Fast, variation-based methods for the analysis of extended brain sources

Hanna Becker 1, 2 Laurent Albera 3, 4, * Pierre Comon 1 Rémi Gribonval 4 Isabelle Merlet 3
* Auteur correspondant
1 GIPSA-CICS - CICS
GIPSA-DIS - Département Images et Signal
4 PANAMA - Parcimonie et Nouveaux Algorithmes pour le Signal et la Modélisation Audio
Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : Identifying the location and spatial extent of several highly correlated and simultaneously active brain sources from electroencephalographic (EEG) recordings and extracting the corresponding brain signals is a challenging problem. In a recent comparison of source imaging techniques, the VB-SCCD algorithm, which exploits the sparsity of the variational map of the sources, proved to be a promising approach. In this paper, we propose several ways to improve this method. In order to adjust the size of the estimated sources, we add a regularization term that imposes sparsity in the original source domain. Furthermore, we demonstrate the application of ADMM, which permits to efficiently solve the optimization problem. Finally, we also consider the exploitation of the temporal structure of the data by employing L1,2-norm regularization. The performance of the resulting algorithm, called L1,2-SVB-SCCD, is evaluated based on realistic simulations in comparison to VB-SCCD and several state-of-the-art techniques for extended source localization.
Type de document :
Communication dans un congrès
22nd European Signal Processing Conference (EUSIPCO-2014), Sep 2014, Lisbonne, Portugal. 5 p., 2014
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01012083
Contributeur : Laurent Albera <>
Soumis le : mardi 15 juillet 2014 - 18:29:06
Dernière modification le : mercredi 2 août 2017 - 10:10:05
Document(s) archivé(s) le : lundi 24 novembre 2014 - 14:31:22

Fichier

BeckACGM14-EUSIPCOvf.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01012083, version 3

Citation

Hanna Becker, Laurent Albera, Pierre Comon, Rémi Gribonval, Isabelle Merlet. Fast, variation-based methods for the analysis of extended brain sources. 22nd European Signal Processing Conference (EUSIPCO-2014), Sep 2014, Lisbonne, Portugal. 5 p., 2014. 〈hal-01012083v3〉

Partager

Métriques

Consultations de la notice

1905

Téléchargements de fichiers

259