Ionic liquid confined in silica nanopores: molecular dynamics in the isobaric-isothermal ensemble - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Molecular Physics Année : 2014

Ionic liquid confined in silica nanopores: molecular dynamics in the isobaric-isothermal ensemble

Résumé

Molecular dynamics simulations in the isobaric-isothermal ensemble are used to investigate the structure and dynamics of an ionic liquid confined at ambient temperature and pressure in hydroxylated amorphous silica nanopores. The use of the isobaric-isothermal ensemble allows estimating the effect of confinement and surface chemistry on the density of the confined ionic liquid. The structure of the confined ionic liquid is investigated using density profiles and structural order parameters while its dynamics is assessed by determining the mobility and ionic conductivity of the confined phase. Despite the important screening of the electrostatic interactions (owing to the small Debye length in ionic liquids), the local structure of the confined ionic liquid is found to be mostly driven by electrostatic interactions. We show that both the structure and dynamics of the confined ionic liquid can be described as the sum of a surface contribution arising from the ions in contact with the surface and a bulk-like contribution arising from the ions located in the pore centre; as a result, most properties of the confined ionic liquid are a simple function of the surface-to-volume ratio of the host porous material. In contrast, the ionic conductivity of the confined ionic liquid, which is a collective dynamical property, is found to be similar to the bulk. This study sheds light on the complex behaviour of hybrid materials made up of ionic liquid confined in inorganic porous materials
Fichier non déposé

Dates et versions

hal-01011049 , version 1 (22-06-2014)

Identifiants

Citer

Guido Ori, François Villemot, Lydie Viau, André Vioux, Benoit Coasne. Ionic liquid confined in silica nanopores: molecular dynamics in the isobaric-isothermal ensemble. Molecular Physics, 2014, 112 (9-10), pp.1350-1361. ⟨10.1080/00268976.2014.902138⟩. ⟨hal-01011049⟩
76 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More