instead of the inverse pair-
wise O–O distances. These are not the typical valence angles,
which would not be independent of the umbrella motion. In-
stead, the three N–O bonds are projected onto a plane normal
to the trisector and the angles between these projected N–O
bonds are used to define the αi. These angles have already
been used in Ref. 52. The three projected O–N–O angles are
numbered according to the unique atom not involved in form-
ing the angle. For example, the angle formed by the vectors
r1 and r2 is symbolized by α3 and so on.

The coordinates defined above form the primitive coordi-
nate set based on valence coordinates, which is further modi-
fied to fulfill the symmetry requirements and to allow for the
dissociation of the molecule. The three N–O distances ri are
transformed to what we call tunable Morse type coordinates
(TMCs), m(ri), by

m(ri) = 1 − e−f (ri )(ri−r0) (1)

with the exponent function

f (ri) = α + β

2
(tanh (γ (ri − rref )) + 1)

+ e−δ(ri−r ′
ref )2

n∑
k=0

pk(ri − r ′′
ref )k. (2)

The distance dependent exponent function is key to obtain ul-
timate accuracy for the PESs because it tunes the standard
Morse coordinate. The detailed analysis of diatomic potential
functions showed that expansions in Morse coordinates with
constant exponent prefactor are insufficient. A thorough in-
vestigation of the distance dependent optimal exponent pref-
actor led us to the development of the function defined in
Eq. (2). The transformation of distances to TMCs ensures that
any polynomial expansion in a single such kind of coordinate
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will show the correct asymptotic behaviour for a bond dis-
sociation. This is not necessarily so for a multi-dimensional
expansion as will be discussed below. The form of this co-
ordinate also covers much of the anharmonicity for typi-
cal stretching modes and allows for higher accuracy of the
fits with shorter polynomial expansions. The three projected
O–N–O angles αi are transformed to scaled angles α′

i by

α′
i = αi

rj rk

, i �= j �= k, (3)

in which the N–O distances rj and rk refer to the bonds form-
ing the corresponding angle αi. This type of scaling describes
properly the situation that at any dissociation asymptote some
bending motions described by the primitive angles αi will
turn into free rotations and thus the potential needs to be-
come independent of such a coordinate. For the same reason
the trisector angle is scaled by a product of all three N–O
distances,

θ ′ = θ

r1r2r3
. (4)

Finally an auxiliary hyperradius ξ is defined as

ξ = r1 + r2 + r3. (5)

The transformed distances, scaled angles, scaled trisector an-
gle, and the hyperradius form our overcomplete transformed
primitive coordinate set. This set is then symmetrized accord-
ing to the molecular transformation symmetry group, which
is D3h in the present case. The trisector angle transforms like
a′′

2 and thus already is a symmetry coordinate and the hyper-
radius is obviously totally symmetric. The subsets of three
distances or angles, respectively, form a reducible representa-
tion, which decomposes into a′

1 and e′ irreducible representa-
tions. The corresponding Clebsch-Gordan transformation ma-
trix reads

U =

⎛⎜⎜⎜⎜⎝
1√
3

1√
3

1√
3

2√
6

−1√
6

−1√
6

0 1√
2

−1√
2

⎞⎟⎟⎟⎟⎠ (6)

which transforms the vectors of our equivalent primitive co-
ordinates to a new vector containing the symmetry coordi-
nates transforming as a′

1 and e′, respectively. However, the
symmetric linear combination of the angles is obviously an
inappropriate coordinate and is omitted from the set of sym-
metry coordinates. Thus, we end up with the following six
linearly independent and properly symmetrized internal coor-
dinates required to represent the PES of the system:

s1 = 1√
3

(m(r1) + m(r2) + m(r3)), (7a)

s2 = θ ′, (7b)

s3 = s3x = 1√
6

(2m(r1) − m(r2) − m(r3)), (7c)

s4 = s3y = 1√
2

(m(r2) − m(r3)), (7d)

s5 = s4x = 1√
6

(2α′
1 − α′

2 − α′
3), (7e)

s6 = s4y = 1√
2

(α′
2 − α′

3). (7f)

This set is complemented by the auxiliary coordinate ξ .

B. Diabatic potential model

In the present study we develop the diabatic Hamiltonian
for the separated 2E′′ first excited state of NO3 only. Possi-
ble couplings to the 2A′

2 ground and the 2E′ second excited
state are not treated yet and will be added in future work. This
coupling is entirely due to the inversion motion along the a′′

2
mode, which is hardly excited in the experiments because all
equilibrium structures remain planar.

The nonadiabatic coupling within the degenerate 2E′′

state is well understood and depends on the modes of e′ sym-
metry. The requirement that the Hamiltonian needs to trans-
form as totally symmetric poses strict limitations on the form
of the matrix elements hd

αβ of the diabatic Hamiltonian Hd ,
which in general can be expanded as polynomials in terms of
the symmetry coordinates as

hd
αβ(s) =

∑
k=1

c
(αβ)
k

6∏
l=1

s
nl

l , N =
6∑

l=1

nl ≤ nmax. (8)

The upper limit of k depends on the maximum order of the
expansion terms, nmax. The symmetry restrictions enforce
that many of the expansion coefficients are strictly related
to each other for every given polynomial order N. These re-
lations can be easily derived using symmetry and invariant
theory.50, 51, 56, 57 For a Jahn-Teller system with a threefold
axis as main symmetry element we already derived the proper
symmetry polynomials.50 However, we did not fully treat the
possibility of all possible multi-mode couplings before, com-
bining, e.g., the two e′ modes. All these symmetry polynomi-
als up to four-body terms (six-body if we consider the com-
ponents of the e′ modes as separate modes) have been derived
and implemented for the present study. The critical terms are
only the ones depending on the degenerate e′ modes, whose
symmetry transformation properties according to the Ĉ3 rota-
tion can be easily analysed after transformation into the com-
plex plane. One can simply use the results of Table I of Ref.
50 and substitute all the terms by the unique mixed polyno-
mials of the right power in the complex coordinates. Back
transformation of the resulting matrices into the real plane
yields the properly symmetrized mixed polynomials and their
relations in the real Jahn-Teller coupling matrix. All newly
derived symmetry polynomials and the explicit form of the
diabatic matrix elements are given in the Appendix.

The general structure of the diabatic potential matrix
reads

Hd (s) =
∑

k

ak

(
vk(s) 0

0 vk(s)

)
+

∑
l

bl

[(
wl(s) 0

0 −wl(s)

)

+
(

0 zl(s)

zl(s) 0

)]
(9)
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in which the terms vk define a diagonal potential V and the
terms wl and zl yield the diagonal and off-diagonal Jahn-
Teller couplings, W and Z , respectively. Each matrix element
can be broken down according to the coordinates involved and
the order of the polynomials. For example, the diagonal po-
tential can be written as

V(s) = Va(s1) + Vb(s2) + Ve1 (s3x, s3y) + Ve2 (s4x, s4y)

+Vab(s1, s2) + Vae1 (s1, s3x, s3y) + Vae2 (s1, s4x, s4y)

+Vbe1 (s2, s3x, s3y) + Vbe2 (s2, s4x, s4y)

+Vee(s3x, s3y, s4x, s4y)

+Vabe1 (s1, s2, s3x, s3y) + Vabe2 (s1, s2, s4x, s4y)

+Vaee(s1, s3x, s3y, s4x, s4y)

+Vbee(s2, s3x, s3y, s4x, s4y)

+Vabee(s1, s2, s3x, s3y, s4x, s4y) (10)

and each of the functions is expressed as properly sym-
metrized polynomial in the required symmetry coordinates.
For example, the Vee(s3x, s3y, s4x, s4y) up to 6th order con-
tains 28 independent terms consisting of one 2nd order, two
3rd order, four 4th order, eight 5th order, and thirteen 6th or-
der polynomials. As an example we may look at a prototypical
6th order polynomial that reads

v(6,1)
ee = s3ys

5
4y − 5s3xs4xs

4
4y − 10s2

4xs3ys
3
4y + 10s3xs

3
4xs

2
4y

+ 5s4
4xs3ys4y − s3xs

5
4x, (11)

which shows a distinct linear combination of mixed 6th order
terms. Changing the ratio between the coefficients of these
linear combinations inevitably will destroy the correct sym-
metry transformation properties of the PESs. Full details of
the derived potential terms are given in the Appendix. The
multi-mode terms involving s1 and s2 can be written down
easily because these coordinates are invariant under the Ĉ3

operation. Thus, a term like Vabee(s) can be obtained from
combining the terms of Vee with all powers in s1 and all even
powers in s2. In this case, one only needs to take care of
the proper asymptotic behaviour of the multi-mode term be-
cause the inversion coordinate turns into a free rotation upon
dissociation of any of the three equivalent N–O bonds. This
is achieved by transforming the primitive coordinates prior
to their symmetrization as explained above. In addition, all
terms depending on the umbrella coordinate, s2, are damped
by e−ρuξ using the auxiliary hyperradius ξ , e.g.,

Vabee(s) =
∑

n

Vaee

(
s1, s3, s4, s5, s6; pn

v,abee

)
sn

2 e−ρuξ , (12)

where ρu is a damping parameter and pn
v,abee refers to the pa-

rameter vector corresponding to the potential term. Using the
V(s) terms alone is sufficient to represent a single uncoupled
state such as the anion ground state, which is the initial state
for the photoelectron detachment experiment. Therefore, we
use exactly this form for the anion ground state PES and ex-
pand V(s) up to full 6th order in all terms except the two Vbei

terms, which are expanded up to 8th order. This yields a to-
tal of 118 terms of which 92 terms depend only on planar
motions and 26 terms also depend on the umbrella coordi-
nate. For the representation of the 2E′′ state we use exactly
the same form for V(s) as for the initial state but addition-
ally expand the Jahn-Teller coupling terms to full 6th order.
This adds two times 149 terms to the diabatic Hamiltonian,
depending on planar motions only, plus another two times 43
terms involving the umbrella coordinate. Due to the symme-
try of the system, the corresponding wl and zl terms occur in
pairs with a common expansion parameter, so that only 192
additional fitting parameters need to be treated. The resulting
set of 310 parameters is complemented by one parameter for
the reference energy and one for the radial umbrella damp-
ing factor ρu. Additional 6 parameters are used for the TMC
transformation (Eq. (2)) in which rref = r ′

ref = r ′′
ref = β = 0

are chosen and the polynomial is expanded up to third order.
One major problem in the construction of high-

dimensional PESs is the possible existence of regions, where
the model yields artificially low energies, which are usually
referred to as “holes.” If such holes are reachable by a wave-
packet or trajectory, the corresponding PES is essentially un-
usable. The typical reason for the occurrence of holes is the
undersampling of the PESs because only a limited number of
fitting data can be generated for high-dimensional problems.
The regions of interest are usually at low energy and probably
including asymptotes and therefore the data sampling is usu-
ally concentrated there. As a consequence, the holes are often
found in the highly repulsive high energy regions because no
fitting data is available there to be accounted for in the fit-
ting process. The problems in the asymptotic regions can be
handled quite well by the choice of appropriate coordinates
such as the tunable Morse type coordinates, see Eqs. (1) and
(2), or inverse distances. The problems in the repulsive walls
are not likely to be fixed easily by coordinate transformation.
The present approach to deal with this issue is twofold. First,
the problematic regions are detected either by statistical sam-
pling or imaginary time propagation of a wave-packet for a
given PESs model (see below). Then ab initio calculations
are performed for points in the detected regions and the re-
sults are added to the fitting basis. This may or may not solve
the problem for a certain region, depending on the energies
of the added fitting points and the corresponding weights in
the fit (see below). The second strategy is based on a slightly
different representation of the diabatic potential model itself.
Instead of using just one polynomial expansion as in Eq. (9),
the Hamiltonian is split into two expansions

Hd (s) = Hd
ref (s) + σ (ε) · Hd

corr (s), (13)

in which Hd
ref is a low-order expansion called reference

model, Hd
corr is a correction model that contains all the terms

of the full model, Eq. (9), that are not contained in Hd
ref , and

σ is a switching function. The switching functions used are
either

σ (ε) = 1

2
(1 − tanh ρε(ε − ε0)) (14)
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or

σ (ε) =

⎧⎪⎨⎪⎩
1 x(ε) < 0

1 − x(ε)2
(
2 − x(ε)2

)
0 ≤ x(ε) ≤ 1

0 x(ε) > 1

⎫⎪⎬⎪⎭ ,

(15)

x(ε) = ε − ε0

ρε

,

in which ε0 is a reference energy and ρε is a width parameter,
determining the range over which the switching takes place.
For the switching parameter ε, either the lowest eigenvalue
of the reference model is used or the difference between the
lowest eigenvalues of the reference model and the full model,
Eq. (9), is utilized. The reference model is defined such that it
represents the PESs only roughly but qualitatively correctly.
Particularly, in the otherwise problematic regions it must pro-
duce sufficiently high energies. Since the holes are always
found in regions irrelevant for the physics of the process to be
described, it is appropriate to switch to the reference model
entirely wherever the energies of the full model fall too far
below the values from the reference model. Thus, the PESs
are described by the full model with high accuracy in the rel-
evant regions but are only roughly modeled in irrelevant areas
where the full model causes problems.

C. Electronic structure methodology
and data acquisition

The electronic structure treatment of the anion is mostly
uncritical because it is a well-behaved closed-shell molecule
and the PES is only required in a limited region around
the equilibrium position. Thus, we performed closed-shell
coupled-cluster singles doubles with perturbative triples
(CCSD(T)) calculations71 using a fairly large atomic orbital
(AO) basis. The correlation consistent aug-cc-pVQZ standard
basis was chosen for all atoms.72, 73 To account for the dif-
fuse character of the anion wavefunction, we added a set of
[8s,6p,4d,2f] uncontracted basis functions from the set of uni-
versal Rydberg functions of Kaufmann et al.74

By contrast, the ab initio treatment of the NO3 radical
is extremely involved. This is partly due to its extreme ten-
dency to artificial symmetry breaking of the electronic wave
function.17 The problem is aggravated further by the neces-
sity to describe excited states and bond ruptures reliably,
which requires a multireference treatment. Thus, complete
active space self-consistent field (CASSCF)75, 76 is used to
generate the reference wave function for a successive multi-
configuration reference configuration interaction singles and
doubles (MR-SDCI) calculation. The internally contracted
MR-SDCI method is used77, 78 and all calculations are per-
formed with the MOLPRO package of ab initio codes.79 The
energy data used to fit the PESs are the Davidson corrected
MR-SDCI energies.80 The active space for CASSCF and MR-
SDCI calculations contains 17 electrons in 13 active orbitals,
which at the D3h ground state equilibrium geometry refer to
[4a′

1 3e′ 4e′ 1a′
2 5a′

1 5e′ 1a′′
2 1e′′ 2a′′

2 ]. This large active space
results in a huge number of determinants and mainly is needed
to avoid artifacts in the reference wave function. Therefore, a
common subset of reference configurations was selected for

all states according to the coefficients in the CI vectors of
the CASSCF reference states. This reference space was com-
pleted by adding all missing configurations required to ren-
der the configuration space invariant under the D3h symmetry
operations. The CI matrix was built by excitations out of ref-
erence configurations of all irreducible representations of the
respective point group, which is necessary to avoid symmetry
breaking at the D3h geometry and makes the energies of all
MRCI calculations comparable. Only excitations out of active
space orbitals were allowed, excluding the four 1s core or-
bitals and a low-lying set of a′

1 and e′ orbitals composed of the
2s AOs from the correlation treatment. Despite the tremen-
dous savings in computational demand due to the selected ref-
erence configuration space, we are still limited in the choice
of the AO basis. After extensive testing, we chose to use the
correlation consistent aug-cc-pVTZ standard basis72, 73 for all
atoms but remove the set of diffuse f-functions.59 This ap-
proach yields results for excitation and dissociation energies
in excellent agreement with experiment.59 It also proves to be
rather robust, which is extremely important for the develop-
ment of accurate PESs. Nevertheless, special care needs to be
taken in the data generation to avoid spurious results in the
data set.

An important question is how to select the nuclear config-
urations at which to compute the electronic energies. A simple
grid approach like for triatomic systems is unfeasible here and
due to the computational cost of the ab initio calculations, we
aim to obtain the most accurate PESs with the least data pos-
sible. It is unlikely that any systematic way to generate the
nuclear configurations will yield an optimal selection because
a six-dimensional system is much to complex to avoid the risk
of an unwanted bias. Collins and Ischtwan introduced tech-
niques to use trajectory calculations in order to find the most
relevant parts of a PES for a reactive system.39 However, such
an approach does not appear very useful in the present case
because classical dynamics is not very suitable for the neces-
sary multi-state treatment required in the present case. There-
fore, we devise a statistical approach, which is designed such
that a control over the convergence of the MRCI calculations
remains possible and the ab initio calculations stay robust.
Rather than generating random geometries in six dimensions,
we use 6D random displacement vectors. These random vec-
tors define cuts through the PESs along which data points are
acquired, usually starting in the vicinity of the equilibrium ge-
ometry. This allows for the use of a well defined and correctly
converged initial guess wave function in order to avoid the
problem of spurious convergence of the ab initio calculations.
This also allows for a quick and simple visual control of the
obtained data. Furthermore, the density of points is higher at
the bottom of the potential well, where a higher accuracy is
needed in our case, and gets sparser in the outer high-energy
regions, in which we are not particularly interested. It is pos-
sible to include various reference geometries as origins of the
random scans so that all important regions of the PESs can be
sampled with an appropriate density of points. It is also easy
to include or exclude certain asymptotic channels by selecting
the allowed coordinate ranges for the elements of the random
vectors. In the present study, we are not interested in the high-
energy decomposition corresponding to the cleavage of more
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than one N–O bond. Therefore, only one N–O distance is
allowed to reach the asymptotic region at a time.

D. Fitting methodology

Once the PES model is set up and the ab initio points
have been acquired, what remains is to determine the optimal
parameters. The data for a single PES like that of NO−

3 may
be fitted by a standard linear least squares approach, if the
nonlinear coordinate transformation is not to be optimized.
However, it can be beneficial to use nonlinear optimization
techniques even for a single PES although this is much more
involved. The fitting of the coupled diabatic PESs unavoid-
ably requires a nonlinear approach due to the diagonalization
to obtain the eigenvalues, which have to be fitted with respect
to the adiabatic ab initio energies.

The approach used in the present study is a dual-
layer method of a genetic algorithm81 into which a usual
Marquardt-Levenberg82 nonlinear least-squares fit is embed-
ded. At the beginning of the optimization, a large number
of test parameter sets is created stochastically, starting from
user specified initial guess parameters and parameter ranges.
A Marquardt-Levenberg fit is carried out for each of these
sets from the initial generation. A limited number of the re-
sulting parameter sets with the lowest fitting errors are se-
lected and form the initial parent generation of sets. The next
generation of test sets is obtained from scrambling the pa-
rameters of the selected parent sets and some arbitrary muta-
tions of randomly selected parameters. Then the next series
of Marquardt-Levenberg fits is carried out and from the re-
sulting parameter sets combined with the parent sets the most
successful sets are selected as the next generation of parent
sets. This procedure is repeated as long as the lowest fitting
error decreases.

Another important aspect of the fitting is the weighting
of input data. One is mostly interested in the lower energy re-
gions of the PESs while high energy regions are of no interest
because the probability that a trajectory or wave-packet will
sample such areas is negligible. Therefore, much larger abso-
lute fitting errors are acceptable for very high energies than
for low energies. On the other hand, even in very high energy
regions data points may be required in order to circumvent
problems with holes in the PESs. The way to avoid to com-
promise the quality of the fit for the important low energy
regions is to introduce an energy dependent weighting of the
data points. In the present study, a simple exponential decay
function

ωi(Ei) = e−ρi (Ei−Ei0) (16)

is used to determine state and energy dependent weights, in
which Ei0 is a reference energy for state i and ρ i a damping
parameter for state i. Additionally, user specified weights are
scaled by these computed energy dependent weights and fi-
nally the sum of weights is properly normalized.

E. Quantum dynamics

In order to better assess their quality, both the NO−
3

and the two-sheeted coupled NO3 PESs have been used for

dynamical studies in full dimension. Given the six internal
degrees of freedom and two electronic surfaces, the MCTDH
approach,83, 84 suitable for the representation of wave func-
tions with large dimensionality, is used.

The Hamiltonian operator of the Schrödinger equation
for the dynamical studies contains, in addition to the diabatic
potential term, the kinetic energy operator. The expression of
this kinetic energy operator for numerical evaluation depends
on the basis set used in the wave-packet representation as well
as on the coordinates. The coordinates used for the potential
energy surfaces would lead to a complicated kinetic energy
operator that would not be suitable for an efficient MCTDH
computation. Therefore, we use the six internal stereographic
coordinates introduced in Ref. 85 which leads to an optimal
expression for the exact kinetic energy operator. The north
pole projection version of the three radial r

(st)
1 , r

(st)
2 , r

(st)
3 , the

angular θ (st), and the two orientational s
(st)
3 , t

(st)
3 stereographic

coordinates as detailed in Ref. 86 are employed. In this coor-
dinate set, planarity corresponds to t

(st)
3 = 0. The correspond-

ing kinetic energy term for a non-rotating NO−
3 or NO3 given

in Ref. 86 respects the sum of products of single particle con-
straint of MCTDH friendly operators. The potential term does
not respect this constraint. For the anion, the evaluation of the
potential term is carried out using the CDVR scheme.87 The
generalized version of CDVR as detailed in the Appendix of
Ref. 52 is employed for the evaluation of the diabatic two by
two potential matrix of the radical.

Two types of calculations have been performed. First, the
low vibrational energy levels of the anion are determined us-
ing the state average and block diagonalisation scheme.88 Sec-
ond, the photodetachment experiment68 is simulated by as-
suming a vertical transition of the NO−

3 vibrational ground
state eigenfunction onto the two-sheeted surface of the neutral
system. The photodetachment spectrum is obtained from the
autocorrelation function of this initially prepared wavepacket
propagated for 200 fs. The non-adiabatic dynamics is revealed
by the adiabatic population computation using the CDVR
scheme to evaluate the effect of the projection operator on
the propagated wave-packet.52 For the representation of the
wave-packets, Fourier transform grids as given in Table I are
used. In this table, we give both the numbers of single parti-
cle functions used to determine the lowest eigenstates of the
anion and the ones required to study the non-adiabatic dy-
namics of the NO3 radical. The range of variation for the six

TABLE I. Wave function representations given by the number of single par-
ticle functions (n), the number of Fourier points (N) and the range of the
underlying box (in a.u.) for the six stereographic coordinates.

n

Coordinate NO−
3 NO3 N Box range

r
(st)
1 7 14 64 [352 : 522]

r
(st)
2 7 14 64 [352 : 522]

r
(st)
3 7 14 64 [352 : 522]

θ (st) 9 14 32 [1.80 : 2.40]

s
(st)
3 9 14 32 [ − 0.76 : −0.36]

t
(st)
3 6 4 32 [ − 0.17 : 0.17]
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coordinates is adapted to the evolution of the wave-packet
of the NO3 radical computation. Note that for the lowest
vibrational levels of the anion smaller intervals would be
sufficient.

III. RESULTS AND DISCUSSION

A. PES and dynamics of the NO−
3 anion

1. Potential energy surface

The ground state of the nitrate anion (NO−
3 ) is a non-

degenerate state of 1A′
1 symmetry with a D3h equilibrium ge-

ometry. Therefore, the PES can be expressed as an uncoupled
surface using the V elements only. The equilibrium distance
of the three equivalent bond distances is slightly longer than
that of the ground state of the neutral nitrate radical. This is
easily understood by the extra electron being located in the
slightly anti-bonding a′

2 orbital to result in the closed-shell
electron configuration of the anion. On the other hand, re-
moving an electron from either of the highest-lying three sets
of occupied orbitals of the anion, having symmetries of a′

2,
e′′, and e′, results in the three lowest electronic states of the
nitrate radical, which are the subject of intense scientific in-
terest. A ground-breaking experiment has been the recording
of the photodetachment spectrum of NO−

3 , yielding the first
experimental data of the first excited state of 2E′′ symmetry.68

This very complex spectrum is not really understood yet and
in order to investigate it theoretically, a high-quality PES for
the initial state, namely that of NO−

3 , is required.
The PES for the anion only needs to be accurate in the

potential well since the initial state is the vibrational ground
state and higher vibrational states or reactive processes play
hardly any or no role at all, respectively. Therefore, the data
acquisition was concentrated in a fairly limited region around
the minimum and the dissociation channels were not included.
1700 data points were calculated using the stochastic ap-
proach of calculating random cuts through the PES starting
from the equilibrium position of the neutral NO3 ground state.
These data were fitted by our model Hamiltonian, resulting in
a root mean square (rms) error of 3 cm−1. This excellent result
shows both the convergence quality of the underlying ab initio
data as well as the capability of the model potential used.
However, that PES was only good within the limited region of
the potential well and caused artificially low energies far out-
side the well. For a typical bound-state calculation this would
not really matter but in the present case the obtained bound
state is the initial state for an electron detachment calcula-
tion. For technical reasons, it is very convenient to represent
the nuclear wave function on the same grid for the NO−

3 and
the NO3 for this calculation. When propagating on the rad-
ical states, the nuclear configuration space sampled is much
larger than the one necessary for the determination of low vi-
brational states of NO−

3 . Therefore, the outer regions of the
NO−

3 PES had to be improved.
In order to do so, the data basis for the fit was enlarged by

170 data points generated by random cuts, allowing for larger
displacements of the bond distances, and 27 data points re-
ferring to geometries for which artificially low energies were
found by a stochastic sampling scheme testing the model PES.

In addition, the split reference and correction model scheme,
Eq. (13), was applied with the polynomial switching function,
Eq. (15), using the difference of the reference energy and the
undamped full model as argument ε. Finally, a restriction on
the lowest order parameter for Vea1 in the reference model
was implied, namely that it must not be less than the neg-
ative absolute of the lowest order parameter of Ve1 . A new
fit resulted in a rms error of 17 cm−1, which is still an excel-
lent result. Furthermore, no regions of artificially low energies
were found on the new PES, neither by stochastic sampling
nor by extensive wave-packet propagations. This final anion
PES was used in all of the quantum dynamics calculations
reported below.

2. Vibrational states

The lower part of the created surface is tested by com-
puting the seven lowest eigenstates of the anion. The state av-
erage and block diagonalisation scheme88 is used with seven
wave-packets in order to obtain the ground state and the first
six excited states. Similar to a Lanczos algorithm, the scheme
relies on successive imaginary time propagations, e−βĤ , and
diagonalisation steps to create an optimal set of wave-packets
to compute the lowest vibrational levels. For the calculations,
we use an imaginary time propagation β of 400 a.u. With this
value of β, the total number of iterations required to reach an
internal precision of 10−6 for the presented basis size is 52.
A systematic study of convergence with respect to the grid
range, grid points N and numbers of single particle functions
n has been carried out. The converged energy levels are given
in Table II.

The levels are easily labeled by comparison with the har-
monic frequencies, ω, obtained on our surface. We also re-
port for comparison the harmonic frequencies from an ear-
lier study, calculated at lower ab initio level than used for the
present PES.64 All vibrations are modeled reasonably well
by the harmonic representation with the largest deviation of
31 cm−1 being observed for the antisymmetric stretching
modes. The harmonic frequencies are between 1% and 2%
higher than the accurately computed fundamentals, which in-
dicates a fairly moderate anharmonicity of the PES. The only
known experimental value of 1356.2 cm−1 for the e′ asym-
metric stretching vibration was obtained in a Ne matrix and
is in excellent agreement with the frequency of 1352.9 cm−1

computed in the present work.89

TABLE II. Ground state energy with respect to the bottom of the potential
energy surface and excitation energies for the first six vibrational states of
NO−

3 in cm−1. The harmonic frequencies, ω, obtained on our surface as well
as the ones of Ref. 64 are also given.

Level Description E ω ω from Ref. 64

1 Ground state 3038
2 Antisym bending 703 712 712
4 Antisym bending 703 712 712
5 Umbrella 845 857 843
6 Sym stretching 1040 1061 1073
6 Antisym stretching 1353 1384 1466
7 Antisym stretching 1353 1384 1466
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The main purpose of the newly developed anion sur-
face is to determine the initial state for the simulation of the
photodetachment experiment. For this reason, no attempt has
been made to compute higher vibrational states of NO−

3 so far.

B. PESs and dynamics of the 2E′′ state
of the NO3 radical

1. Potential energy surfaces

For the investigation of our main target, the 2E′′ state
of the NO3 radical, we first need to determine and develop
the diabatic PESs. This state is a challenging test case for
our method for two reasons. First of all, the Jahn-Teller cou-
pling is rather strong but not strong enough to wipe out well
resolved spectroscopic features entirely. Thus, the computed
spectrum is extremely sensitive to the complicated details of
the PESs. Second, the dissociation channel leading to NO2

(2A1) + O (3P) is found at very low energy, only about 1
eV above the conical intersection for the ground state equilib-
rium geometry. This introduces extremely strong anharmonic-
ity, which needs to be handled properly because the width of
the experimental photodetachment spectrum of roughly 0.9
eV indicates that regions far into the dissociation channel are
probably sampled by the wave-packet. This latter point also
explains why a much larger region of the nuclear configura-
tion space needs to be sampled and represented compared to
the anion system.

The data acquisition followed a similar scheme to that
for the anion. MRCI calculations were carried out for a large
number of cuts through the PESs along random vectors. Most
of the scans along these random cuts were concentrated in the
region of the potential wells. Additional cuts were computed
in which one N–O bond was stretched into the asymptotic
region in order to obtain sufficient data to represent the low-
est dissociation channel. The data acquisition and fitting was
split in two steps utilizing symmetry. The majority of data
was determined for planar geometries because all low-lying
electronic states of NO3 have planar equilibrium geometries.
Furthermore, there is no additional coupling to the nearby
ground state or second excited state as long as the system re-
mains planar. We obtained 248 of the 318 potential parameters
which are purely based on data points for planar geometries,
while only 70 parameters depend on all six coordinates, in-
cluding the umbrella motion. Energy data for roughly 10 000
geometry points were computed by MRCI ab initio calcula-
tions of which 1700 geometries included distortions out of the
molecular plane. The distortions along the umbrella coordi-
nate were limited to at most 10◦ because this motion induces
couplings to the nearby 2A′

2 and 2E′ states, which cannot be
accounted for in the present isolated model for the 2E′′ state.
These interactions will be included in a forthcoming study
of all these low-lying states in an extended diabatic model.
Below distortions of 10◦ the coupling effects are visible but
small enough to be ignored for the time being. However, the
effect of the ignored couplings becomes visible in the fitting
errors of the 5D and 6D subsets of data. The rms error for
all planar data is only 25 cm−1 for all points with energies
below 1 eV above the origin (conical intersection obtained

for the ground state equilibrium geometry). By contrast, the
rms error for the 6D data is 125 cm−1 and this slightly in-
creased deviation is mainly due to the missing couplings with
excluded electronic states. These errors by themselves must
not be over-interpreted because they only refer to the repre-
sentation of the data in the fitting basis while the full 6D nu-
clear configuration space is heavily undersampled. Therefore,
the convergence of the fit with respect to the data basis must
be tested. To this means, ab initio energies at additional 1615
random geometries have been computed, which were not used
in the fitting procedure, and the corresponding rms error has
been determined. The resulting number is in almost perfect
agreement with the fitting rms error, meaning that the final
PESs fit presented here is converged and reliably represents
the physically relevant regions. One further test of the quality
of the fitted model is carried out by analysis and comparison
of the equilibrium geometries computed at both the ab initio
level and on the fitted surfaces. The equilibrium geometry is
not contained in the fitting basis and thus the fit is not biased.
The lower sheet of the adiabatic PESs shows three equivalent
planar minima with an energy 0.398 eV below the reference
energy at the conical intersection. The equilibrium geometries
show one long N–O bond of 2.6781 bohrs and two short N–O
distances of 2.2801 bohrs. The angle between the two short
N–O bonds is 130.4◦. By comparison, the ab initio geometry
optimization yields one long N–O bond of 2.6746 bohrs, two
short N–O distances of 2.2805 bohrs, and an angle of 130.3◦.
The ab initio energy of the minimum is found 0.395 eV below
the reference point and thus is about 24 cm−1 above the one
from the model. All above numbers are in very good agree-
ment and the energy deviation is very similar to the obtained
fitting rms. These results demonstrate the power of the pre-
sented model to fit and represent such a complicated system
with high accuracy. The obtained diabatic PESs were used
further for the investigation of the excited states dynamics and
photodetachment spectrum. FORTRAN routines encoding this
model and the corresponding parameters are available from
the authors on request.

Before the dynamics is discussed, we consider the fea-
tures of the obtained PESs. In Fig. 2 the two sheets of the

FIG. 2. Adiabatic PESs of the two sheets of the 2E′′ state depending on the
x and y component of the e′ stretch coordinate, s3 and s4. The contour lines
show energy levels between −0.1 and 0.9 eV with 0.1 eV spacing and the 0.0
eV level coinciding with the touching point of the conical intersection.
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adiabatic PESs are shown as a function of a set of sym-
metrised asymmetric stretch coordinates s3 and s4 transform-
ing as e′. These coordinates are of the form given in Eqs. (7c)
and (7d), except that untransformed displacements of the N–
O distances are used here as primitive coordinates.

The choice of symmetrised coordinates allows to visual-
ize the intrinsic threefold symmetry of the system, which is
properly represented by the diabatic model. This is reflected
by the three equivalent minima, visible on the lower adia-
batic sheet, which are connected by three equivalent transition
states between the wells. The conical intersection is clearly
seen at the origin of the plot where the upper conical sheet
touches the lower sheet. A sensitive test of the proper symme-
try of the PESs is to rotate the vector (s3, s4) by 2π

3 or 4π
3 and

check the invariance of the adiabatic energies. This test proves
that the method to generate the coupled PESs proposed in the
present work yields the correct symmetry properties by con-
struction. The invariance of the adiabatic nuclear wave func-
tion, however, would require a rotation by 4π due to the Berry
or geometrical phase induced by the presence of the conical
intersection.

It also may be of interest to have a look at the dia-
batic PESs corresponding to the adiabatic PESs discussed
above. A representation of the two diagonal elements of the
diabatic model, depending on the two coordinates s3 and
s4, is given in Fig. 3. At first glance it is obvious that the
two PESs intersect along a line where s3 = 0 and that the
two sheets do not display the threefold symmetry. Like the
adiabatic PESs, these two functions are symmetric with re-
spect to the s4 = 0 line and unsymmetric with respect to the
s3 = 0 line. This is the proper behaviour, indeed, and cor-
responds to diabatic nuclear wave functions with the correct
symmetry properties. After transformation into the adiabatic
representation the PESs do reflect the global threefold sym-
metry of the system.

The asymptotic behaviour for the reactive channels of the
adiabatic PESs is displayed in Fig. 4. In this case the plotting
coordinates are two of the three equivalent true N–O bond
distances. The remaining coordinates are frozen at the equi-
librium values of the 2A′

2 ground state of neutral NO3.
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FIG. 3. Intersecting diabatic PESs corresponding to the 2E′′ state depending
on the x and y components of the e′ stretch coordinate, s3 and s4, respec-
tively. The contour lines show energy levels of 0.2 eV and below with 0.05
eV spacing.
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FIG. 4. Adiabatic PESs of the two sheets of the 2E′′ state depending on the
two N–O bond distances r1 and r2.

The conical intersection between the two adiabatic PESs
is seen at the point where r1 = r2 = re with a ground state
equilibrium distance re of 2.344 a.u. The above mentioned
low dissociation energy on the lower adiabatic sheet is imme-
diately obvious from Fig. 4. In fact, the true exit channel is
even slightly lower because in this 2D plot the relaxation of
the NO2 fragment is not accounted for. The bottom of the re-
action channel is represented very accurately by the current
diabatic model when compared to the underlying ab initio
MRCI calculations. By contrast, the representation of the re-
active channel NO3 −→ NO + O + O, which is seen on the
diagonal of the plot, is only very approximate because no fit-
ting data was used along this channel. This is justified by the
fact that this region plays no role in the dynamics of interest
because it is energetically inaccessible. The upper adiabatic
sheet shows a behaviour very similar to that of the lower sheet
but leading to an excited state exit channel at much higher en-
ergy. It is already known from our earlier calculations that
this leads to additional intersections with the PESs for the 2E′

second excited state and may be important for the photodisso-
ciation dynamics.59 This will be subject of further studies in
which our diabatic model will be extended by including the
other low-lying electronic states.

2. Multisurface dynamics

The coupled surfaces are used to compute the photoelec-
tron detachment spectrum of NO−

3 . A vertical transition from
the vibrational ground state of NO−

3 onto a 50-50 mixing of
the diabatic surfaces of the radical is assumed to prepare an
initial wave-packet. This wave-packet is then propagated for
200 fs from which the autocorrelation function is extracted. A
smooth damping of the autocorrelation function is used after
180 fs before performing a Fourier transformation to obtain
the spectrum.

The obtained theoretical photodetachment spectrum is
presented together with the experimental data in Fig. 5. Be-
cause of the lack of size extensivity of the MRCI ab initio
method, the computed absolute energies of NO−

3 and NO3

cannot be compared directly. This means that no accurate
absolute line positions can be computed for the electron de-
tachment. However, this does not affect the relative line posi-
tions of the spectrum. Thus, we present a theoretical spectrum
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FIG. 5. Theoretical photodetachment spectrum in panel (a) compared with
the experimental spectrum of Ref. 68 in arbritary intensity units. The theoret-
ical spectrum is adjusted in energy to match the first peak of the experimental
one.

which is shifted such that the first peak is in agreement with
the experimental one. In the theoretical spectrum, the width
of the lines depends on the choice of the damping time of
the autocorrelation function. With the 180 fs value used here,
the overall shape of the spectrum as well as the width of the
individual peaks as shown in Fig. 6 can be easily compared
with the experimental data. The basis set used for the wave-
packet representation is given in Table I. This quite large basis
ensures that the presented spectrum is converged. The propa-
gation time of 200 fs is chosen sufficiently long to remove ar-
tificial oscillations in the resulting spectrum. As seen in Fig. 5,
the energy range of the spectrum, roughly 1 eV, is properly
reproduced by the theoretical model. Both the experimental
and the theoretical spectrum show a more structured shape at
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FIG. 6. Same as Fig. 5 focusing on the low energy part of the spectra. The
experimental spectrum is vertically shifted for better reading of the figure.

the low energy part while at higher energies the spectrum be-
comes congested and lines are not well resolved. For the low
energy part the structure is reproduced in excellent agreement
with experiment by our model as shown in Fig. 6. When com-
pared to the less elaborate model of Ref. 64, the present model
reproduces the spectrum with significantly better accuracy. In
particular, the second and third peaks are no longer superim-
posed as in the preliminary model (see Fig. 5 of Ref. 64). For
the less resolved higher energy part of the spectrum (above
5.2 eV) the agreement with experiment does not seem as ex-
cellent. This may be due to two different effects. One could
be that the quality of the ab initio data and therefore the PESs
slightly deteriorates for higher energies, giving rise to slightly
wrong energy levels. Another reason could be deviations in
the line intensities and the resolution of both experimental
spectrum and theoretical simulation. The time-independent
calculations of the spectrum presented in Ref. 64 showed that
for higher energies the observed peaks are composed of a
large number of unresolved detachment lines. The resulting
spectral envelope is probably rather sensitive to small devi-
ations of the single line positions and intensities in both ex-
periment and simulation. Furthermore, a major problem with
the intensities is obvious at first glance from Fig. 5. While the
base line of the theoretical simulation is almost flat, the exper-
imental spectrum seems to be superimposed with a Gaussian
shaped background, which results in strongly enhanced inten-
sities in the mid-range of the spectrum. It is not clear what the
origin of this behaviour is. Too low intensities at higher en-
ergies are easily explained by Wigner’s well-known threshold
law but enhanced intensities as observed here must be due to
a different reason.

During the propagation time of 200 fs, the diabatic pop-
ulations stay around 0.50 ± 0.05 for both states. However,
these populations have little physical meaning and more rel-
evant are the adiabatic populations. The numerical conver-
gence of these is quite difficult to achieve and forced us to
use the large basis set presented in Table I. In Fig. 7 we
present the evolution of the population on the lower adia-
batic PES, while the population on the upper adiabatic PES
corresponds to the complement to one. At the initial time,
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FIG. 7. Adiabatic population on the lower adiabatic PES sheet as a function
of time in fs. The full line corresponds to the basis size of Table I while the
dashed line presents the results with a slightly smaller basis (see text).
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the populations on the two adiabatic PESs are both 0.5.
Within 10 fs, the non-adiabatic effects induce a nearly com-
plete transfer of the population to the lower PES sheet. Af-
ter 25 fs, a maximum of back transfer is observed with a
population of 0.75 on the lower sheet before another trans-
fer towards the ground state sets in. At 50 fs, a second
maximum of the adiabatic population on the ground state
PES is observed. The dashed line in Fig. 7 corresponds
to a calculation with a smaller basis set, lowering the five
n = 14 to n = 12, and allows us to present the degree of
convergence of the results. The largest difference between the
two calculations occurs at 33 fs with a value of 0.036, thus
corresponding to a 4% relative error. A more detailed analy-
sis of the adiabatic population dynamics based of the analysis
of the wave-packet is not straightforward due to the rather
non-intuitive definition of the stereographic projection coor-
dinates used here for the wave packet propagations. Since in
the present work the focus is more on the development of ac-
curate PESs, such an analysis will be given in a forthcoming
study.

IV. CONCLUSIONS

A new model has been developed to represent full-
dimensional coupled PESs for typical Jahn-Teller systems
with high accuracy. This model allows for the proper inclu-
sion of dissociative regions and is suitable for quantum dy-
namics calculations. The new approach is applied to the 2E′′

excited state of NO3 for the first time and results in PESs of
unprecedented quality.

This model is based on a diabatic potential matrix and
on the expansion of the corresponding matrix elements in
parametrized symmetry polynomials of symmetrized coor-
dinates. These polynomials and coordinates have the appro-
priate transformation properties under all symmetry opera-
tions of the molecular point group, D3h in the present case.
In contrast to previous studies, all symmetry-allowed multi-
coordinate terms up to at least 6th order are included in the
present model. Besides this expansion to higher orders, a key
to represent reactive channels and to achieve the high accu-
racy we aim for is the choice of suitable coordinates. Due
to the polynomial expansion, the dissociative channels can-
not be accounted for by linear distance coordinates. There-
fore, distances must be transformed appropriately. We found
that the widely used inverse pairwise distances are not op-
timal for this purpose and instead propose to use both the
very flexible tunable Morse coordinates developed by us and
scaled angular coordinates. We tested that our choice of co-
ordinate set containing both transformed distances and an-
gles is superior to the coordinate set consisting of all in-
verse pairwise distances. This might be a fairly general ob-
servation because simple stretching and bending motions
become strongly correlated when expressed in all pairwise
distances.

An important aspect of the present work is how to
determine the optimal free parameters of the diabatic po-
tential model. First of all, the PESs developed here are en-
tirely based on high-level ab initio CCSD(T) and MRCI
calculations without any adjustment to experimental data.

Only the energy difference between the anion and the neu-
tral system is taken from the experiment since it cannot be
computed reliably with present electronic structure methods.
The free parameters are obtained by non-linear least-squares
fitting with respect to adiabatic ab initio energies for a large
number of geometries. They are available upon request to the
authors. In order to avoid an overly biased selection of data
points of the heavily undersampled 6D nuclear configuration
space, a stochastic approach is used that is based on cuts along
random vectors through the 6D PESs along which the adi-
abatic energies are determined. It is ensured that the physi-
cally relevant regions of the nuclear configuration space are
sufficiently sampled by choosing the origin and the allowed
ranges for each of the six components of random displace-
ment vectors defining the directions of the cuts. Thus, the re-
maining and necessary bias in the selection of data points is
the choice of relevant regions and the range of scanning. The
convergence of the fitted PESs with respect to the data ba-
sis is ensured by testing the deviations between random data
not used during the fitting procedure and the PESs. The in-
tended exclusion of physically irrelevant data points from the
fitting basis often leads to the problem that the PES model
yields artificially low energies in the omitted regions. A new
approach is proposed how to avoid this issue. The diabatic po-
tential model is split into a reference and a correction model of
which the first represents the PESs roughly even in the omit-
ted regions and the latter corrects this rough estimate with
high accuracy in the physically relevant areas. In the final
model, the correction is switched off wherever the energies of
the full model would fall artificially far below the energies of
the reference model. The resulting PESs are unchanged and
very accurate in the relevant regions and roughly but suffi-
ciently reasonably represented in the otherwise problematic
areas.

An extremely sensitive test for the quality of the pre-
sented diabatic potential model is its use in quantum dynam-
ics calculations and in particular for the simulation of the ex-
perimentally known photodetachment spectrum of NO−

3 . We
present the results of full-dimensional wave-packet propaga-
tions using the developed full dimensional two-sheeted cou-
pled potential surface and the MCTDH method. The peak po-
sitions of the low energy part of the simulated spectrum are
in almost perfect agreement with experiment. At higher ener-
gies, this agreement deteriorates somewhat. Significant devi-
ations are found for the peak intensities over the entire range
of the spectrum. It appears like there is a broad background
in the experimental spectrum, which is not reproduced in the
simulation. The physical origin of the differing intensities is
presently unclear and may also contribute to the deviations
of peak positions in the higher energy part of the spectrum.
In fact, the discernible peaks at higher energies do not cor-
respond to single vibronic levels but are superpositions of
detachments to many closely spaced levels. Thus, the actual
peak position and intensity depends on the minute details of
level energies and detachment intensities for each of a huge
number of vibronic states. It seems unlikely that the underly-
ing ab initio data are of sufficient accuracy to reproduce the
chaotic part of the spectrum much better. Presently, it cannot
be decided whether shortcomings of the electronic structure
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methods or the diabatic model are responsible for the devi-
ations. At least for low energies the quality of the diabatic
model and the underlying ab initio data is demonstrated by
the dynamical simulations.

Finally, we also report results for the nonadiabatic popu-
lation dynamics between the two PES sheets of the 2E′′ state
after the initial detachment of the electron modeled by a sim-
ple vertical excitation from the anion to the radical surfaces.
It is observed that the initial population of the wave-packet on
the upper sheet rapidly and almost completely decays to the
lower sheet within 10 fs. However, a significant re-population
of the upper sheet takes place within the next roughly 10
to 15 fs before a second and slower decay sets in. This re-
population may explain, at least to some extent, why the de-
tachment spectrum is so hard to simulate and why it requires
such an elaborate and accurate diabatic potential model: The
wave-packet stays in the Condon region even after relatively
long propagation time, experiencing fairly strong nonadia-
batic couplings. During the same time it samples extended
areas of the PESs around the Condon region. Both give rise to
very complex behaviour which is very sensitive to the details
of the PESs and the couplings.

The present study demonstrates that the developed dia-
batic potential model is capable of yielding very good PESs
for studying the quantum dynamics of a complicated and
strongly coupled system like NO3. However, the 2E′′ state
investigated here is only one of at least three relevant states
to understand the spectroscopy and photochemistry of NO3.
Therefore, this study needs to be extended to a diabatic po-
tential model including the 2A′

2 and 2E′ states as well. Corre-
sponding work is currently in progress. A more detailed in-
vestigation of the effects of the Jahn-Teller coupling within
the 2E′′ state on the quantum dynamics is also underway. Sev-
eral aspects of the presented model development can be trans-
ferred to other strongly coupled molecular systems and to the
generation of highly accurate PESs in general. In particular,
an extension to larger and less symmetric molecules will be
of great interest.
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APPENDIX: SYMMETRY POLYNOMIALS
AND DIABATIC MATRIX ELEMENTS

In the following, the general form of the matrix el-
ements of the diabatic potential matrix are given. Each
matrix element can be expanded in the proper symmetry poly-
nomials in the corresponding symmetry coordinates. Prob-

lematic are only terms involving the degenerate e′ coordinates
e′
i = (xi, yi); i = 1, 2. Expansion terms for the V , W , and Z

functions in Eq. (9) involving only one of the two sets of e′ co-
ordinates have been published in Refs. 50, 51. In the present
work, we also include all mode-mode couplings among the
two sets of e′ coordinates. The corresponding expansion terms
are given below. To derive these terms by the method de-
scribed in Refs. 50, 51 one first transforms the two sets of de-
generate coordinates x1, y1 and x2, y2 into the complex plane
by

Qi+ = 1√
2

(xi + iyi) and Qi− = 1√
2

(xi − iyi). (A1)

In the complex plane, the critical symmetry operator Ĉ3 can
be applied easily and one obtains

Ĉ3 Qi+ = e+2πi/3 Qi+ and Ĉ3 Qi− = e−2πi/3 Qi−.

(A2)
A corresponding transformation to the complex plane is car-
ried out for the two components of the E state and yields the
respective eigenvalues when Ĉ3 is applied. The application
of Ĉ3 on each term |�k〉Hd

kl〈�l| of the spectral representa-
tion of the Hamiltonian must yield an eigenvalue of 1 since
Ĥ must be invariant under any symmetry transformation. The
matrix elements Hd

kl of the diabatic Hamiltonian are expanded
as polynomials in the complex coordinates and only terms in-
variant under the Ĉ3 transformation are retained. To this end
one may utilize Table I of Ref. 51, in which the surviving
terms are listed, and replace the products Q

p
+Q

q
− by all unique

combinations of Q
p1
1+Q

p2
2+Q

q1
1−Q

p2
2− with p1 + p2 = p (p1 ≥ p2)

and q1 + q2 = q (q1 ≥ q2). The complex diabatic Hamiltonian
is set up for each order p + q and each unique combination
(p1, p2, q1, q2) and then back-transformed into the real co-
ordinate plane. This yields the real diabatic Hamiltonian ma-
trices of Eq. (9) with the elements v(n,m)

ee , w(n,m)
ee , and z(n,m)

ee

(n = p + q):

v(2,1)
ee = 2(x1x2 + y1y2), (A3a)

v(3,1)
ee = 2

(
x1x

2
2 − x1y

2
2 − 2x2y1y2

)
, (A3b)

v(3,2)
ee = 2

(
x2

1x2 − x2y
2
1 − 2x1y1y2

)
, (A3c)

v(4,1)
ee = 2

(
x2

1x
2
2 − x2

1y
2
2 − x2

2y2
1 + y2

1y2
2 + 4x1x2y1y2

)
,

(A3d)

v(4,2)
ee = 2

(
x3

1x2 + x2
1y1y2 + x1x2y

2
1 + y3

1y2
)
, (A3e)

v(4,3)
ee = 2

(
x3

2x1 + x1x2y
2
2 + x2

2y1y2 + y3
2y1

)
, (A3f)

v(4,4)
ee = x2

1x2
2 + x2

1y2
2 + x2

2y
2
1 + y2

1y
2
2 , (A3g)

v(5,1)
ee = x1y

4
2 − 4x2y1y

3
2 − 6x1x

2
2y2

2 + 4x3
2y1y2 + x1x

4
2 ,

(A3h)

v(5,2)
ee = (

y2
2 + x2

2

)(
x1y

2
2 + 2x2y1y2 − x1x

2
2

)
, (A3i)

v(5,3)
ee = (

y2
1 + x2

1

)(
x1y

2
2 + 2x2y1y2 − x1x

2
2

)
, (A3j)
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v(5,4)
ee = x2

(
y2

1 + x2
1

)(
3y2

2 − x2
2

)
, (A3k)

v(5,5)
ee = (

2x1y1y2 + x2y
2
1 − x2

1x2
)(

y2
2 + x2

2

)
, (A3l)

v(5,6)
ee = x1

(
3y2

1 − x2
1

)(
y2

2 + x2
2

)
, (A3m)

v(5,7)
ee = 4x1y

3
1y2 − 4x3

1y1y2 − x2y
4
1 + 6x2

1x2y
2
1 − x4

1x2,

(A3n)

v(5,8)
ee = (

y2
1 + x2

1

)(
2x1y1y2 + x2y

2
1 − x2

1x2
)
, (A3o)

v(6,1)
ee = (

y1y
5
2 − 5x1x2y

4
2 − 10x2

2y1y
3
2 + 10x1x

3
2y

2
2

+ 5x4
2y1y2 − x1x

5
2

)
, (A3p)

v(6,2)
ee = (

y1y
2
2 − x1y

2
2 − 2x2y1y2 − 2x1x2y2 − x2

2y1 + x1x
2
2

)
× (

y1y
2
2 + x1y

2
2 + 2x2y1y2 − 2x1x2y2 − x2

2y1 − x1x
2
2

)
,

(A3q)

v(6,3)
ee = (

y1y2 − x1x2
)(

y2
1y2

2 − 3x2
1y2

2 − 8x1x2y1y2

− 3x2
2y2

1 + x2
1x

2
2

)
, (A3r)

v(6,4)
ee = (

y2
1y2 − 2x1y1y2 − x2

1y2 − x2y
2
1 − 2x1x2y1 + x2

1x2
)

× (
y2

1y2 + 2x1y1y2 − x2
1y2 + x2y

2
1 − 2x1x2y1 − x2

1x2
)
,

(A3s)

v(6,5)
ee = y5

1y2 − 10x2
1y3

1y2 + 5x4
1y1y2 − 5x1x2y

4
1

+ 10x3
1x2y

2
1 − x5

1x2, (A3t)

v(6,6)
ee = (y1y2 + x1x2)

(
y2

2 + x2
2

)2
, (A3u)

v(6,7)
ee = (y1y2 − x1y2 + x2y1 + x1x2)(y1y2 + x1y2 − x2y1

+ x1x2)
(
y2

2 + x2
2

)
, (A3v)

v(6,8)
ee = (

y2
1 + x2

1

)(
y2

2 + x2
2

)2
, (A3w)

v(6,9)
ee = (y1y2 + x1x2)

(
y2

1y
2
2 − 3x2

1y2
2 + 8x1x2y1y2

−3x2
2y2

1 + x2
1x

2
2

)
, (A3x)

v(6,10)
ee = (

y2
1 + x2

1

)
(y1y2 + x1x2)

(
y2

2 + x2
2

)
, (A3aa)

v(6,11)
ee = (

y2
1 + x2

1

)
(y1y2 − x1y2 + x2y1 + x1x2)

× (y1y2 + x1y2 − x2y1 + x1x2), (A3bb)

v(6,12)
ee = (

y2
1 + x2

1

)2(
y2

2 + x2
2

)
, (A3cc)

v(6,13)
ee = (

y2
1 + x2

1

)2
(y1y2 + x1x2). (A3dd)

w(2,1)
ee = x1x2 − y1y2, (A4a)

w(3,1)
ee = x2

1x2 + x2y
2
1 , (A4b)

w(3,2)
ee = x1y

2
2 + x1x

2
2 , (A4c)

w(3,3)
ee = 2x1y1y2 + x2

1x2 − x2y
2
1 , (A4d)

w(3,4)
ee = x1x

2
2 + 2x2y1y2 − x1y

2
2 , (A4e)

w(4,1)
ee = x3

1x2 − 3x2
1y1y2 − 3x1x2y

2
1 + y3

1y2, (A4f)

w(4,2)
ee = x2

1x2
2 − x2

1y
2
2 − x2

2y
2
1 + y2

1y2
2 − 4x1x2y1y2, (A4g)

w(4,3)
ee = x3

2x1 − 3x1x2y
2
2 − 3x2

2y1y2 + y3
2y1, (A4h)

w(4,4)
ee = x3

1x2 + 3x2
1y1y2 − 3x1x2y

2
1 − y3

1y2, (A4i)

w(4,5)
ee = x3

2x1 − 3x1x2y
2
2 + 3x2

2y1y2 − y3
2y1, (A4j)

w(4,6)
ee = x3

1x2 − x2
1y1y2 + x1x2y

2
1 − y3

1y2, (A4k)

w(4,7)
ee = x2

1x
2
2 + x2

1y2
2 − x2

2y2
1 − y2

1y2
2 , (A4l)

w(4,8)
ee = x2

1x2
2 − x2

1y2
2 + x2

2y
2
1 − y2

1y2
2 , (A4m)

w(4,9)
ee = x1x

3
2 + x1x2y

2
2 − x2

2y1y2 − y3
2y1, (A4n)

w(5,1)
ee = x1y

4
2 + 4x2y1y

3
2 − 6x1x

2
2y

2
2 − 4x3

2y1y2 + x1x
4
2 ,

(A4o)

w(5,2)
ee = 2x1y1y

3
2 + 3x2y

2
1y2

2 − 3x2
1x2y

2
2

− 6x1x
2
2y1y2 − x3

2y
2
1 + x2

1x
3
2 , (A4p)

w(5,3)
ee = 3x1y

2
1y2

2 − x3
1y

2
2 + 2x2y

3
1y2 − 6x2

1x2y1y2

− 3x1x
2
2y2

1 + x3
1x

2
2 , (A4q)

w(5,4)
ee =4x1y

3
1y2−4x3

1y1y2 + x2y
4
1 − 6x2

1x2y
2
1 + x4

1x2,

(A4r)

w(5,5)
ee = −(

y2
2 + x2

2

)(
x1y

2
2 − 2x2y1y2 − x1x

2
2

)
, (A4s)

w(5,6)
ee = x1

(
y2

2 + x2
2

)2
, (A4t)

w(5,7)
ee = −(

2x1y1y
3
2 − 3x2y

2
1y2

2 + 3x2
1x2y

2
2

− 6x1x
2
2y1y2 + x3

2y2
1 − x2

1x
3
2

)
, (A4u)

w(5,8)
ee = x2

(
y2

1 + x2
1

)(
y2

2 + x2
2

)
, (A4v)

w(5,9)
ee = −(

y2
1 + x2

1

)(
x1y

2
2 − 2x2y1y2 − x1x

2
2

)
, (A4w)

w(5,10)
ee = x1

(
y2

1 + x2
1

)(
y2

2 + x2
2

)
, (A4x)

w(5,11)
ee = x2

(
y2

1 + x2
1

)2
, (A4y)

w(5,12)
ee = (

y2
1 + x2

1

)(
2x1y1y2 − x2y

2
1 + x2

1x2
)
, (A4z)
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w(6,1)
ee = y1y

5
2 + 5x1x2y

4
2 − 10x2

2y1y
3
2 − 10x1x

3
2y2

2

+ 5x4
2y1y2 + x1x

5
2 , (A4aa)

w(6,2)
ee = (

y2
2 + x2

2

)(
y1y

3
2 − 3x1x2y

2
2 − 3x2

2y1y2 + x1x
3
2

)
,

(A4bb)

w(6,3)
ee = (

y2
1 + x2

1

)(
y2

2 − 2x2y2 − x2
2

)(
y2

2 + 2x2y2 − x2
2

)
,

(A4cc)

w(6,4)
ee = (y1y2 − x1y2 − x2y1 − x1x2)(y1y2 + x1y2

+ x2y1 − x1x2)
(
y2

2 + x2
2

)
, (A4dd)

w(6,5)
ee = (

y2
1 + x2

1

)(
y1y

3
2 − 3x1x2y

2
2 − 3x2

2y1y2 + x1x
3
2

)
,

(A4ee)

w(6,6)
ee = (

y3
1y2 − 3x2

1y1y2 − 3x1x2y
2
1 + x3

1x2
)(

y2
2 + x2

2

)
,

(A4ff)

w(6,7)
ee = (

y2
1 + x2

1

)
(y1y2 − x1y2 − x2y1 − x1x2)

×(y1y2 + x1y2 + x2y1 − x1x2), (A4gg)

w(6,8)
ee = (

y2
1 − 2x1y1 − x2

1

)(
y2

1 + 2x1y1 − x2
1

)(
y2

2 + x2
2

)
,

(A4hh)

w(6,9)
ee = (

y2
1 + x2

1

)(
y3

1y2 − 3x2
1y1y2 − 3x1x2y

2
1 + x3

1x2
)
,

(A4ii)

w(6,10)
ee = y5

1y2 − 10x2
1y3

1y2 + 5x4
1y1y2

+ 5x1x2y
4
1 − 10x3

1x2y
2
1 + x5

1x2, (A4jj)

w(6,11)
ee = (y1y2 − x1x2)

(
y2

2 + x2
2

)2
, (A4kk)

w(6,12)
ee = (

y2
2 + x2

2

)(
y1y

3
2 + 3x1x2y

2
2 − 3x2

2y1y2 − x1x
3
2

)
,

(A4ll)

w(6,13)
ee = (

y2
1 + x2

1

)
(y2 − x2)(y2 + x2)

(
y2

2 + x2
2

)
, (A4mm)

w(6,14)
ee = (y1 − x1)(y1 + x1)

(
y2

2 + x2
2

)2
, (A4nn)

w(6,15)
ee =(

y1y
2
2 −x1y

2
2 +2x2y1y2 + 2x1x2y2 − x2

2y1 + x1x
2
2

)
× (

y1y
2
2 + x1y

2
2 − 2x2y1y2 + 2x1x2y2 − x2

2y1 − x1x
2
2

)
,

(A4oo)

w(6,16)
ee = (

y3
1y2 − 3x2

1y1y2 + 3x1x2y
2
1 − x3

1x2
)(

y2
2 + x2

2

)
,

(A4pp)

w(6,17)
ee = (

y2
1 + x2

1

)
(y1y2 − x1x2)

(
y2

2 + x2
2

)
, (A4qq)

w(6,18)
ee = (

y2
1 + x2

1

)(
y1y

3
2 + 3x1x2y

2
2 − 3x2

2y1y2 − x1x
3
2

)
,

(A4rr)

w(6,19)
ee =(

y2
1y2−2x1y1y2−x2

1y2+x2y
2
1 + 2x1x2y1 − x2

1x2
)

× (
y2

1y2 + 2x1y1y2 − x2
1y2 − x2y

2
1 + 2x1x2y1 + x2

1x2
)
,

(A4ss)

w(6,20)
ee = (y1 − x1)(y1 + x1)

(
y2

1 + x2
1

)(
y2

2 + x2
2

)
, (A4tt)

w(6,21)
ee = (

y2
1 + x2

1

)2
(y2 − x2)(y2 + x2), (A4uu)

w(6,22)
ee = (

y2
1 + x2

1

)(
y3

1y2 − 3x2
1y1y2 + 3x1x2y

2
1 − x3

1x2
)
,

(A4vv)

w(6,23)
ee = (

y2
1 + x2

1

)2
(y1y2 − x1x2). (A4ww)

z(2,1)
ee = −x1y2 − x2y1, (A5a)

z(3,1)
ee = y2

1y2 + x2
1y2, (A5b)

z(3,2)
ee = y1y

2
2 + x2

2y1, (A5c)

z(3,3)
ee = y2

1y2 + 2x1x2y1 − x2
1y2, (A5d)

z(3,4)
ee = y2

2y1 + 2x1x2y2 − x2
2y1, (A5e)

z(4,1)
ee = x3

1y2 + 3x2
1x2y1 − 3x1y

2
1y2 − x2y

3
1 , (A5f)

z(4,2)
ee = 2x2

1x2y2 + 2x1x
2
2y1 − 2x1y1y

2
2 − 2x2y

2
1y2, (A5g)

z(4,3)
ee = x3

2y1 + 3x1x
2
2y2 − 3x2y1y

2
2 − x1y

3
2 , (A5h)

z(4,4)
ee = x3

1y2 − 3x2
1x2y1 − 3x1y

2
1y2 + x2y

3
1 , (A5i)

z(4,5)
ee = x3

2y1 − 3x1x
2
2y2 − 3x2y1y

2
2 + x1y

3
2 , (A5j)

z(4,6)
ee = −x3

1y2 − x2
1x2y1 − x1y

2
1y2 − x2y

3
1 , (A5k)

z(4,7)
ee = −2x1x

2
2y1 − 2x1y1y

2
2 , (A5l)

z(4,8)
ee = −2x2

1x2y2 − 2x2y
2
1y2, (A5m)

z(4,9)
ee = −y3

2x1 − x1x
2
2y2 − x2y1y

2
2 − y1x

3
2 , (A5n)

z(5,1)
ee = −(

y1y
4
2 − 4x1x2y

3
2 − 6x2

2y1y
2
2 + 4x1x

3
2y2 + x4

2y1
)
,

(A5o)

z(5,2)
ee = −(

y2
1y3

2 − x2
1y

3
2 − 6x1x2y1y

2
2 − 3x2

2y2
1y2

+ 3x2
1x2

2y2 + 2x1x
3
2y1

)
, (A5p)

z(5,3)
ee = −(

y3
1y2

2 − 3x2
1y1y

2
2 − 6x1x2y

2
1y2 + 2x3

1x2y2

− x2
2y3

1 + 3x2
1x2

2y1
)
, (A5q)

z(5,4)
ee = −(

y4
1y2 − 6x2

1y2
1y2 + x4

1y2 − 4x1x2y
3
1 + 4x3

1x2y1
)
,

(A5r)

z(5,5)
ee = (

y2
2 + x2

2

)(
y1y

2
2 + 2x1x2y2 − x2

2y1
)
, (A5s)

z(5,6)
ee = y1

(
y2

2 + x2
2

)2
, (A5t)

z(5,7)
ee = y2

1y3
2 − x2

1y3
2 + 6x1x2y1y

2
2 − 3x2

2y2
1y2

+ 3x2
1x2

2y2 − 2x1x
3
2y1, (A5u)

z(5,8)
ee = (

y2
1 + x2

1

)
y2

(
y2

2 + x2
2

)
, (A5v)
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z(5,9)
ee = (

y2
1 + x2

1

)(
y1y

2
2 + 2x1x2y2 − x2

2y1
)
, (A5w)

z(5,10)
ee = y1

(
y2

1 + x2
1

)(
y2

2 + x2
2

)
, (A5x)

z(5,11)
ee = (

y2
1 + x2

1

)2
y2, (A5y)

z(5,12)
ee = (

y2
1 + x2

1

)(
y2

1y2 − x2
1y2 + 2x1x2y1

)
, (A5z)

z(6,1)
ee = x1y

5
2 − 5x2y1y

4
2 − 10x1x

2
2y3

2

+10x3
2y1y

2
2 + 5x1x

4
2y2 − x5

2y1, (A5aa)

z(6,2)
ee = −(

y2
2 + x2

2

)(
x1y

3
2 + 3x2y1y

2
2 − 3x1x

2
2y2 − x3

2y1
)
,

(A5bb)

z(6,3)
ee = −4x2

(
y2

1 + x2
1

)
y2(y2 − x2)(y2 + x2), (A5cc)

z(6,4)
ee = −2(x1y2 + x2y1)(y1y2 − x1x2)

(
y2

2 + x2
2

)
, (A5dd)

z(6,5)
ee = −(

y2
1 + x2

1

)(
x1y

3
2 + 3x2y1y

2
2 − 3x1x

2
2y2 − x3

2y1
)
,

(A5ee)

z(6,6)
ee = −(

3x1y
2
1y2 − x3

1y2 + x2y
3
1 − 3x2

1x2y1
)(

y2
2 + x2

2

)
,

(A5ff)

z(6,7)
ee = −2

(
y2

1 + x2
1

)
(x1y2 + x2y1)(y1y2 − x1x2), (A5gg)

z(6,8)
ee = −4x1y1(y1 − x1)(y1 + x1)

(
y2

2 + x2
2

)
, (A5hh)

z(6,9)
ee = −(

y2
1 + x2

1

)(
3x1y

2
1y2 − x3

1y2 + x2y
3
1 − 3x2

1x2y1
)
,

(A5ii)

z(6,10)
ee = −(

5x1y
4
1y2 − 10x3

1y2
1y2 + x5

1y2 − x2y
5
1

+10x2
1x2y

3
1 − 5x4

1x2y1
)
, (A5jj)

z(6,11)
ee = (x1y2 + x2y1)

(
y2

2 + x2
2

)2
, (A5kk)

z(6,12)
ee = −(

y2
2 + x2

2

)(
x1y

3
2 − 3x2y1y

2
2 − 3x1x

2
2y2 + x3

2y1
)
,

(A5ll)

z(6,13)
ee = 2x1y1

(
y2

2 + x2
2

)2
, (A5mm)

z(6,14)
ee = 2x2

(
y2

1 + x2
1

)
y2

(
y2

2 + x2
2

)
, (A5nn)

z(6,15)
ee =−2

(
x1y

2
2 −2x2y1y2−x1x

2
2

)(
y1y

2
2 + 2x1x2y2−x2

2y1
)
,

(A5oo)

z(6,16)
ee = (

3x1y
2
1y2 − x3

1y2 − x2y
3
1 + 3x2

1x2y1
)(

y2
2 + x2

2

)
,

(A5pp)

z(6,17)
ee = (

y2
1 + x2

1

)
(x1y2 + x2y1)

(
y2

2 + x2
2

)
, (A5qq)

z(6,18)
ee = −(

y2
1 + x2

1

)(
x1y

3
2 − 3x2y1y

2
2 − 3x1x

2
2y2 + x3

2y1
)
,

(A5rr)

z(6,19)
ee =2

(
2x1y1y2−x2y

2
1 +x2

1x2
)(

y2
1y2−x2

1y2 + 2x1x2y1
)
,

(A5ss)

z(6,20)
ee = 2x1y1

(
y2

1 + x2
1

)(
y2

2 + x2
2

)
, (A5tt)

z(6,21)
ee = 2x2

(
y2

1 + x2
1

)2
y2, (A5uu)

z(6,22)
ee = (

y2
1 + x2

1

)(
3x1y

2
1y2 − x3

1y2 − x2y
3
1 + 3x2

1x2y1
)
,

(A5vv)
z(6,23)
ee = (

y2
1 + x2

1

)2
(x1y2 + x2y1). (A5ww)

These symmetrized polynomials are used to express the
three types of functions F ∈ {V,W,Z}, each expressed as

F = Fa + Fb + Fee + Faee + Fbee + Fabee

+
2∑

i=1

Fei
+ Faei

+ Fbei
+ Fabei

. (A6)

Here, a symbolizes the totally symmetric a′
1 stretching coor-

dinate and b is the a′′
2 symmetric umbrella angle. Polynomials

of a are invariant in any order, while the symmetry requires
that only even powers of b are allowed. Therefore, using the
expansion terms given above and in previous works,50, 51 the
many-body terms up to 6th order can be written as

Fa =
6∑

j=1

p
(j )
f,a aj , (A7a)

Fb =
3∑

j=1

p
(j )
f,b b2j , (A7b)

Fei
=

6∑
j=1

∑
k

p
(j,k)
f,ei

f (j,k)
ei

, (A7c)

Fee =
6∑

j=1

∑
k

p
(j,k)
f,ee f (j,k)

ee , (A7d)

...

Faee =
6∑

i=2

i−1∑
j=1

∑
k

p
(i,j,k)
f,aee aj f (i−j,k)

ee , (A7e)

Fbee =
6∑

i=3

(i−1)/2∑
j=1

∑
k

p
(i,j,k)
f,bee b2j f (i−2j,k)

ee (A7f)

...

in which f ∈ {v,w, z}. The expansion coefficients p
(... )
f,... are

the free parameters determined by fitting as discussed in
Sec. II D. Note that p(... )

w,... = p(... )
z,... due to the symmetry re-

quirements.
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