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We show that optimal perturbations artificially forced in parallel wakes can be used

to completely suppress the absolute instability and to reduce the maximum temporal

growth rate of the inflectional instability. To this end we compute optimal transient

energy growths of stable streamwise uniform perturbations supported by a parallel

wake for a set of Reynolds numbers and spanwise wavenumbers. The maximum

growth rates are shown to be proportional to the square of the Reynolds number

and to increase with spanwise wavelengths with sinuous perturbations slightly more

amplified than varicose ones. Optimal initial conditions consist of streamwise vortices

and the optimally amplified perturbations are streamwise streaks. Families of nonlinear

streaky wakes are then computed by direct numerical simulation using optimal

initial vortices of increasing amplitude as initial conditions. The stabilizing effect

of nonlinear streaks on temporal and spatiotemporal growth rates is then determined

by analysing the linear impulse response supported by the maximum amplitude streaky

wakes profiles. This analysis reveals that at Re = 50, streaks of spanwise amplitude

As ≈ 8 %U∞ can completely suppress the absolute instability, converting it into a

convective instability. The sensitivity of the absolute and maximum temporal growth

rates to streak amplitudes is found to be quadratic, as has been recently predicted.

As the sensitivity to two-dimensional (2D, spanwise uniform) perturbations is linear,

three-dimensional (3D) perturbations become more effective than the 2D ones only

at finite amplitudes. Concerning the investigated cases, 3D perturbations become

more effective than the 2D ones for streak amplitudes As & 3 %U∞ in reducing the

maximum temporal amplification and As & 12 %U∞ in reducing the absolute growth

rate. However, due to the large optimal energy growths they experience, 3D optimal

perturbations are found to be much more efficient than 2D perturbations in terms of

initial perturbation amplitudes. Despite their lower maximum transient amplification,

varicose streaks are found to be always more effective than sinuous ones in stabilizing

the wakes, in accordance with previous findings.
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1. Introduction

Vortex shedding in the wake of bluff bodies is a robust feature associated with
undesirable unsteady loads and mean drag increase on the body. An important,
enduring research effort aims at understanding the mechanisms by which the shedding
self-sustains and how it could be attenuated or even suppressed. In the circular
cylinder wake, the canonical flow used to test theories and control concepts, the
shedding sets in at a critical Reynolds number (≈47) via a global instability. Self-
sustained oscillations associated with global instability are supported by a finite region
of local absolute instability near the body (see e.g. Chomaz, Huerre & Redekopp 1988;
Huerre & Monkewitz 1990).

Different techniques have been proposed to suppress vortex shedding in two-
dimensional wakes, among which an effective one is based on three-dimensional
(3D) wake perturbations. Indeed, it has long been known that wrapping a helical cable
around a cylinder (e.g. Zdravkovich 1981) or designing spanwise periodic trailing
or leading edges of blunt bodies (starting with Tanner 1972, and followed by many
others) can attenuate two-dimensional (2D) vortex shedding with a beneficial effect
on mean drag and unsteady force peak fluctuations. We refer the reader to the review
by Choi, Jeon & Kim (2008) for a clear discussion of these previous results and the
associated references.

At low Reynolds numbers, 3D forcing can lead to the complete suppression of
vortex shedding when spanwise wavelengths of the 3D perturbations are in the
range of ≈1–6 diameters. In addition, 3D perturbations are found to require smaller
perturbation amplitudes than spanwise uniform (2D) perturbations (Kim & Choi 2005).
The nature and characteristics of the observed stabilizing effects have been mainly
interpreted in terms of vorticity dynamics. Hwang, Kim & Choi (2013) (but see also
Choi et al. 2008) have put forward an appealing explanation based on linear stability
analysis. These authors convincingly show that spanwise modulations of parallel wake
profiles lead to an attenuation of the absolute instability growth rate in a range of
perturbation wavelengths than is in accordance with experimental and direct numerical
simulation (DNS) findings. They also show that varicose perturbations are more
effective than sinuous ones, in accordance with previous results of Kim et al. (2004),
Kim & Choi (2005) and Park et al. (2006), and that for the amplitudes they consider,
the absolute instability is far more sensitive to 2D than to 3D perturbations. However,
from their study, it is not clear whether absolute instability can be completely
suppressed and what is the effect of wake modulations on the maximum temporal
growth rate of the instability, which affects the mode amplification in the convective
region. Furthermore, in this previous analysis, a shape assumption is made on the 3D
basic flow modification that neglects the nonlinear deformations appearing at moderate
perturbation amplitudes.

A related problem, with a similar mathematical structure but quite different
physical mechanisms involved, is that of stabilization of 2D boundary layers. In
particular, Cossu & Brandt (2002, 2004) found that optimal 3D spanwise modulations
(streamwise streaks) of the 2D Blasius boundary layer developing on a flat plate
have a stabilizing effect on the 2D Tollmien–Schlichting instability, which develops
above the critical Reynolds number. The optimal 3D perturbations used to control
the boundary layer are those leading to the maximum energy growth in the linear
approximation. Optimal spanwise periodic counter-rotating streamwise vortices are
used to induce the transient growth of spanwise periodic streamwise streaks associated
with spanwise modulations of the streamwise velocity profile. The optimal energy
growth in this process is of O(Re2) (see e.g. Gustavsson 1991). The linearly



optimal vortices were then used, with finite amplitude, as input in fully nonlinear
Navier–Stokes simulations to compute nonlinearly saturated streaks. The 2D (spanwise
averaged) modification of the boundary layer profile induced by the 3D streaks plays
a crucial role in the stabilization (Cossu & Brandt 2002). This 2D modification is not
captured by simply adding linear streaks to the boundary layer profile. It was also
found that a key stabilizing role is played by the work of Reynolds shear stresses
against the spanwise basic flow shear Cossu & Brandt (2004). The stabilizing action
of streaks on TS waves and the effective delay of transition to turbulence using this
technique was later confirmed experimentally (Fransson et al. 2005, 2006).

Inspired by the type of analysis developed for boundary layers, one may therefore
wonder if similar conclusions can be reached in plane 2D wakes. Some natural
questions that arise are as follows. Can large transient energy growths of spanwise
periodic perturbations be supported by 2D wakes? If yes, how does the maximum
energy growth scale with the Reynolds number? Do nonlinearly saturated streamwise
streaks have a stabilizing effect on the wake inflectional instability? If yes, what
level of growth rate reductions can be attained? Do nonlinearly saturated optimal
streamwise streaks have a stabilizing effect on the wake absolute instability? How
would these effects relate to those described by Hwang et al. (2013)? Is it possible
to completely suppress the absolute instability? Does the nonlinear spanwise mean
(2D) flow distortion play an important role in the stabilizing mechanism? How is the
stabilizing effect related to the work of Reynolds stresses? The scope of the present
investigation is to try to answer these questions.

The analysis will be developed on parallel wake profiles proposed by Monkewitz
(1988), which have been used as a laboratory for stability analyses of plane wakes in
a number of previous studies, such as those of Delbende & Chomaz (1998), Hwang
& Choi (2006) and Hwang et al. (2013). The advantage of this approach is that the
results are genuinely related to the wake structure, and not to the specific generating
body’s surface shape and physics.

After a brief description of the problem setup, given in § 2, the optimal energy
growths, inputs and outputs supported by the considered wake profiles are computed
and discussed in § 3. The temporal and spatiotemporal stability of nonlinear streak
profiles issued by linear optimal initial conditions is analysed in § 4. A summary and
discussion of the main results are reported in § 5. Details of the method used in the
computation of optimal energy growths, in the direct numerical simulations and in
the extraction of the temporal and spatiotemporal stability results from the numerical
simulation of the impulse response are given in the Appendix.

2. Mathematical model

In the following, essentially two kinds of basic flows will be considered. The first
type is the usual (spanwise uniform i.e. 2D) parallel wake UM = {UM(y), 0, 0}, where
the streamwise velocity profile UM(y) is the one proposed by Monkewitz (1988):

UM(y)= 1 +Λ

[
2

1 + sinh2N(ysinh−11)
− 1

]
, (2.1)

with Λ = (U∗
c − U∗

∞)/(U
∗
∞ + U∗

c ), U∗
c the centreline and U∗

∞ the free stream velocity
(dimensional variables are starred). The velocity profile UM is made dimensionless
with respect to the reference velocity U∗

ref = (U∗
c + U∗

∞)/2. The spatial coordinates
are made dimensionless with respect to the reference length δ∗, which is the distance
from the centreline to the point where the 2D wake velocity is equal to U∗

ref . In the



following we consider the value Λ = −1, corresponding to a zero centreline velocity,
which has been used by Delbende & Chomaz (1998) and Hwang et al. (2013), for
example, and the shear concentration parameter value N = 1, which corresponds to the
same shear profile as the Bickley jet. The UM(y) profile obtained with these parameters
is shown in figure 3(a).

In addition to the standard 2D wakes, the stability of spanwise modulated 3D
‘streaky wakes’ U = {U(y, z), 0, 0} will be considered in the following (where we let
x denote the streamwise direction, y the transverse and z the spanwise one). For both
types of wake profiles, the evolution of perturbations u

′, p′ to the basic flow wake U,P

is ruled by the Navier–Stokes equations, written in perturbation form as

∇ ·u
′ = 0, (2.2)

∂u′

∂t
+ (∇U)u′ + (∇u

′)U + (∇u
′)u′ = −∇p′ +

1

Re
∇2

u
′. (2.3)

The flow is assumed incompressible and the fluid viscous with kinematic viscosity ν.
The Reynolds number Re = U∗

ref δ
∗/ν is based on the characteristic velocity and length

scale of the basic flow which are used to make dimensionless velocities and lengths. In
the linearized stability framework the term (∇u

′)u′ is neglected.

3. Optimal perturbations of 2D wakes

The first step of our analysis consists in finding the optimal initial perturbations
leading to the maximum amplification of the kinetic energy of the response at time
t. For parallel basic flows the optimal growths of Fourier modes û(α, y, β, t)ei(αx+βz)

of streamwise and spanwise wavenumbers α and β can be considered separately. The
optimal temporal energy amplification G is defined, in the usual way, as the ratio of
the kinetic energy density associated with û at time t to the kinetic energy of the
initial condition û0 optimized over non-zero û0, G(α, β, t) = sup

û0
‖û‖2/‖û0‖2, where

‖û‖2 = (1/Vref )
∫

V
|û|2 dV and Vref = 2δLxLz in the present case. Two-dimensional

parallel wakes, like the one defined in (2.1), are unstable to inflectional instabilities
if Re is not too small. For the values Re & 25 considered in this study, an unstable
region exists in the (α, β) plane centred around the 2D (β = 0) unstable waveband
0 < α . 1.75. In this study we are not interested in the optimal amplification
of unstable perturbations but in their stabilization by optimally amplified stable
disturbances. We will therefore consider the optimal growth of streamwise uniform
(α = 0) perturbations, both because they mimic the perturbations that would be
spatially forced by steady passive devices and because they are linearly stable.

As the UM profile is symmetric with respect to y = 0, perturbations to this profile
are separated into varicose perturbations, for which û(−y) = û(y), v̂(−y) = −v̂(y),
ŵ(−y) = ŵ(y), and sinuous perturbations that have opposite symmetry properties.
Standard methods, described in § A.1, have been used to compute G(t) for both
varicose and sinuous perturbations for Re = 25, 50 and 100 and for spanwise
wavenumbers β ranging from 0.1 to 2 with α = 0. For all these parameters
the computed G(t) curves typically have a single maximum Gmax(α = 0, β,Re) =
supt G(t, α = 0, β,Re), attained at tmax, and tend to zero for large times. The maximum
optimal growths Gmax computed for sinuous perturbations are reported in figure 1(a)
as a function of β for the selected Reynolds numbers. From this figure it is seen how
Gmax increases with Re. From the analysis of Gustavsson (1991) it is expected that
for streamwise uniform perturbations Gmax and tmax are proportional to Re2 and Re

respectively. This is indeed verified for both Gmax (see figure 1b) and tmax (not shown).
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FIGURE 1. (Colour online) (a) Dependence of the maximum growth rate Gmax of streamwise
uniform (α = 0) sinuous perturbations on the spanwise wavenumber β for three selected

Reynolds numbers Re. (b) Rescaled maximum growth rate Gmax/Re
2 dependence on β for

sinuous (solid line, red) and varicose (dashed line, blue) perturbations. The lines correspond
to the rescaled Re = 100 data, while the Re = 25 and Re = 50 rescaled data are shown as
points. It can be seen how, when rescaled, data obtained at different Re collapse onto the same
curve.

The maximum growths Gmax and the associated tmax are also seen to increase with
the perturbation spanwise wavelength λz = 2π/β, at least in the λz range examined.
Varicose perturbations follow the same trend as sinuous ones, with the same Re scaling
and a similar increase with λz of Gmax, but are slightly less amplified than sinuous
perturbations, as shown in figure 1(b).

Similar to what has been found in wall-bounded shear flows, optimal initial
conditions correspond to spanwise periodic streamwise vortices while the most
amplified perturbations correspond to spanwise periodic streamwise streaks. Optimal
perturbations computed for Re = 50 and β = 1 are reported in figure 2. In the case
of varicose perturbations (figure 2a), there are two antisymmetric rows of vortices
on each side of the wake symmetry axis inducing symmetric streaks, while in the
case of sinuous perturbations (figure 2b), a single row of vortices centred on the
wake symmetry axis induces antisymmetric streaks. When the spanwise wavenumber
β is decreased (the spanwise wavelength λz = 2π/β is increased), the size of optimal
perturbations increases in both the spanwise and the normal direction y, as shown
in figure 3. The velocity of optimal varicose initial vortices is, non-negligible up to
y ≈ λz, which highlights the difficulty of forcing optimal perturbations with low values
of β in practical applications such as those based on the body’s leading and trailing
edge deformation (Bearman & Owen 1998; Darekar & Sherwin 2001, e.g.) or on
blowing and suction (Kim & Choi 2005).

4. Influence of streaks on wake stability

4.1. Basic flow streaky wakes

Nonlinear streaky wakes are computed following the same rationale used in previous
studies of the stability of streaks in wall-bounded flows, such as those of Reddy et al.

(1998), Andersson et al. (2001), Brandt et al. (2003), Cossu & Brandt (2004) and Park,
Hwang & Cossu (2011). Optimal linear perturbations (streamwise vortices) with finite

initial amplitude A0 are used as initial condition UI0(y, z) = UM(y) + A0u
(opt)
I (y, z),

where ‖u(opt)
I ‖ = 1. The nonlinear Navier–Stokes equations are then numerically

integrated for the selected initial conditions (see § A.2 for numerical details), providing



(a)

–3

–2

–1

0

1

2

3

y

–4

4

–2 –1 0 1 2

z
–3 3

(b)

–3

–2

–1

0

1

2

3

–4

4

–2 –1 0 1 2

z
–3 3

FIGURE 2. Cross-stream view of the v′–w′ components of optimal initial vortices (arrows)
and of the u′ component of the corresponding maximally amplified streak (contour lines) for
Re = 50 and β = 1, α = 0. Optimal varicose perturbations are reported in (a), while sinuous
ones are reported in (b). The 2D basic flow wake streamwise velocity is shown in grey-scale,
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FIGURE 3. (Colour online) Normalized amplitude of the v̂(y) component of the optimal
initial (t = 0) vortices (b,d) and the û(y) component of the corresponding optimally amplified
(t = tmax) streaks (c,e), corresponding to the varicose (b,c) and sinuous (d,e) perturbations,
for β = 1. i.e. λz = 6.28 (solid, red). β = 0.5. i.e. λz = 12.56 (dashed, green). and β = 0.25.
i.e. λz = 25.13 (dotted, blue). The 2D wake basic flow profile UM(y) is also reported in (a) for
comparison.

a family of basic flows UI(y, z, t,A0), parametrized by A0 for the Reynolds number
considered. The amplitude of the streaks is measured, extending the definition
proposed by Andersson et al. (2001):

As(t,A0)=
1

2

maxy,z(UI(y, z, t,A0)− UM(y))− miny,z(UI(y, z, t,A0)− UM(y))

maxy UM(y)− miny UM(y)
. (4.1)
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FIGURE 4. (Colour online) Temporal evolution of nonlinear streak amplitude As(t) for
selected initial amplitudes A0 of the initial optimal perturbations and for varicose (a) and
sinuous (b) perturbations. For all cases, Re = 50 and β = 1. See table 1 for the legend of cases
and the associated initial amplitudes A0.

Case A B-Var C-Var D-Var B-Sin C-Sin D-Sin

A0 0 1.25×10−2 1.94×10−2 3.00×10−2 2.00×10−2 2.93×10−2 3.66 × 10−2

As,max 0 4.35 % 6.73 % 10.38 % 10.27 % 15.02 % 18.80 %

TABLE 1. The nonlinear streaky wakes considered. A0 is the finite initial amplitude given
to the linear optimal perturbations. As,max is the maximum streak amplitude reached in the
nonlinear numerical simulation. Case A corresponds to the reference two-dimensional wake
profile UM(y). Cases B, C and D are obtained by increasing A0.

In figure 4 we display the temporal evolution of the amplitudes of nonlinear streaks
for Re = 50 and β = 1, for varicose and sinuous perturbations of selected amplitudes.
As reported in table 1, case A corresponds to the reference two-dimensional wake
profile UM(y) (no streaks), while cases B, C and D are obtained by increasing the
initial optimal perturbation amplitude A0.

In the following we will analyse the local spatiotemporal instability properties of
the streaky wake profiles ‘frozen’ at the time of maximum streak amplitude, following
the approach used by Reddy et al. (1998), Andersson et al. (2001), Brandt et al.

(2003), Cossu & Brandt (2004) and Park et al. (2011), among others. The local
analysis is justified by the fact that streaks decay slowly (for example, the varicose
D streak changes its amplitude by ≈4 % in 1t ≈ 50) when compared to the fast
growth of unstable perturbations (typical maximum growth rates are of the order of
1/4, and therefore during 1t ≈ 50 they would have been amplified by a factor of
e50/4 ≈ 270 000). The streaky basic flows corresponding to the varicose and sinuous
case D are reported in figure 5.

4.2. Stability analysis based on linear impulse response

The linear stability properties of streaky wake profiles, including the convective or
absolute nature of any instability, are revealed by the analysis of the linear impulse
response (Green’s function) that they support. The basic flow is linearly stable if the
amplitude of impulse response tends to zero as t → ∞ and unstable otherwise. In the
unstable case, the instability is absolute if the impulse response amplitude grows in
the position of the initial pulse, while it is convective if it grows while being advected
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FIGURE 5. Cross-stream view of case D varicose (a) and sinuous (b) nonlinear streaky wake
basic flows. Contour lines, iso-levels of the total streamwise velocity UI(y, z) extracted at the
time of maximum amplitude (black circles in figure 4); arrows, v–w components of optimal
initial vortices given as initial condition at t = 0.

by the flow but eventually tends to zero in the position of the initial pulse (Huerre &
Monkewitz 1990).

The linear impulse response is computed by direct numerical simulation of
the Navier–Stokes equations linearized near the frozen streaky basic flow profiles
UI(y, z, t,A0) described in § 4.1. To mimic forcing by a delta function in time and
space, the initial condition is defined in terms of a 2D stream function as

ψ ′(x, y, z)= AIIe
−((x−x0)

2/2σ2
x )−((y−y0)

2/2σ2
y )−((z−z0)

2/2σ2
z ), (4.2)

which is the three-dimensional extension of the initial condition used by Delbende
& Chomaz (1998) for the same type of analysis of 2D wakes. The corresponding
perturbation velocity components are given by (u′, v′,w′) = (∂ψ/∂y,−∂ψ/∂x, 0) and
the amplitude AII is set sufficiently small to avoid overflows during the linear
simulation. The parameters σx = 0.83, σy = 0.83 and σz = 0.30 have been chosen small
enough to reproduce a localized impulse within the limits of a good resolution. The
impulse is centred at x0 = 62, y0 = 1, z0 = π/4, ensuring that no particular symmetry is
preserved by the initial condition.

According to standard Floquet theory (see e.g. Nayfeh & Mook 1979), normal
modes of the spanwise periodic basic flow of spanwise wavelength λz may be sought
in the form

q(x, y, z, t)= q̃(y, z)ei(αx+γβz−ωt), (4.3)

where q is the generic flow variable. γ ∈ [0, 1/2] is the detuning parameter and ω is
the complex frequency. Hwang et al. (2013) found absolute instabilities in spanwise
modulated wakes only for fundamental (γ = 0) and subharmonic (γ = 1/2) modes.
Fundamental modes have the same spanwise periodicity λz as the basic flow, while
subharmonic modes have periodicity 2λz. Both types of mode will be considered
together by performing numerical simulations in a spanwise periodic domain of length
Lz = 2λz. In this framework, the spanwise z-variable is an eigenfunction direction just
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on temporal (a,c) and spatiotemporal (b,d) growth rates of linear perturbations. Case A

corresponds to the 2D reference wake while cases B, C and D correspond to increasing streak
amplitudes. The basic flow is absolutely unstable if σ(v = 0) > 0. The presence of symbols
on parts of the stability curves denotes the range where subharmonic modes are dominating.

as the transverse y variable. Note that only one initial pulse is enforced at t = 0 in the
given ‘doubled’ domain. The growth rates of fundamental and subharmonic, symmetric
and antisymmetric modes can be separated using spanwise Fourier transforms. In
particular, fundamental modes have harmonics with wavenumbers β(F)n = nβ, while for
subharmonic modes β(S)n = (n + 1/2)β with n = 1, 2, . . . and where β is the spanwise
wavenumber of the basic flow streaks (fundamental wavenumber). Further details are
given in § A.3.

The temporal growth rate curves ωi(α) are extracted from the numerically computed
impulse response as described in § A.4 and are reported in figure 6. The 2D reference
wake, case A, as is well known, is linearly unstable with a maximum growth rate
ωi,max = 0.256. When streaks of increasing amplitude are forced, the maximum growth
rate is reduced. The leading modes have the same symmetries in z as basic flow
profiles (fundamental–symmetric in the terminology of § A.3), and varicose streaks are
found to be more effective at stabilizing the temporal instability. For instance, ωi,max is
reduced by ≈12 % using varicose streaks with As ≈ 10 % (case D-Var) and by 10 % for
sinuous streaks with As ≈ 18 % (case D-Sin).

The absolute or convective nature of the instability can be determined from the
spatiotemporal growth rate σ(v), which is the temporal growth rate observed by an
observer travelling along the spatiotemporal ray x/t = v. For the considered wake
profiles, which are unstable, σ > 0 in the range v ∈ [v−, v+], where v− and v+



are respectively the trailing and leading edge velocities of the wave packet. In
the present situation, therefore, the instability is absolute for σ(v = 0) > 0, i.e. if
v− < 0. The maximum value of σ corresponds to the maximum temporal growth rate
ωi,max. The σ(v) curves have been extracted from the numerically computed impulse
responses following the standard procedure explained in § A.4, which has already
been used by Delbende & Chomaz (1998) and Brandt et al. (2003) and Lombardi
et al. (2011), among others; these are shown in figure 6. The 2D reference wake
(case A) is absolutely unstable with an absolute growth rate σ(v = 0) = 0.073 and
the wave-packet trailing-edge travelling upstream with velocity v− = −0.089. The
absolute growth rate is reduced when streaks of increasing amplitude are forced,
and can become negative for sufficiently large streak amplitudes transforming the
absolute instability into a convective instability. Varicose streaks are found to be
more effective at stabilizing the absolute instability than sinuous streaks. The varicose
streak D-Var with As ≈ 10 % is already convectively unstable, while amplitudes above
As ≈ 18 % (case D-Sin) are necessary for sinuous streaks to drive the instability
from absolute to convective. For sinuous streaks, the leading modes in the σ(v)

curves are fundamental–symmetric (the same symmetries as the basic flow streaks in
the spanwise direction). For varicose streaks, fundamental–symmetric modes are the
leading ones, except for large-amplitude streaks at sufficiently small values of v, where
subharmonic–antisymmetric modes are dominant and therefore control the quenching
of the absolute instability.

4.3. Sensitivity to basic flow modifications and cost of the stabilization

By an asymptotic (small-amplitude) sensitivity analysis, Hwang & Choi (2006) have
shown that the absolute growth rate variation depends linearly on the amplitude of
spanwise uniform (2D) perturbations of the basic flow. Hwang et al. (2013) show
that the sensitivity to spanwise sinusoidal (3D) basic flow perturbations depends
quadratically on their amplitudes. To verify whether these predictions extend to the
nonlinear streaks considered and to maximum temporal growth rate sensitivity, we
report in figure 7 the dependence of the maximum growth rate ωi,max and of the
wave-packet trailing edge velocity v− on the streak amplitude As. We consider v−

and not σ(v = 0) as a measure of the absolute or convective nature of the instability
because the numerical method used (impulse response analysis) does not provide well-
converged results for negative growth rates. We also consider the effect on the stability
of a 2D (spanwise uniform) perturbation with a profile u2D(y) equal to the high-speed
varicose streak profile û(y). The amplitude As of this 2D basic flow modification is
defined by (4.1), but removing the 1/2 factor that accounted for the presence of high-
and low-speed streaks. From figure 7 it is seen that ωi,max and v− do indeed depend
quadratically on As for streaky basic flow modifications, but linearly for a 2D basic
flow modification. The conclusions of the sensitivity analysis of Hwang et al. (2013)
are therefore confirmed by the present results, despite the fact that in our computations,
for increasing As nonlinear streaks change not only their amplitude but also, slightly,
their shape. Considering the stabilization of the maximum temporal growth rate, the
quadratic sensitivity of the streaks to As, even if it gives a weaker effect than 2D
basic flow modifications at very small streak amplitudes, can provide a larger effect at
larger As. This is not the case for the quenching of absolute instability, where 2D basic
flow modifications are able to drive v− to positive values for lower As values than 3D
basic flow modifications, as already remarked by Hwang et al. (2013). However, as the
streaks have been forced using linearly optimal initial conditions, it is interesting to
analyse the dependence of the stabilizing actions not only on the basic flow distortion
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FIGURE 7. (Colour online) Dependence of the maximum growth rate ωi,max (a,c) and the
wave-packet trailing edge velocity v− (b,d) on the streak amplitude As (a,b) and the initial
disturbance amplitude A0 (c,d). Zero amplitudes correspond to the 2D wake reference case.
A (2D) spanwise uniform perturbation has been also considered for comparison. Symbols
denote data points, while lines are linear and quadratic best fits to the data points.

amplitude As but on the amplitude A0 of the initial perturbation based on energy
density:

A2
0 =

1

2δLxLz

∫ Lx

0

∫ ∞

−∞

∫ Lz

0

u
′
0 ·u

′
0 dx dy dz. (4.4)

This dependence is also reported in figure 7, where, again quadratic and linear
sensitivities of ωi,max and v− on A0 are found for 3D and 2D basic flow perturbations
respectively. When the amplitude of initial conditions is considered, however, optimal
3D perturbations are shown to be more effective than 2D perturbations at stabilizing
the flow. This is not surprising because, in a first approximation, a factor of

√
2Gmax

is gained through the lift-up effect when forcing optimal 3D streaks using optimal
initial vortices instead of enforcing the 2D profile with the same streak shape. For the
presently considered case, for instance, the absolute–convective instability transition is
enforced with optimal 3D streaks with values of A0 more than six times smaller than
those necessary when using 2D basic flow modifications (one hundred times smaller
in terms of kinetic energy). Note also that the lift-up amplitude gain increases like
Re (like Re2 in terms of energy), and therefore the cost of forcing 3D perturbations
of given amplitude decreases when the Reynolds number is increased. These results
suggest that the key ingredient of the success of wake control strategies based on 3D
flow modifications mainly relies on the large energy gains associated with the lift-up
effect.



Case A D-Var D-Var D̃-Var D̃lin-Var

ωi,max 0.2560 0.2257 0.2495 0.2305 0.2262
v− −0.089 050 0.047 561 −0.0052 0.022 891 0.017 337

TABLE 2. Comparison of maximum growth rate ωi,max and of the wave-packet trailing edge
velocity v− computed for the unperturbed wake (case A, profile UM(y)), the genuine
varicose streak D (profile UM(y) + ∆U(y, z)) and the ‘synthetic’ streaks D-Var (with

profile UM(y) + ∆U(y)), D̃-Var (with profile UM(y) + ∆̃U(y, z)) and Dlin-Var (with profile

UM(y)+ ∆̃Ulin(y, z)).

5. Analysis of the stabilizing mechanism

5.1. Role of streaks’ 2D mean flow distortion in the stabilizing mechanism

In § 4.2 it has been shown that the forcing of streaks has a stabilizing effect on ωi,max

and v−. One important question concerns the stabilizing mechanism. In the case of
the stabilization of boundary layer instability it was found that a crucial role was
played by the (nonlinear) spanwise mean flow distortion. Following Cossu & Brandt
(2002), we therefore separate the wake distortion ∆U(y, z) = U(y, z) − UM(y) induced
by the streaks into the spanwise averaged part ∆U(y) and the spanwise varying part

∆̃U(y, z) = ∆U(y, z) − ∆U(y). Nonlinear effects are necessary to generate ∆U(y). To

evaluate the respective effects of the spanwise periodic streak component ∆̃U and of
the basic flow spanwise mean distortion ∆U, we have repeated the impulse response

analysis on the artificial basic flows D̃-Var and D-Var obtained by taking into account
only the spanwise varying or the spanwise uniform part of the basic flow distortion,

i.e. UD̃ = UM + ∆̃U and UD = UM + ∆U. The values of ωi,max and of v− pertaining
to these artificial basic flows are compared to those obtained for the genuine streaky
wake D-Var in table 2. From this table it is seen that, in contrast to what is found
in boundary layers, the streaks’ stabilizing action is not to be attributed to the 2D

mean flow distortion ∆U(y) but to its 3D spanwise varying part ∆̃U, which is, for
example, able to quench the absolute instability on its own. To understand whether
streak deformations due to nonlinearities are relevant in the stabilization mechanism,
the additional synthetic streaky wake D̃lin-Var has been considered. Its velocity profile

UM(y) + ∆̃Ulin(y, z) is obtained by adding the linear optimal streak profile to the
reference 2D wake with the same amplitude as streak D. The results show that the

stabilization induced by this linear streak is comparable to that induced by both ∆̃U

and the full streak ∆U, which are all able to quench the absolute instability.

5.2. Analysis of kinetic energy production and dissipation terms

Further insight into the mechanism by which the streaks stabilize the wake inflectional
instability can be gained by the analysis of the different terms contributing to temporal
growth of total perturbation kinetic energy, which is the well-known Reynolds–Orr
equation (see e.g. Schmid & Henningson 2001):

1

2

d

dt

∫

V

u
′
·u

′ dV = −
∫

V

u
′ ⊗ u

′ : ∇U dV −
1

Re

∫

V

∇u
′ : ∇u

′ dV . (5.1)

This equation states that the rate of change of perturbation kinetic energy is given
by the sum of a production term, given by the work of Reynolds stresses against the



Case ωi,max P̂y/2K̂ P̂z/2K̂ −D̂/2K̂

A 0.256 00 0.298 20 0.000 00 −0.043 20
B-Var 0.249 26 0.295 58 −0.001 31 −0.045 01
C-Var 0.243 07 0.293 34 −0.004 26 −0.046 01
D-Var 0.225 34 0.292 84 −0.008 62 −0.058 88

TABLE 3. Maximum temporal growth rates and normalized kinetic energy production and
dissipation components pertaining to the varicose streaky wakes.

basic flow shear, and a dissipation term, which is always negative. Cossu & Brandt
(2004) have shown that for perturbations in the form of normal modes û(y, z)ei(αx−ωt),
the Reynolds–Orr equation reduces to the following decomposition for the temporal
growth rate:

ωi =
P̂y

2K̂
+

P̂z

2K̂
−

D̂

2K̂
, (5.2)

with the definitions

K̂ =
1

λz

∫ λz

0

∫ ∞

−∞
( û û∗ + v̂ v̂∗ + ŵŵ∗) dy dz, (5.3)

P̂y =
1

λz

∫ λz

0

∫ ∞

−∞
−( û v̂∗ + û∗v̂)

∂U

∂y
dy dz, (5.4)

P̂z =
1

λz

∫ λz

0

∫ ∞

−∞
−( û ŵ∗ + û∗ŵ )

∂U

∂z
dy dz, (5.5)

D̂ =
1

λz

∫ λz

0

∫ ∞

0

2( ξ̂ ξ̂ ∗ + η̂ η̂∗ + ζ̂ ζ̂ ∗) dy dz, (5.6)

where û = ( û, v̂, ŵ ) are the three velocity components of the normal mode and

( ξ̂ , η̂, ζ̂ ) the corresponding vorticity components. The different terms of (5.2) have
been computed for the varicose streaky wakes considered in § 4 and are reported
in table 3 in correspondence to the most amplified streamwise wavenumber αmax for
which the maximum growth rate ωi,max is obtained. As it is well known, the instability

of the 2D reference wake is explained by the large production term P̂y, which exceeds

the dissipation term D̂ when the Reynolds number is not exceedingly low. The forcing
of streaks induces a stabilizing effect on all the components contributing to the growth

rate. Not only is the P̂y production term reduced and the dissipation term increased,

but the additional production term P̂z comes into play with a stabilizing effect. The
stabilizing action on all the terms increases when the streak amplitude is increased and
is of the same order of magnitude for all terms.

6. Summary of the main results and discussion

6.1. Summary of main results

Concerning optimal energy growth of stable perturbations supported by 2D parallel
wakes, in the first part of the study we have shown the following.



(i) Parallel 2D wakes can sustain large transient growths of 3D streamwise uniform
perturbations that are linearly stable. For instance, the maximum growth supported
by perturbations of spanwise wavelength λz = 2π (β = 1) is Gmax = 70 at Re = 50.

(ii) The maximum energy growth is proportional to Re2 in accordance with what is
observed in other shear flows. Therefore, for instance, at Re = 100 the maximum
energy growth of λz = 2π perturbations is four times larger (Gmax = 280) than at
Re = 50.

(iii) Maximum energy growth also increases with spanwise perturbation wavelengths
(i.e. for decreasing β), but in this case optimal perturbations correspond to
structures of ever larger cross-stream extension that would probably be difficult
to enforce in practical applications. This result is similar to what is observed, for
example, in vortex columns in unbounded domains (Pradeep & Hussain 2006).

(iv) The most amplified perturbations are sinuous. Varicose perturbations are slightly
less amplified (but by less than a factor of two). Optimal initial perturbations
consist of streamwise vortices that induce the growth of streamwise streaks that
modulate the wake’s streamwise velocity in the spanwise direction. The cross-
stream shape of the width of the wake is sinuous or varicose depending on the
enforced perturbations.

In the second part of the study, we analysed the influence on stability of nonlinear
streak modulations of the wake enforced by optimal initial streamwise vortices of
increasing amplitude. The specific values β = 1, Re = 50 were considered. We have
shown the following.

(i) Nonlinear streamwise streaks induced by optimal initial vortices reduce both the
maximum temporal growth rate and the absolute growth rate of the inflectional
instability.

(ii) Varicose streaks are more stabilizing than sinuous streaks of the same amplitude.

(iii) It is possible to suppress the absolute instability with small streak amplitudes
(As ≈ 8 %U∞).

(iv) The decrease of the maximum growth rate and of the absolute instability
depends quadratically on the amplitude of streaks and on the amplitude of initial
perturbations used to force them.

(v) When compared to 2D basic flow perturbations, whose stabilizing effect is
linearly proportional to their amplitude, 3D varicose streak perturbations are
more efficient in terms of amplitude As, when As & 3 %U∞ with respect to
maximum temporal amplification and As & 12 %U∞ when absolute growth rates
are considered. However, when the comparison is made in terms of the required
initial perturbation amplitude A0, optimal 3D perturbations are much more
efficient than 2D perturbations (more than six times). This is due to the efficiency
of the lift-up effect leading to large energy growths, with the efficiency increasing
with Reynolds number. Varicose perturbations remain more efficient than sinuous
ones even when their initial amplitude A0 is considered, despite the fact that their
optimal linear growth is lower.

(vi) Contrary to what is observed in the stabilization of boundary layers by streaks, the
spanwise averaged nonlinear mean-flow distortion induced by nonlinear streaks
does not play a crucial role in the stabilization. The spanwise oscillating part of
the streaks plays the most important role, with optimal linear streak shapes as
effective as nonlinear streak shape in the stabilization.



(vii) The decomposition of the maximum temporal growth rate into the different
components due to energy production and dissipation shows that the streaks’
stabilizing action acts on all these components by increasing the energy
dissipation, reducing the 2D-type energy production and inducing a stabilizing
(negative) energy production term related to the work of Reynolds stress against
basic flow spanwise shear.

6.2. Discussion

As discussed in § 1, the second part of the study is strongly related to a set of
previous investigations on vortex shedding, quenching or weakening enforced via
3D basic flow modulations. The stabilizing effect we find is indeed in agreement
with numerous previous studies showing that spanwise modulations of the bluff
body shape or spanwise modulated blowing and suction can have a stabilizing
effect on vortex shedding (see Choi et al. 2008). In particular, in a very recent
investigation, Hwang et al. (2013) have shown that 3D spanwise modulations of the
2D wake streamwise velocity reduce the absolute growth rate of unstable perturbations
supported by Monkewitz (1988) wake profiles. Our results confirm the findings of
Hwang et al. (2013), and in particular the stabilizing effect on absolute instability, the
fact that varicose perturbations are more effective than sinuous ones, and the quadratic
sensitivity of the absolute growth rate to the amplitude of 3D basic flow modifications.
However, we extend their investigation by showing that by using streaks of moderate
but still not excessive amplitudes, absolute instability can be completely suppressed,
and not only reduced. Also, more insight into the stabilizing mechanism has been
given by its analysis in terms of spanwise mean and oscillating contributions to the
stabilization and in terms of respective contributions of the work of Reynolds stresses
and of the dissipation to the stabilizing mechanism. The main conclusion here is that
the success of vortex shedding 3D basic flow modifications can be attributed both to
the very efficient amplification of streamwise streaks that ultimately stabilize the flow
and to the quadratic dependence of the stabilization on their amplitude. This quadratic
dependence, which is a weak point at very low amplitudes, allows high sensitivity to
3D basic flow modifications at larger amplitudes, where practically relevant effects are
attained.

Another relevant result that extends what was previously known is that not only
absolute growth rates but also maximum temporal growth rates are reduced by
enforcing optimal streaks. The growth rate reductions we have documented are
moderate, but probably much larger reductions can be achieved by forcing streaks
of only slightly larger amplitude, thanks to the quadratic sensitivity of the growth
rate reductions on streak amplitudes (see figure 7). As both optimal perturbations,
maximum energy growth supported by parallel 2D wakes and modal growth rates of
parallel 3D wakes are unchanged by the addition of a uniform velocity, our results,
except for the absolute instability analysis, directly extend to, say, jets with the same
shear profile.

Only parallel wakes have been considered in the present investigation, both because
the main interest is on local stability properties, and also for the sake of conciseness
and clarity. It will nonetheless be important to complete the study by computing
optimal perturbations in a non-parallel spatial stability setting, similar to what has
been done for boundary layers by Andersson, Berggren & Henningson (1999), for
example, and to assess the influence of those optimal perturbations on global stability.
As unstable global modes in non-parallel wakes are sustained by a pocket of local
absolute instability, it is expected that forcing streaks of sufficiently large amplitude



could stabilize the global instability. Such a stabilizing action is, however, not expected
to apply to situations where the basic flow non-parallelism alters the nature of the
global instability, such as in wakes developing behind rotating cylinders (Pralits,
Giannetti & Brandt 2013). These issues are currently under close scrutiny. The present
analysis is also currently being extended to the turbulent case where 3D mean flow
modifications are also effective at attenuating von Kármán vortex shedding (e.g. Kim
& Choi 2005), proceeding along the same lines as in wall-bounded shear flows (Cossu,
Pujals & Depardon 2009; Pujals et al. 2009; Hwang & Cossu 2010; Pujals, Depardon
& Cossu 2010).
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Appendix. Methods

A.1. Computation of optimal perturbations

Optimal growths G(t, α, β) are computed along quite standard lines, described in
Schmid & Henningson (2001), for example. The linearized Navier–Stokes equations
are recast in terms of the cross-stream velocity and vorticity v–η. The system
satisfied by Fourier modes, v̂(y, t;α, β)ei(αx+βz), η̂(y, t;α, β)ei(αx+βz), is the standard
Orr–Sommerfeld–Squire system,

∇2 ∂v̂

∂t
= LOS v̂;

∂η̂

∂t
= −iβ

dU

dy
v̂ + LS Qη̂, (A 1)

where the Orr–Sommerfeld and Squire operators are

LOS = −iα

[
U(D2 − k2)−

d2U

dy2

]
+

1

Re
(D2 − k2)

2
, (A 2)

LS Q = −iαU +
1

Re
(D2 − k2), (A 3)

and where D denotes d/dy and k2 = α2 + β2. The system is discretized on a
grid of Ny points uniformly distributed in [−Ly/2,Ly/2]. Differentiation matrices
based on second-order accurate finite differences have been used to discretize the
Orr–Sommerfeld–Squire system. Most of the results have been obtained with Ny = 201
and Ly, ranging from 20 to 120 for the perturbations with the smallest spanwise
wavenumbers (largest spanwise wavelengths). The results do not change when Ny is
doubled to 401 and when Ly is increased by half. We have also verified that the
results do not change if differentiation matrices are based on Fourier series instead of
finite differences, provided that Ly is large enough. The discretization has also been
validated against temporal growth rates of Bickley jets available in the literature. Once
the linear operator is discretized, standard methods and codes already used in previous
investigations (e.g. Lauga & Cossu 2005; Cossu et al. 2009; Pujals et al. 2009) are
used to compute the optimal growth and the associated optimal perturbations.

A.2. Direct numerical simulations

Numerical simulations of nonlinear and linearized Navier–Stokes equations have been
performed using the OpenFOAM open-source DNS code (see http://www.openfoam.
org). We have modified the code to allow for the solution of the Navier–Stokes
equation in perturbation form and in order to add a set of additional output data.



The flow is solved inside the domain [0,Lx] × [−Ly/2,Ly/2] × [0, Lz], which is
discretized using a grid with Nx and Nz equally spaced points in the streamwise
and spanwise directions respectively. Ny points are used in the y direction using
a stretching that allows us to increase point density in the region where the
basic flow shear is not negligible. Typically, results have been obtained using Lx =
124,Ly/2 = 10,Lz = 2π and Nx = 300,Ny = 160,Nz = 24 with 1x = 0.4, 1z = 0.26
and a minimum of 1y = 0.01 on the symmetry axis and a maximum of 1y = 0.1
near the free stream boundary. Periodic boundary conditions have been used in the
streamwise and spanwise directions and zero normal gradients of velocity and pressure
have been enforced at the free stream boundaries (|y| = Ly/2). An increase of Ly/2
from 10 to 15 or an increase of the number of points from Ny = 160 to Ny = 320
did not affect the energy density more than 2 %. Also, the combined results of the
DNS and the stability analysis algorithms described below have been checked against
existing results both for the temporal stability analysis (temporal growth rates of the
Bickley jet) and the temporal and spatiotemporal growth rates of Monkewitz profiles.

A.3. Fundamental and subharmonic, symmetric and antisymmetric modes

As mentioned in § 4.2, the numerical simulations of the linear impulse response
are performed in a spanwise periodic domain of length twice that of the basic
flow streaks Lz = 2λz where λz = 2π/β. The impulse response can be decomposed
into the contributions of fundamental and subharmonic modes, which can be further
decomposed into symmetric and antisymmetric. The fundamental modes with an even
symmetry (the same as that of the basic flow streaks) are of the form with βF

k = kβ,
where β is the wavenumber of the basic flow streaks:

û(y, z)=
∞∑

k=1

ũk(y) cosβF
k z, v̂(y, z)=

∞∑

k=1

ṽk(y) cosβF
k z, ŵ(y, z)=

∞∑

k=1

w̃k(y) sinβF
k z.

(A 4)

Fundamental modes with the opposite symmetry admit the expansions

û(y, z)=
∞∑

k=1

ũk(y) sinβF
k z, v̂(y, z)=

∞∑

k=1

ṽk(y) sinβF
k z, ŵ(y, z)=

∞∑

k=1

w̃k(y) cosβF
k z.

(A 5)

For subharmonic modes the spanwise periodicity of the disturbances is twice that of
the basic flow, and therefore we define βS

k = [(k + 1)/2]β. Subharmonic–symmetric
modes are expanded as

û(y, z)=
∞∑

k=1

ũk(y) cosβS
k z, v̂(y, z)=

∞∑

k=1

ṽk(y) cosβS
k z, ŵ(y, z)=

∞∑

k=1

w̃k(y) sinβS
k z,

(A 6)

while subharmonic–antisymmetric modes admit the expansions

û(y, z)=
∞∑

k=1

ũk(y) sinβS
k z, v̂(y, z)=

∞∑

k=1

ṽk(y) sinβS
k z, ŵ(y, z)=

∞∑

k=1

w̃k(y) cosβS
k z.

(A 7)

Given a perturbation velocity field, obtained from linearized DNS, for example,
the respective contributions of the fundamental and subharmonic, symmetric and



antisymmetric modes to the total field can be retrieved by a straightforward
partitioning of the spanwise discrete Fourier transform of the velocity field into
odd/even harmonic real/imaginary parts.

A.4. Temporal and spatiotemporal stability analysis from the impulse response

The techniques used to retrieve the temporal and spatiotemporal stability properties
of parallel basic flow profile U(y, z) from the numerically computed impulse response
closely follow those used by Brandt et al. (2003), which are the three-dimensional
extension of those developed by Delbende & Chomaz (1998) and Delbende, Chomaz
& Huerre (1998) for two-dimensional wakes.

Consider the generic perturbation variable q(x, y, z, t), already separated into its
fundamental and subharmonic, symmetric and antisymmetric parts as described in
§ A.3. Concerning the temporal stability analysis, in order to determine the dependence
of the temporal growth rate ωi on the (real) streamwise wavenumber α, the amplitude
spectrum of q(x, y, z, t) is defined as

Q̃(α, t)=
(∫ Ly/2

−Ly/2

∫ Lz

0

|q̃(α, y, z, t)|2 dy dz

)1/2

, (A 8)

where q̃(α, y, z, t) is the Fourier transform of the variable q in the streamwise direction.
The asymptotic exponential regime is attained for large times, where the leading
temporal mode emerges with growth rate (imaginary part of ω) well approximated by

ωi(α)∼
∂

∂t
ln Q̃(α, t), t → ∞, (A 9)

which can be numerically computed by the finite difference approximation

ωi(α)≈
ln[Q̃(α, t2)/Q̃(α, t1)]

t2 − t1

. (A 10)

The selected times t1 and t2 in the above approximation need to be sufficiently large to
ensure the extinction of transients. The values used for the presented results have been
selected by exploring different pairs t1, t2 until results have satisfactorily converged to
less than 1 % relative error.

The spatiotemporal stability analysis considers the development of the impulse
response wave packet along x/t = v rays, which is equivalent to the investigation
of modes of real group velocity v (see e.g. Huerre & Rossi 1998). The use of
the Hilbert transform allows us to demodulate the wave packet and define its
amplitude unambiguously with respect to spatial phase oscillations. To this end, the
analytical complex field variable qH(x, y, z, t) associated with q(x, y, z, t) through the
x-convolution ∗ is defined as

q̄(x, y, z, t)=
[
δ(x)+

i

πx

]
∗ q(x, y, z, t). (A 11)

In wavenumber space, (A 11) reduces to

qH(α, y, z, t)= 2H(α)q̃(α, y, z, t), (A 12)



where H(α) is the Heaviside unit-step function. The integration of the analytical field
qH in the cross-stream (y, z) plane then yields the amplitude Q defined by

Q(x, t)=
(∫ Ly/2

−Ly/2

∫ Lz

0

|qH(x, y, z, t)|2 dy dz

)1/2

. (A 13)

According to steepest-descent arguments (e.g. Bers 1983), the long-time behaviour of
the wave packet along each spatiotemporal ray x/t = v is

Q(x, t)∝ t−1/2ei[α(v)x−ω(v)t], t → ∞, (A 14)

where α(v) and ω(v) represent the complex wavenumber and frequency travelling at
the group velocity v. In (A 14), the real part of the exponential

σ(v)= ωi(v)− kx,i(v)v (A 15)

denotes the temporal growth rate observed while travelling at the velocity v, and it can
be evaluated for large t directly from the amplitude Q in (A 14) as

σ(v)∼
∂

∂t
ln[t1/2Q(vt, t)], (A 16)

which can be approximated with

σ(v)≈
ln[Q(vt2, t2)/Q(vt1, t1)]

t2 − t1

+
ln(t2/t1)

2(t2 − t1)
, (A 17)

to which apply the same considerations discussed for (A 10).
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