NMOS Device Optimization for the Design of a W-band Double-Balanced Resistive Mixer
Christophe Viallon, Grégory Ménéghin, Thierry Parra

To cite this version:

HAL Id: hal-01015086
https://hal.archives-ouvertes.fr/hal-01015086
Submitted on 25 Jun 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
NMOS Device Optimization for the Design of a W-band Double-Balanced Resistive Mixer

Christophe Viallon, Member, IEEE, Grégory Ménéghin, and Thierry Parra

Abstract—This letter describes the implementation of NMOS devices in a passive ring mixer whose operating frequency reaches device’s cut-off frequency. Conversion gain, linearity and required LO power are discussed regarding device geometry using simple analytic formulas and electrical simulations. The mixer is then embedded in a down-converter including RF, LO and IF buffers and integrated in a 130 nm BiCMOS SiGe technology. Measurements indicate a conversion gain of 14.5 dB at 76.8 GHz, an output-referred 1 dB compression point of −10 dBm and a DSB noise figure of 6.3 dB confirming the interest of double-balanced passive mixers at millimeter-wave frequencies.

Index Terms—millimeter-wave, low-noise, resistive mixer, passive mixer, W-band, zero-IF receiver.

I. INTRODUCTION

T
HE last decade has seen a growing number of applications in the millimeter-wave frequency range. Under constant developments, nanoscale silicon technologies become competitive with III-V for applications exceeding 100 GHz.

Whereas resistive mixers are widely used on III-V technologies at such high frequencies, active mixer topologies seems to be so far preferred on Si technologies. W-band active mixers meet an abundant literature [1]–[3]. These mixers provide good port-to-port isolation and conversion gain. Nevertheless, some recent works have reported 60 GHz single-ended [4] and single-balanced [6] resistive mixers using 90, 130 and 65 nm CMOS process respectively, and more recently, a 65 nm CMOS single-balanced resistive mixer has been demonstrated at 283 GHz in a sub-harmonic configuration [7]. Despite conversion losses, these resistive mixer topologies exhibit better linearity and better noise performances, particularly for zero-IF receivers because the absence of flicker noise.

In this letter, a double-balanced resistive mixer is demonstrated in a 130 nm BiCMOS SiGe process. As presented in section II, mixer performances can be kept at frequencies close to NMOS cut-off frequency ($f_t \approx 85$ GHz), when device geometry is carefully optimized. The implementation of this mixer within a zero-IF UWB automotive radar down-converter, as well as overall performances are given, then, in section III.

Fig. 1. Simplified equivalent circuit of a cold MOS device (a), ring mixer circuit seen by LO source (b), simplified Drain-Source impedance model (c).

A pump signal applied to the gate turns the channel into a time-varying nonlinear conductance that produces the frequency mixing. Two major limitations appear as the transistor is pushed toward its frequency limits.

The first one is located at the command side of the device, between gate and source connections. The channel conductance is controlled by the voltage V_g across C_{gs} (Fig.1a). The ratio between V_g and V_{GS} is decreasing as frequency increases and depends on the extrinsic elements R_g and R_s. When a differential LO voltage is applied across the gates of the four mixing devices of a ring mixer, drains and sources appear to be virtually grounded at the LO frequency. Since $R_d \cong R_s$ and $C_{gs} \cong C_{gd}$ at $V_{DS} = 0$, V_g is deduced from V_{LO} using the equivalent circuit of the LO input of the mixer (Fig.1b):

$$V_g \approx \frac{V_{LO}}{1 + j\omega (R_g + R_d//R_s) (C_{gs} + C_{gd})}$$

This expression suggests that the device remains efficiently driven as long as the condition $\omega_{LO} \ll \omega_c$ is fulfilled, with

$$\omega_c = \frac{1}{(R_g + R_d//R_s) (C_{gs} + C_{gd})}$$

ω_c is maximized using the smallest possible NMOS device, since C_{gs} and C_{gd} are proportional to gate area.

The second limitation comes from the drain-source time-varying equivalent impedance (Fig.1c). This network is derived from Fig.1a given that for a ring mixer gates are virtually grounded at RF frequency and that C_{gs} and C_{gd} reactivities are much greater than R_g and R_s [8]. The lowest and highest values taken by g_{ch} are driven by the amplitude of V_g and the

II. DESIGN METHODOLOGY

A MOS device used under cold bias condition ($V_{DS} = 0$) acts as a simple conductance g_{ch} whose value is controlled by the intrinsic part of Gate-Source Voltage V_g (see Fig.1a).
DC bias. The drain-source impedance then swings between Z_{on} and Z_{off}:

$$Z_{on} \approx R_s + R_d + \frac{1}{g_{ch}} = R_s + R_d + \frac{L}{W} \rho_{ch}$$ \hspace{1cm} (3)

$$Z_{off} \approx R_d + \frac{1}{j \omega C_{gd}} \approx \frac{1}{j \omega C_{gd}}$$ \hspace{1cm} (4)

with L, W the gate length and width, respectively, and ρ_{ch} the channel resistivity. The equivalent circuit displayed on Fig.1c suggests that the transistor is operating as a diode and thus can be analyzed in the same way [9]. Hence, the optimal conversion losses L_{opt} depend on the Z_{on}/Z_{off} ratio:

$$L_{opt} = 1 + 2 \left(\frac{Z_{on}}{Z_{off}} \right)^2 \left[1 + \left(\frac{Z_{on}}{Z_{off}} \right)^2 \right]$$ \hspace{1cm} (5)

$$\left| \frac{Z_{on}}{Z_{off}} \right| \approx \frac{\omega_{RF}}{\omega_{c2}} \text{ with } \omega_{c2} \approx \frac{1}{(R_s + R_d + \frac{L}{W} \rho_{ch}) C_{gd}}$$ \hspace{1cm} (6)

L_{opt} is lowered if ω_{c2} is maximized. As for ω_{c1}, this condition occurs using the smallest NMOS device. The resistive mixer is then theoretically optimized for low conversion losses but the linearity must be now investigated.

The linearity is mainly affected by the transition time between ON-state and OFF-state of NMOS devices which produce the mixing. This switching time may be reduced by improving the rate of change of the channel conductance g_{DS} over V_{GS}. Starting from the simple square-law I_{DS} expression of a NMOS device driven in triode region, the following relation is deduced [10]:

$$\frac{\partial I_{DS}}{\partial V_{GS}} = \mu_n C_{ox} \frac{W}{L}$$ \hspace{1cm} (7)

with μ_n the electron mobility and C_{ox} the gate-to-channel capacitance per unit area. This expression means that linearity is improved by increasing W. But parasitic effects are not taken into account and, as long as W is increased, the aforementioned first limitation arises (ω_{c2}), pulling down linearity.

One last remaining issue is the terminal resistances R_g, R_d and R_s of NMOS transistors. With today nanoscale MOS technologies, these resistance values appear to be quite large, especially R_g. As displayed on Fig.2, this resistance results from the contact resistance R_{con} along with a salicided polysilicon resistance from contact to active region R_{ext}, and the distributed gate resistance over active area [11], [12]. R_g expression is then:

$$R_g = \frac{R_{con}}{n} + \frac{R_{ext}}{n} + \frac{R_{gd\square}}{3} \frac{W_f}{nL}$$ \hspace{1cm} (8)

with $R_{gd\square}$ the gate sheet resistance per square, W_f the finger width, and n the number of fingers. This expression points out that R_g scales down as the number of gate fingers increases, as for R_s and R_d [13].

Finally, the expressions (2), (6) and (7) suggest that conversion losses and linearity of a resistive mixer are enhanced using NMOS devices with the smallest L, W is chosen to provide the best linearity, and the number of fingers is increased to minimize the influence of extrinsic elements, because of (8). This result has been verified by performing electrical simulations on a resistive ring mixer fed with ideal baluns. The gates bias is adjusted near threshold voltage so that the best Z_{on}/Z_{off} ratio can be reached from the swing of V_g. Conversion loss and output-referred 1 dB compression point (OP_{1dB}) are plotted on Fig.3 at a LO power of 5 dBm for various device geometries. As expected, the best conversion efficiency is obtained using a device with the smallest allowed length and width. The linearity is optimized by increasing W up to the range 10–20 µm. Both characteristics are improved as the number of gate fingers is increased. However, no further improvement is observed above 8 fingers.

![Gate parasitic resistance distribution on MOS device.](image)

Fig. 2. Gate parasitic resistance distribution on MOS device.

![Simulated conversion loss and OP_{1dB} of a ring mixer fed with ideal baluns for different NMOS width W and number of fingers.](image)

Fig. 3. Simulated conversion loss and OP_{1dB} of a ring mixer fed with ideal baluns for different NMOS width W and number of fingers.

III. DOWN-CONVERTER DESCRIPTION AND MEASUREMENTS

Previous stated rules have been applied to the design of a double-balanced down-converter. The passive ring mixer using four $0.13 \times 2.5 \times 8$ µm2 NMOS devices is surrounded by three amplifiers at RF, LO and IF terminals (Fig.4). SiGe HBTs are used for RF and LO buffers to take advantage of their attractive performances regarding noise and f_t. The total DC power consumption is 118 mW at 2.5 V (42 mW, 36 mW and 40 mW for LO, RF and IF buffers, respectively). More details on this chip are given in [14]. It has been fabricated using a 0.13 µm SiGe BiCMOS process with HBT cutoff frequencies f_t/f_{max} of 230/280 GHz from ST-Microelectronics. On-chip rat-race baluns have been included at RF and LO balanced terminals to enable single-ended on-wafer characterization. Without baluns and pads, the active part of the chip is 700×400 µm2. A specific test-bench has been developed to extract the conversion gain, compression point and noise figure. IF signal is measured from one of both outputs, the other one is connected to an AC-coupled 50 Ω load. All measurement data are referred to the pads of the chip.

The conversion gain versus LO power is shown in Fig.5 at a LO frequency of 76 GHz. The measured OP_{1dB} is −10 dBm. This power is strongly limited by the IF amplifier which
provides a gain of ~14 dB from DC up to 2 GHz. It could be improved up to +5 dBm by increasing the linearity of the IF-amplifier since the simulated OP_{1dB} of the NMOS ring mixer, alone, is ~8 dBm (Fig. 3).

The double sideband noise figure has been extracted using the cold-source technique from measured conversion gains G_{usb} and G_{lsh} at both upper and lower sideband around LO frequency. In our case, $G_{usb} = G_c$. The noise figure NF_{dsb} is extracted from the measured output noise power spectral density N_{out} using:

$$NF_{dsb} = \frac{N_{out}}{(G_{lsh} + G_{usb}) kT_0}$$ \hspace{1cm} (9)

k is Boltzmann’s constant and T_0 is 290 K. The noise figure of a resistive mixer can be close to conversion losses by minimizing R_s and R_d. Moreover, this kind of mixer is well suited for zero-IF receiver because the absence of shot and flicker noises. Finally, the RF cascode amplifier acts as the RF transconductance stage in the Gilbert mixer: its gain and NF (\sim9 dB and ~5 dB, respectively, under 50 Ω input and output loads) decrease the NF of the overall down-converter.

The low-noise frequency conversion is confirmed by measurements of Fig. 5, where NF_{dsb} reaches a value of 6.3 dB, for a conversion gain of 14.5 dB, when the LO power exceeds 0 dBm. If we compare with all other published W-band mixers (Table 1), these characteristics are quite attractive.

![Fig. 4. Block-diagram and micro-photograph of the designed chip.](image)

IV. CONCLUSION

This letter investigates the optimization of a cold-biased NMOS resistive ring mixer. The geometry of NMOS transistor is widely discussed regarding conversion losses as well as linearity. Rules are derived that allow the mixer operation nearby the cut-off frequency of mixing devices. A double-balanced resistive mixer is then demonstrated in the 77 GHz range using a 0.13 μm BiCMOS SiGe process. Simulated and measured results demonstrate that millimeter-wave Si-based resistive ring mixers can compete against their III-V-based equivalents in terms of linearity. In addition, a low noise figure is possible according to the measured NF of 6.3 dB. To the authors’ knowledge this result is the best ever reported at such high frequency using a Si-based technology.

REFERENCES

TABLE I

<table>
<thead>
<tr>
<th>Technology</th>
<th>This work</th>
<th>[1]</th>
<th>[2]</th>
<th>[3]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMOS resistive ring mixer</td>
<td>130 nm SiGe BiCMOS</td>
<td>65 nm CMOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixor topology</td>
<td>Resistive</td>
<td>SB* active</td>
<td>Gilbert cell</td>
<td></td>
</tr>
<tr>
<td>P_{DC} [mW]</td>
<td>76</td>
<td>N/A</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>f_{RF} [GHz]</td>
<td>76.8</td>
<td>77</td>
<td>73.8</td>
<td>76</td>
</tr>
<tr>
<td>G_c [dB]</td>
<td>14.5</td>
<td>20</td>
<td>8.5</td>
<td>−1.5</td>
</tr>
<tr>
<td>OP_{1dB} [dBm]</td>
<td>−10***</td>
<td>+4.3</td>
<td>N/A</td>
<td>−9.5</td>
</tr>
<tr>
<td>NF_{dsb} [dB]</td>
<td>6.3</td>
<td>9.8</td>
<td>10.2</td>
<td>8.3</td>
</tr>
</tbody>
</table>

*SB is for Single-Balanced, ** LO buffer excluded, *** +5 dBm using optimized IF-amp.