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Abstract— In this paper, we propose a method to calculate the 

magnetic field in Flux Concentration Superconducting Magnetic 

Coupling (FCSMC) with rectangular permanent magnets (PMs). 

The inner rotor is composed of rectangular PMs and the external 

one is made of High Temperature Superconducting (HTS) coils 

supplied by DC current.  Firstly, an exact 2-dimensional 

analytical computation is developed in polar coordinates for 

calculating the magnetic field distribution in FCSMC with sector 

PMs having the same volume as the rectangular ones. The model 

is validated by finite element computations. The analytical model 

is then used to predict the performances of FCSMC. The electric 

loadability of the FCSMC is determined by considering the 

dependence of the critical current vs. the flux density 

distribution. A parametric study showed that the analytical 

model can predict the torque with a reasonable precision. 

Therefore, this model can usefully be used for optimization 

purposes where reductions in computation time are needed.  

 
Index Terms— Analytical solution, BSCCO tape, flux 

concentration, high temperature superconductors, magnetic 

coupler, permanent magnet. 

I. INTRODUCTION 

 

agnetic Couplings (or couplers) (MCs)  are widely used 

in industry to transmit a torque from a prime mover to its load 

without contact through a separation wall which can be air, 

vacuum, fluid or other media. Such contactless torque 

transmission devices have found wide applications in nuclear 

environments, vibration isolation, compressors, blowers, 

vacuum pumps [1]. There are three types of MCs: Eddy 

current, Hysteresis and Synchronous, each of which may be of 

Concentric or Axial topology. 

 

The use of High Temperature Superconductors (HTS) in 

electromagnetic devices is currently an important subject of 

research worldwide. Indeed, these materials can be efficiently 

used for developing high magnetic flux density in machines 

with large air gap as couplers and gears [2, 3].  
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In the same context, a flux concentration (or flux focusing) 

concept is an effective solution since the machine produces 

more torque compared to the ones with surface mounted PMs 

[4].  

 

The aim of this paper is to use HTS and PMs to transmit 

high torque from a cold environment to a warm environment 

using a superconducting magnetic coupler. For example, the 

torque produced by a HTS motor can be transmitted to its load 

via the HTS magnetic coupler of Fig.1.a. This may constitutes 

an alternative solution to torque tubes. A 3D view of the 

studied flux concentration coupler is shown in Fig.1.b. 

 

Obviously, this doesn’t constitute the sole application of a 

magnetic coupler. Many industrial processes (i.e. nuclear, 

chemical, pharmaceutical and food industries) need hermetic 

isolation between the prime mover and a follower connected 

to the process. 
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Fig. 1. (a) Schematic diagram showing the use of a superconducting 

magnetic coupler, (b) 3D view of the studied flux focusing coupler.   
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The proposed HTS coupler (or a wholly HTS coupler whose 

both inner and outer rotors are superconducting) may be the 

unique solution if large distance between the two rotors is 

required (several centimeters). In fact, superconductors are the 

only materials which can create enough magnetic field to 

transmit a torque without contact, and within a reasonable 

coupler volume, throw a thick wall. 

 

Usually, the magnets of flux concentration permanent 

magnets rotor are rectangular (as in Fig.1.b). The distribution 

of magnetic field can be calculated by dividing the rectangular 

magnets into a finite number of radial slices. However, this 

will drastically increase the number of sub-domains and 

penalizes the computation time. Another solution consists of 

using conformal mapping to handle the non radial areas of slot 

domains [5].  

 

In this study, the rectangular magnets are replaced by sector 

ones having the same volume so the magnetic field 

distribution can be calculated by using analytical method. In 

this technique, polar coordinates are used and Maxwell’s 

equations are solved by separation of variables in low 

permeability sub-domains (air regions, magnets, windings) [6, 

7, 8, 9]. In particular, flux concentration switched PMs 

machines have been studied in [10].  

 

The first part of this paper introduces the sector PMs 

FCSMC and the analytical calculation of the magnetic field. 

The results are validated by finite element (FE) computation.   

 

In the second part, we propose a method to calculate the 

critical current in the superconducting coil by taking into 

account the HTS tape characteristics and the flux density on 

the HTS wire. This flux density is calculated by the analytical 

and the numerical techniques.  

 

In the last part, we will analyze the capability of the 

developed analytical model in predicting critical current of 

HTS coil and rectangular magnets FCSMC performances. A 

discussion on the obtained results ends the paper. 

II. STUDIED SUPERCONDUCTING MAGNETIC COUPLER 

The considered coupler is coaxial (or concentric); it has one 

rotor inside another rotor. The inner rotor consists of different 

pieces of iron and permanent magnets that are fixed jointly on 

a non-ferromagnetic shaft; each magnet is magnetized in a 

reverse direction of its neighboring ones. The outer rotor is 

composed of a series of HTS coils separated by pieces of glass 

fiber. The coils are cooled inside a non magnetic cryostat 

(stainless steel) at 30K (Fig.2).  

 

The geometrical parameters of prototype FCSMC to be 

investigated (Fig.3) are   

- The inner radius of the inner rotor R1 

- The outer radius of the inner rotor R2 

- The inner radius of the HTS winding R3 

- The outer radius of the HTS winding R4 

- The inner radius of outer rotor yoke R5 

 

 
The inner rotor consists of 2p (p is the number of pole-

pairs) sector PMs. The angular position of the i-th PM is 

defined (Fig. 2) by 
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Where  is the PM opening angle. 

III. PROBLEM FORMULATION AND ASSUMPTIONS 

A 2D analytical model is developed where a magnetic vector 

potential formulation is used in polar coordinates. The relative 

permeability is considered infinite for the ferromagnetic parts 

and is equal to 1 for the PMs and air regions. The inner rotor is 

in a fixed position for all the calculations. 

A. Source Terms 

The permanent magnets buried into the rotor of the machine 

are tangentially magnetized. The magnetization direction is 

alternated from one magnet to another. Hence, the 

magnetization vector of the i
th

 permanent magnet regions is 
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  where Br is the remanent flux density of the magnet.   

 

The HTS coils in the outer rotor are supplied by direct current 

(Fig. 4). The Fourier series expansion of the current density J 

of the HTS winding is given by 

 

  oddn   ,cos )(
1







n

n
nJJ             (3) 

10   , 
2

n
sin  

4
0











w

w

n
J

n
J 




               (4) 

 

Where J0 is the dc current density in the superconductor and 

 the load angle (angle between the magnetic fields created by 

the HTS rotor and the PM rotor). w is the ratio between the 

HTS coil cross section width (R3wπ/2p) and half of the pole 

pitch (R3π/2p). 

 
 

Fig. 2.  2D geometry of the studied superconducting magnetic coupler 

(p=2) 



 

 

 

B. Analytical expressions of the magnetic field in the different 

subdomains 

The studied structure is divided into a shaft (domain I), air-

gap (domain II), HTS winding (domain III), outer cryostat 

wall (domain IV) and permanent magnet regions (domains i), 

Fig. 3. Notice that the air gap includes the inner wall of the 

cryostat (non magnetic) and a mechanical clearance to allow 

the rotation. 

In order to simplify the analytical expressions in the 

different sub-domains, we adopt the following notations 
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In polar coordinates, for the i-th permanent magnet sub-

domain region and in the HTS winding domain, Poisson’s 

equations apply 
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 For the sub-domains I, II and IV, Laplace's equations have 

to be solved 

 0 IA                                                                                 (9) 

0 IIA                                                                               (10) 

0 IVA                                                                              (11) 

 

C. Boundary conditions 

The boundary conditions for the i-th PM domain (Fig. 5) are 
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The continuity conditions of the magnetic vector potential 

between the i-th PM and sub-domains I, II are 
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The boundary condition for the region III is given by 
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The boundary conditions for the region IV are given by 
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The continuity conditions of the magnetic vector potential 

between the sub-domain III and sub-domains II, IV are 
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Fig. 5. Boundary conditions   
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Fig. 4. Current density distribution in the HTS windings along the θ 

direction (φ = 0) 
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Fig. 3. Studied sub-domains 
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The continuity of the tangential magnetic field at the 

interface between the permanent magnet and the shaft, can be 

written as  
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The continuity of the tangential magnetic field at the 

interface between the permanent magnet and the air gap can 

be written as  
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IV. ANALYTICAL SOLUTIONS 

 

To solve the partial differential equations, the method of 

separation of variables is used in cylindrical coordinates.  

 

A. General Solution of Posson’s equation in the i-th PMs sub-

domain (region i) 

In the i
th

 PM sub-domain, the problem to solve is  
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The general solution of (24) can be written as 
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where k is a positive integer,      (    ) is given by (6).  

 

The constants   
 ,   

 ,   
   and   

   are determined using a 

Fourier series expansion of shaft and air-gap vector potentials 
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B. General solution of Laplace’s equation in the shaft sub-

domain (region I) 

The shaft sub-domain and its associated boundary 

conditions are shown in Fig. 5. The equation to solve is 
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By taking into account the boundary condition (20), the 

general solution of the magnetic vector potential in the shaft 

can be written as 
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Where n is a positive integer, the coefficients    
  and    

  

are determined by using a Fourier series expansions of  (𝜃) 

over the interval [0, 2]. 
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C. General solution of Laplace’s equation in the air gap 

(region II) 

In the air-gap sub-domain, the problem to solve is 
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According to the boundary conditions (15) and (22), the 

general solution of the magnetic vector potential in the air-gap 

sub-domain can be written as 
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Where n is a positive integer,   (    ) and   (     ) are 

defined by (5) and (6). The coefficients   
  ,   

   ,   
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D. General Solution of Poisson’s equation in the HTS winding 

sub-domain (region III) 

The problem to solve in the HTS winding region is given by 

the following equation  
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By taking into account the boundary conditions (18) and 

(19), the general solution for the magnetic vector potential is 
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With 
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and 
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Where n is a positive integer, p is the number of pole-pairs 

and   (     ) is defined by (6).  

 

The coefficients   
   ,   

    ,   
    and   

   are determined 

using a Fourier series expansions of AII(R3,θ) and AIV(R4,θ) 

over the air-gap interval [0, 2]. 
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E. General Solution of Laplace’s equation in the outer cryostat 

wall sub-domain (region IV) 

The equation to solve is  
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According to the boundary conditions (16) and (17), the 

general solution of the magnetic vector potential in the outer 

cryostat wall sub-domain can be written as  
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Where n is a positive integer,   (    ) and   (       ) are 

defined by (5) and (6). The coefficients  
   and    

   are 

determined using a Fourier series expansions of  

4Rr




r

A
III

  

over the air-gap interval [0, 2].  
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F. Electromagnetic torque 

The electromagnetic torque is obtained using the Maxwell 

stress tensor. A circle of radius Re in the air-gap is taken as the 

integration path so the electromagnetic torque is expressed as 

follows 
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  are respectively the 

radial and tangential flux densities in the air gap and L is the 

active axial length of the FCSMC. 

  

Using the coefficients of the magnetic field solution (35) in 

the air gap (region II), the electromagnetic torque expression 

(52) can be rewritten as 
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V. VALIDATION OF THE ANALYTICAL MODEL 

 

In order to validate the proposed model and for the 

geometrical parameters given in Table I, the analytical results 

have been compared with 2-D finite-element simulations 

obtained using FEM software [11]. The chosen parameters 

lead to non-saturated iron parts of the coupling so the linearity 

assumptions adopted for the analytical model are fulfilled. 

 

Fig. 6 shows the magnetic flux lines under no-load (φ=0°) 

and load (φ=57°) conditions. The flux lines at no-load are 

symmetrical but it’s not anymore the case under load 

conditions.  

 

The waveforms of the flux density distribution (radial and 

tangential components) in the middle of the air-gap are 

presented in Fig. 7 and Fig. 8. It can be seen that the radial and 

tangential flux density waveforms under load conditions are 

deformed when compared to the no-load situation. 

 

The static torque as well as the reluctance torque vs. the 

load angle  are presented in Fig.9. Notice that the reluctance 

torque has been computed by turning off the PMs, viz. Br=0.  

 

For the considered geometrical parameters, the pull-out 

torque is obtained for a load angle nearly equals to =57°. 

The reluctance torque represents approximately 10% of the 

total torque (Fig.9.b). 

 

A very good agreement is noticed between the finite 

element predictions and the analytical results. 
 

 
 

 
 

 
    (a)                                                          (b) 

 
 Fig. 6. Magnetic flux lines under (a) no-load (φ=0) and (b) load conditions 

(φ=60°) 

 

 
 

 

 
 

TABLE I 
GEOMETRICAL PARAMETERS OF FCSMC WITH SECTOR PMS  

 

 

Symbol Quantity Value 

p Number of pole pairs 5 

R5 Outer radius of SC coupling 500  mm 

L Active axial length 1000 mm 

N Number of harmonics used 

for magnetic field calculation 

in the shaft, air-gap, winding 
and outer cryostat domains 

 

20 

K Number of harmonics used 

for magnetic field calculation 
in the PM  domain 

 

30 

 

HTS 

outer 
rotor 

R4 Outer radius of HTS windings 490 mm 

R3 Inner radius of HTS windings 481 mm 

αw HTS coil width to half pole pitch 

ratio 

0.1 

Nturns Number of series turns 104 

Iccoil Current of HTS coil 100 A 

LBSCCO Total length of BSCCO tape 2 km 

 

PM 
inner 

rotor 

R2 Outer radius of PM rotor 461 mm 

R1 Inner radius of PM rotor 276 mm 

β Opening of PM 0.35 π/p rad 

Br Remanence of the PM (NdFeB) 1 T 

 

 



 

 

VI. THE HTS WINDING 

This section is devoted to the analysis of the HTS winding 

properties. It is well known that HTS materials exhibit a non 

linear relation between the electric field E and the current 

density J. This non-linearity is well described by the power 

law [12] 
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Where Jc is the critical current density and n the index value 

of the experimental U(I) curve [13].  

 

Ec is the critical electric field corresponding to the critical 

current with the arbitrary criteria Ec=10
-4

V/m. J is the current 

density in the coil. 

Jc and n depend on the cooling temperature, on the 

magnetic flux density components and on some mechanical 

constraints. So, the electric loadability (maximal allowable 

current avoiding thermal limits) also depends on the same 

physical properties. 

 
At a given operating temperature of the HTS material, the 

critical current density only depends on the electromagnetic 

and mechanical constraints. Nevertheless, one has to care 

about local hot-spot temperatures in the HTS winding. In fact, 

important local loss densities (due to a non-homogeneous 

cooling or a failure of the cooling system) can cause the 

quench of the HTS winding [14], [15].  

 

Obviously, these thermal issues are of great importance but 

they are beyond the scope of the present paper so they will not 

be discussed further. 

A. Influence of the flux density distribution on the electric 

loadability of the HTS winding 

For the considered device, the HTS winding consists of 2p 

race-track coils made from BSCCO tapes (Fig. 10). Each coil 

consists of Nturns connected in series. The critical current of the 

coil is defined as the current flowing in the coil which causes a 

coil's terminal voltage equals to its critical value.  

Since a 2D electromagnetic model is considered here, we 

neglect in this study the influence of the end-winding on the 

coil's voltage. So we only take into account the active length 

of the coupler. 

 

 
(a) 

 
(b) 

Fig. 8. Radial (a) and tangential (b) flux densities in the middle of the air 

gap (Re=345 mm) under load conditions (φ=600) 
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(a) 

 
(b) 

Fig. 7. Radial (a) and tangential (b) flux densities in the middle of the 

air gap (Re=345 mm) under no-load conditions (φ=0) 
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To describe the dependence of Jc and n values on the flux 

density components, the Kim model is used [16] 
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Where Jc0, n0 and k are respectively the critical current 

density in zero field, the n value in zero field of the SC tape 

and the anisotropy factor (<1). 

B0, Bn0 and β are positive constants characterizing the 

material at the given cooling temperature. 

   and    are the values of the component of the flux 

density perpendicular and parallel to the largest surface of the 

tape (Fig. 10). 

 

 
 

Equations (59) and (60) show that the Jc and n values are 

mainly affected by the perpendicular flux density. 

 

To rigorously determine the voltage over the coil's 

terminals, the actual stranded topology of the winding cross 

section has to be considered. The total voltage of the coil is 

then the sum of the elementary voltages corresponding to each 

turn of the HTS winding. This strict computation is not 

feasible using the developed analytical model and becomes 

very complicated by FE analysis since the generated mesh 

growth rapidly when the number of turns increases. 

 

To overcome the problem, we use a bulk topology of the 

coil for which we define an average current density (as in (3)) 

given by  
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where Icoil is the current flowing in each conductor and Scoil is 

the cross section area of the coil. 

 

This approach has been successfully used in our lab [17] since 

measured Ucoil(Icoil) characteristics are consistent with those 

computed using the bulk approximation.  

 

In polar coordinates, the voltage across the coil is the sum of 

the voltages of the "in" and "out" of the plane bundles of 

conductors. 
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(62) 

 

Where Ein (r, θ) and Eout (r, θ) are respectively the electric 

fields over the cross sections of the coil (Sin) and (Sout). The 

double integral in (62) is calculated numerically. 

 

By using the power law (58) associated to the Kim model 

(59) and (60), equation (62) becomes 

 
Fig. 10. 3D view part of a race-track BSCCO coil showing the 

tapes geometrical arrangement   

B┴=BIIIθ

Db: Critical bending

diameter

 
(a) 

 
(b) 

Fig. 9. Total static torque (a) and reluctance torque (b) of FCSMC 
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For the studied device and using the analytical model, the 

parallel and perpendicular flux densities are respectively   

          and          (Fig.10).   

 

The critical voltage Uc over the coil's terminals is  

 

                            (64) 

 

B. Mechanical stress due to bending 
 

HTS materials properties are very sensitive to mechanical 

stresses like bending, torsion or shear [18, 19]. In addition to 

their harmful effects on the mechanical integrity of HTS 

materials, these stresses irreversibly decrease the critical 

current density. 

 

The heads of race track coils should not be too short as they 

are subjected to bending and torsion during their manufacture. 

A minimal bending diameter Db is then required which 

constitutes a geometrical constraint on the coil opening (Fig. 

10). Hence, the HTS coil width to half pole pitch ratio (w) 

has to fulfill the following condition 
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The race track coil being made from rectangular tapes of 

thickness ew, the number of layers Nct in the tangential 

direction  is limited to a maximal value of 
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where    is the filling factor (in the tangential direction) of 

the HTS coil. 

 

C. Critical current of the HTS coupling 

The studied coil is made of BSCCO tapes cooled at 30K. 

The electrical and geometrical characteristics of the BSCCO 

tape are given respectively on Tables II and III. These 

characteristics correspond to the last generation BSCCO tape 

(of type H for dc applications) manufactured by Sumitomo 

[20]. 

For Kf=0.8 at no-load (φ=0°), Fig.11 shows the coil's 

terminals voltage vs. the current. The critical voltage of one 

BSCCO coil is Uc=21 mV. The critical current obtained for 

the studied HTS coupling is about 277A, which represents 

52% of the self-field critical current of the used BSCCO tape 

(Ic0=531A). The analytical predictions are in good agreement 

compared to the numerical computations. 

 

Fig.12 presents the critical current of the BSCCO coil for 

different load angles φ of the superconducting rotor. It can be 

seen that the maximum value of the critical current is about 

462A (0.87 Ic0) obtained for a load angle nearly equals to 

φ=33° (electrical angle). For the pull-out torque position 

corresponding to φ=57°, the critical current is about 441 A 

(0.83 Ic0). 

 

The minimum value of the critical current, obtained for 

φ=0°, is about 277 A (0.52 Ic0). This limit allows fixing the 

operating current of the coupler at a value lower than this 

minimal critical current in order to prevent thermal failures or 

to allow some mechanical over-load. 

 

 
 

 

 
Fig. 11. Voltage vs. current of HTS coil of FCSMC (φ=0°) 
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TABLE II 

GEOMETRICAL PARAMETERS OF THE BSCCO TAPE [20] 

Symbol Quantity value 

ew  BSCCO wire thickness  0.23 mm 

lw  BSCCO wire width 4.3 mm 

Db Bending diameter 70 mm 

 

TABLE III 
PARAMETERS OF THE KIM MODEL  

Jc (B) 

Jc0  537 A/mm
2
 

B0  1.01 T 

β 0.87 

k 0.182 

n(B) 

n0 31 

Bn0 2 T 

 

 

 



 

 
 

VII. PERFORMANCES OF THE ANALYTICAL MODEL TO COMPUTE 

SATURATED FCSMC WITH RECTANGULAR PMS 

 The rotor of flux concentration machines usually uses 

rectangular magnets rather than sector magnets which are 

practically difficult to magnetize.  

So from now, the rotor of the studied coupler will be 

composed of rectangular magnets embedded in a 

ferromagnetic yoke. Indeed, we propose an analysis of the 

capability of the developed analytical model in predicting the 

performances of FCSMC with rectangular PMs.  

Notice that superconductors create a strong magnetic field 

which saturates the iron parts, in particular in the inner rotor. 

The FE computations are then performed both in the linear 

and in the non-linear cases. The ferromagnetic material used 

in this study (US Steel Type 2-S) has a B(H) curve shown in 

Fig.13.  

To allow the analytical computation, the rectangular 

magnets are replaced by sector ones having the same volume 

(Fig.14). The rectangular magnet opening at r=R1, noted β', 

couldn’t exceed pR /
1
 . We define the ratio between R1 and 

R2 as 
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The sector PM, having the same volume as the rectangular 

one, has to fulfill the following condition  
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For all what follows and in order to predict the performances 

of FCSMC with rectangular PMs, linear FE, non-linear FE and 

analytical computations are performed and compared.  

 

  

 
 

The following values have been adopted: 6.0r , 

35.0m , 1.0w . These choices allow a reasonable 

saturation level in the iron parts.  

 

Fig.15 presents the voltage-current curve of the HTS coil at 

no-load (φ=0°). The critical current obtained using the 

analytical model is about 277 A; this value is very close to the 

one computed using the linear FE model. The non-linear FE 

computation gives a critical current of about 272 A which is 

1.8 % lower than the one given by the analytical model. These 

good predictions suggest that the critical current is mainly 

limited by the self field created by the HTS winding current. 

Indeed, for reasonable saturation levels, this current gives the 

same flux density distribution across the coil area whatever the 

geometrical configuration (rectangular or sector PMs). 

 Fig. 16 shows the flux lines under load conditions (φ=57°, 

Icoil=80%Ic =222.4 A). We notice some leakage flux in the 

shaft which mainly depends on the values of αr and αm. 

 

As shown in Fig.17, the air gap radial flux density harmonics 

are globally higher with the rectangular PMs configuration. 

For the most important harmonic orders (1,3,5,7,9), the 

relative difference between the non-linear FE computations 

and the analytical predictions doesn’t exceed 7%. 

 

 

 

 

 
Fig.14. Replacing rectangular PMs by sector ones 
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Fig. 13. B(H) curve of the ferromagnetic material 
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Fig. 12. Critical current Ic/Ic0 vs. load angle of FCSMC (Ic0=531A) 
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For a current value Icoil=222.4 A, Fig.18 presents the static 

torque vs. load angle computed by the different methods in 

use. The linear FE prediction gives a pull-out torque of about 

198 kNm while the non-linear FE computation gives 195 

kNm. The analytical model underestimates the pull out torque 

since it predicts 171 kNm. Furthermore, the load angle 

corresponding to the pull out torques is φ=55° using the FE 

models whereas this angle is 13° higher (viz. φ=68°) when 

using the analytical model. One can also note that the torque 

computed analytically is lower than the FE one whatever the 

load angle. 

Nevertheless, the analytical model allows a correct estimation 

of the pull-out torque. 

 

 

 
 

 

 

 

 

A. Influence of p and αr on the critical current and the torque 

capabilities of FCSMC 

 By fixing R2=461 mm as in Table I, the critical current 

computed for different values of the number of pole pairs p 

and φ=57° is presented in Fig. 19. The other parameters 

remain unchanged; in particular w is constant so the overall 

volume of the HTS material is also constant whatever the 

value of p. It can be seen from Fig.20 that the FE models as 

well as the analytical model predict identical critical current 

values for p=2÷5. Beyond, the analytical model overestimates 

the numerical one by about 9 %. Furthermore, one can see that 

the critical current increases with p. This is due to the fact that 

the local values of the magnetic flux density over the HTS coil 

decrease as p increases.   

Regarding the influence of the ratio r, the calculations 

showed that it has no influence on the critical current values. 

 

For a current corresponding to 80% of Ic in the HTS windings, 

Fig. 20 presents the variation of the pull-out torque vs. the 

number of pole pairs p for 2 values of r. It can be seen that 

the torque decreases monotonically as p increases, and the 

analytical computations follow the same tendency as the non-

linear FE ones.  

In order to analyze the influence of the parameter r, Fig.21 

shows the evolution of the pull-out torque when r varies 

between 0.2 and 0.8. It is clear that an optimal value of r 

witch maximizes the torque exists. This value is about 

r=0.55 (170 kNm) for p=4 and r=0.7 (130 kNm) for p=8.  
 

 

 
(a) 

 

 (b) 
Fig. 17. Radial flux density waveforms (a) and their harmonic spectra 

(b) at load conditions (φ=57° elect, Icoil=222.4 A).  
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        (a)                                             (b) 

Fig. 16. Magnetic flux lines of FCSMC with (a) sector and (b) 

rectangular PMs under load conditions (φ=57°élec, Icoil=222.4 A). 

 

 

 

 

 

 

 

 

 

 
 Fig. 15. Voltage vs. current curves of the BSCCO coil for φ=0° 
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B. Optimized torque transmission capabilities of the FCSMC  

The parametric studies showed that optimal configurations 

in terms of torque transmission and electric loadabilty of the 

HTS winding exist. These studies have been conducted with a 

moderate active length of HTS tape. To increase the torque 

produced by the coupler, we need to use more HTS material as 

to increase the airgap magnetic field. By doing so, one can 

face some problems related to the magnets demagnetization. 

Hence, we have to ensure that the used NdFeB magnets are 

not demagnetized by systematically checking the values of the 

tangential magnetic field (which corresponds to the direction 

of the magnetization). 

 

Several simulation studies (analytical and numerical) 

allowed us to obtain an optimized FCSMC whose main 

dimensions are presented in Table IV. The minimal value of 

the critical current is obtained at φ=0° (Ic=305A). 

 

The static torque curve, obtained for a HTS coil current 

Icoil=0.8Ic =243 A, is presented in Fig.22. The pull-out torque 

reaches 425 kNm. A 5cm back-iron thickness is enough to 

close the flux which leads to an active torque density of about 

450 kNm/m
3
. 

 

As an example, this coupler is able to transmit the torque of 

a 5 MW-120 rpm ship propulsion motor. It has clearly the 

potential to be used in high power application systems like 

wind turbines, marine propulsion… 

 

VIII. CONCLUSION 

The paper presents a new type of torque transmitter which 

can replace favorably, by avoiding any material contact, a 

mechanical torque tube usually used in superconducting 

machines. The use of high critical current BSCCO tapes at 

30K and flux concentration PMs rotor allows to obtain a high 

torque density magnetic coupler.  

 

An exact 2-dimensional analytical method to calculate the 

magnetic field distribution in FCSMC with sector magnets has 

 
Fig. 21. Pull-out torque versus the ratio r for p=4 and p=8.  
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Fig. 20. Pull-out torque vs. the number of pole-pairs for r=0.3 and 

r=0.6 
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Fig. 19. Critical current versus the number of pole pairs (r=0.6) 
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Fig. 18. Static torque obtained by different methods in use for 

Icoil=222.4 A  
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been proposed and validated through FE computations. The 

study takes into account the electrical and mechanical 

constraints of BSCCO tape at 30K. The results presented in 

this paper have shown that the developed model is able to 

predict the critical current of the BSCCO coil and the 

performances of the superconducting coupler with a good 

accuracy when compared to the FE predictions. 

In the flux concentration machine the permanent magnets 

are usually rectangular, so we have been led to introduce an 

equivalent sector shape magnets in order to obtain analytically 

the results presented here. The different results showed that, 

by considering the HTS constraints, the analytical model 

developed in this paper predicts the value of the pull-out 

torque within a maximum error of about 20% when compared 

to the finite element calculations of the rectangular PM 

topology. Furthermore, different parametric studies have been 

performed. It has been shown that the analytical predictions 

follow the same tendency as the numerical ones in evaluating 

the electromagnetic torque and the critical current. 

An optimized FCSMC has been also presented leading to a 

very important torque density coupler. Hence, it can be used in 

high power electromechanical systems. 
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TABLE IV 
GEOMETRICAL PARAMETERS OF THE OPTIMIZED FCSMC  

 
Symbol Quantity Value 

p Number of pole pairs 8 

 
HTS 

outer 

rotor 

R3 Inner radius of HTS rotor 485.7 
mm 

R5 Outer radius of FCSMC 500  

mm 

αw HTS coil width to half pole pitch 
ratio 

0.43 

Nturns Number of turns 143 

Ic Critical current of HTS coil 305 A 

LBSCCO Total active length of BSCCO 

tape 

4.57  

km 

 

PM 

inner 
rotor 

R2 Outer radius of PM rotor 465.7 

mm 

R1 Inner radius of PM rotor 248 
mm 

β' Opening of rectangular PM at R1 0.46 

π/p rad 

 

http://www.femm.info/


 

Coil," IEEE Trans. Appl., Supercond, vol. 17,  no.2, pp. 

1603-1606, Jun. 2007. 

[15] B. Shoykhet, and S. Umans, "Quench in High-

Temperature Superconducting Motor Field Coils: 

Computer Simulations and Comparison With 

Experiments," IEEE Trans. Appl., Supercond, vol. 17, no. 

2, pp. 1623-1628, Jun. 2007.  

[16] Y. Kim, C. Hempstead, and A. Strnad, "Critical persistent 

currents in hard superconductors," Physical Review 

Letters, vol. 9, no. 7, pp. 306–309, 1962. 

[17] S. Bendali, Dimensionnement d’un moteur 

supraconducteur HTc (in french), PHD thesis, University 

of Lorraine, France, December 2012. 

[18] M. Oomen, M. Leghissa, N. Proelss, and H. W. 

Neumueller,"Transposed-Cable Coil & Saddle Coils of 

HTS for Rotating Machines: Test Results at 30 K," IEEE 

Trans. Appl., Supercond, vol. 19, no.3, pp. 1633-1638, 

Jun. 2009. 

[19] C. Barth, K. P. Weiss, and W. Goldacker, "Influence of 

Shear Stress on Current Carrying Capabilities of High 

Temperature Superconductor Tapes," IEEE Trans. Appl., 

Supercond, vol. 21, no.3, pp. 3098-3101, Jun. 2011. 

[20] Sumitomo Electric, 

 http://global-sei.com/super/hts_e/type_h.html 

 

Lamia Belguerras was born in Algiers, Algeria, in 1979. She 

received the Dipl.-Ing. and the Magister degrees from the 

University of Sciences and Technology Houari Boumediene 

(USTHB), Algiers, Algeria, in 2005 and 2008, respectively. 

She is currently a Ph.D. student at GREEN Laboratory, 

University of Lorraine, Nancy, France. Her research interests 

include the modelling and optimization of electrical machines 

and superconducting magnetic couplings. 

 

Larbi Hadjout was born in Bordj-Menaïel, Algeria, in 1967. 

He received the Dipl.-Ing., the Magister and the PhD degrees 

from Ecole Nationale Polytechnique, Algiers, Algeria in 1991, 

1994 and 2006, respectively. He is currently a Senior Lecturer 

at "Laboratoire des Systèmes Electriques et Industriels", 

USTHB, Algiers, Algeria where his research interests include 

the modelling and design of electrical machines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Smail Mezani was born in Algiers, Algeria, in 1974. He 

received the Dipl.Ing. and Magister degrees from the 

University of Sciences and Technology Houari Boumediene, 

Algiers, in 1996 and 1999, respectively, and the Ph.D. degree 

from the Institut National Polytechnique de Lorraine, Nancy, 

France, in 2004. He is a Lecturer of Electrical Engineering 

with the Faculty of Sciences and Technology, University of 

Lorraine. His researches are undertaken in GREEN 

Laboratory and deal with numerical and analytical modelling 

of electrical machines and contactless torque transmissions, 

coupled magnetic and thermal problems, and the applications 

of superconductors in electromechanical devices. 

 

Thierry Lubin was born in Sedan, France, in 1970. He 

received the M.S. degree from the University of Paris 6, 

France in 1994 and the Ph.D. degree from the University 

Henri Poincaré, Nancy, France, in 2003.  

He is currently an associate professor of Electrical 

Engineering at the University of Lorraine, France, at the 

Groupe de Recherche en Electrotechnique et Electronique de 

Nancy (GREEN). His interests include analytical modeling of 

electromechanical devices and applied superconductivity in 

electrical engineering. 

 

Abderrezak Rezzoug received the electrical engineer degree 

from ENSEM INPL, Nancy, France in 1972, and the Dr. Ing. 

diploma and the Ph.D. degree from INPL, in 1979 and 1987 

respectively. 

After working at the INPL as an assistant Professor until 1991, 

he had a career as a professor and is currently a Professor 

emeritus of University of Lorraine, France. As a member of 

the Groupe de Recherche en Electrotechnique et Electronique 

de Nancy, his main subjects of research concern 

superconducting applications to electrical device and electrical 

machines. 

 

http://global-sei.com/super/hts_e/type_h.html

