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Abstract

We consider deconvolution from repeated observations with unknown error distribution. So
far, this model has mostly been studied under the additional assumption that the errors are
symmetric.

We construct an estimator for the non-symmetric error case and study its theoretical properties
and practical performance. It is interesting to note that we can improve substantially upon
the rates of convergence which have so far been presented in the literature and, at the same
time, dispose of most of the extremely restrictive assumptions which have been imposed so
far.
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1 Introduction

Density deconvolution is one of the classical topics in nonparametric statistics and has been exten-
sively studied during the past decades. The aim is to identify the density of some random variable
X, which cannot be observed directly, but is contaminated by some additional additive error e,
independent of X.

A large amount of literature is available on the case where the distribution of the errors is perfectly
known. To mention only a few of the various publications on this subject, we refer to Carroll and
Hall (1988), Stefanski (1990), Stefanski and Carroll (1990), Fan (1991), Efromovich (1997), Pensky
and Vidakovic (1999), Comte et al. (2006).

However, perfect knowledge of the error distribution is hardly ever realistic in applications. For
this reason, the interest in deconvolution problems with unknown error distribution has grown.
Meister (2004) has investigated deconvolution with misspecified error distribution. Diggle and Hall
(1993) replace the unknown characteristic function of the errors by its empirical counterpart and
then apply standard kernel deconvolution techniques. The effect of estimating the characteristic
function of the errors is then systematically studied by Neumann (1997). Let us also mention
Johannes (2009) for deconvolution problems with unknown errors.

The last mentioned publications have been working under the standing assumption that an ad-
ditional sample of the pure noise is available. This is realistic in some practical examples. For
example, if the noise is due to some measurement error, it is possible to carry out additional
measurements in absence of any signal.

However, in many fields of applications it is not realistic to assume that an additional training set
is available. It is clear that, to make the problem identifiable, some additional information on the
noise is required. In the present work, we are interested in the case where information can be drawn
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from repeated measurements of X, perturbed by independent errors. This framework is known as
model of repeated measurements or panel data model. The observations are of the type

n,k:Xj‘Ffj’k; j:1’7n’ k:l)...’N’

where all X; and ¢;, are independent.

This problem is relatively well-studied under the assumption that the distribution of the errors is
symmetric. We refer to Delaigle et al. (2008), Comte et al. (2014) and Kappus and Mabon (2013).
In the present paper, we consider deconvolution from repeated observations when the symmetry
assumption on the errors is no longer satisfied. The estimation strategies which have been developed
for the symmetric error case cannot be generalized to this framework and a completely different
approach is in order. The same problem has been investigated in earlier publications by Li and
Vuong (1998) and by Neumann (2006).

The paper by Li and Vuong has two major drawbacks. On one hand, the rates of convergence
presented therein are extremely slow, in comparison to the rate results which are usually found in
deconvolution problems. On the other hand, the mentioned authors impose extremely restrictive
assumptions on the target density and on the distribution of the noise, which are only met in some
exceptional cases.

Neumann succeeds in overcoming this second drawback and constructing consistent estimators
under most general assumptions. However, rate results are not given in that paper so the ques-
tion whether the convergence rates found by Li and Vuong can be improved has so far remained
unanswered. Moreover, the estimator proposed by Neumann is only implicitly given and non-
constructive, so it is difficult to investigate the practical performance.

In the present work, we study a fully constructive estimator, which is based on a modification
of the original procedure by Li and Vuong. It is interesting to note that we are able to improve
substantially upon the rates of convergence found by Li and Voung and, at the same time, dispose
of most of their restrictive assumptions. Surprisingly, it can also be shown that our estimator
outperforms, in some cases, the estimators which have been studied for the structurally simpler
case of repeated observations with symmetric errors.

This paper is organized as follows: In Section 2, we introduce the statistical model and define
estimators for the target density, as well as for the residuals. In Section 3, we provide upper risk
bounds and derive rates of convergence. In Section 4, we present some data examples. All proofs
are postponed to Section 5.

2 Statistical model an estimation procedure

Let £1 and &5 be independent copies of a random variable € and let X be independent of £; and e5.
By Y, we denote the random vector Y = (Y7,Y2) = (X 4 €1, X + €2). We observe n independent
copies

Vi =(j1,Y2), j=1,--,n

of Y. The following assumptions are imposed on X and ¢:

(Al) X and e have a square integrable Lebesgue densities fx and f..

(A2) The characteristic functions ¢, (-) = E[e*¢] and ¢x (-) = E[e**X] vanish nowhere.
(A3) E[e] =0.

Our objective is to estimate fx and f.. This statistical framework allows a straightforward gen-
eralization to the case where more than two observations of the noisy random variable X are
feasible. However, for sake of simplicity and clarity, we content ourselves with considering the two
dimensional case.

In the sequel, we denote by v the characteristic function of the two dimensional random vector Y,

w(ul, u2) = ]E[ei(ulleFUQYg)].



By independence of X, g1 an €9, the following holds for :
(ur,ug) = Bl )X ghaet o] — o (uy 4 ug) e (w1 )pe (ug). (2.1)

From formula (2.1) one derives the following Lemma, which has been formulated and proved in Li
and Vuong (1998). Lemma 2.1 is then the key to the construction of the estimator.

2.1 Lemma. Assume that E[|Y1]] < 0o and E[e] = 0. Then ¢x is determined by 1 via the following
formula:

dur 1/)(0 u2)
¢(0a uQ)

Uu9.

¢x (u) = exp /Ou

Li and Vuong propose the following estimator of ¢ x:

5 ~
v =) (0, u

G (u) = eXp/ aui1/1( 2) dus,
o ¥(0,ug)

with
1 P 9 ~ 1~ (11 Y1 +unY;
Ul,UZ = ,Z i(uYji+uaYj2)  and Y(ug,up) = ,Zzyj 161(u1 Gatu2Yj o)
ouq n ’

j=1 j=1
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denoting the empirical version of 1) and its first partial derivative.
Given a kernel K and bandwidth h, the corresponding estimator of fx is

P (@) = % [ ek T Knw) du

with K5 () = 1/hK(-/h) and with fth = [ e"* Kj(x) dz denoting the Fourier transformation.

We propose a modified version of f Flrst of all, it is well known that small values of the
denominator lead to unfavorable effects in the estimation procedure, so it is preferable to consider
some regularized version of ¢ One possible approach is to replace v in the denominator by ¢ +p
with some Ridge-parameter to be appropriately chosen. See, for example, Delaigle et al. (2008).

However, following ideas in Neumann (1997), we prefer to define

N - 12(0,162)
O = P10, ) 1)

and use 1/15(0, ug) as an estimator of 1/1(0, us).
This leads to defining the following modified estimator of @ x:

5 ~
w 000, u

5 (u) :exp/ wdu;
0 ¢(Oau2)

Next, we have to pay attention to the fact that, by definition, neither @5 nor @3’ need to be
characteristic functions and they may take values larger than one. Indeed, much of the complexity
in the proofs presented in Li and Vuong (1998) and many of the restrictive assumptions imposed
therein are a consequence of the fact that there appears an unbounded exponential term in the
definition of @% which has to be controlled, leading to some Bernstein-type arguments and hence
to the assumptlon that the supports are bounded.

However, the quantity to be estimated is, in any case, a characteristic function, so the quality of
the estimator can be improved by bounding the absolute value of @3*. These considerations lead
to defining our final estimator of the characteristic function of X,

NI 2 0)
P L ) 22



Sometimes, one may not only be interested in the estimation of the target density itself, but also
in the distribution of the residuals. The following holds true for the characteristic function of e:

This quantity can hence be recovered, using a plug-in estimator. We set

o Px (u)
ox(u) min{n1/2|(ﬁx(u)|a1}
and then )
o P(0,u)
Pe(u) = ) (2.3)

Given a kernel K and bandwidth h > 0, the kernel estimators of fx and f. corresponding to
formula (2.2) and (2.3) are

fx, (z) = %/e‘i“”’@X(u)?Kh(u) du

and
1

T or

Ne) / e~ 5, (u)F Ky (u) du.

3 Risk bounds and rates of convergence

3.1 Non-asymptotic risk bounds

We start by analyzing the performance of fx. It is important to stress that we can dispose of
most of the assumptions which have been imposed in earlier publications on the subject. Indeed
the conditions on X and e which are imposed in Li and Vuong (1998), namely boundedness of
the support of fx and f. and nowhere vanishing characteristic functions, are violated for any
distribution which is commonly studied in probability theory. In Bonhomme and Robin (2010) an
estimator is constructed under weaker assumptions on the distributions. But still, it is required in
that paper that X have moments of all orders, which is certainly quite restrictive. Moreover, the
rates which are found by those authors turn out to be even slower than the rate results presented
in Li and Vuong (1998). It is interesting to note that we can substantially improve upon these
results, even though our assumptions are much weaker.

In Neumann (2006), an implicit estimator of fx is proposed. The strength of this approach lies
in the fact that it is fully general. However, the price one has to pay is the lack of constructivity.
The estimator is found as the solution to an abstract minimization problem, so the practical
computation is not clear. Moreover, consistency of the estimator is shown, but rate results are not
given, so nothing can be said about the quality of the procedure.

Finally, Delaigle et al. (2008) and Comte et al. (2014) have studied estimators in a repeated
measurement model, but it is assumed in both papers that the distribution of the noise is symmetric.
It is the main concern of the present publication to be able to dispose of the symmetry.

In the sequel, we impose the following mild regularity assumption on the characteristic function of
X:

(A4) For some positive constant Cx,
Vu,v € Ry (v <u) = (lpx ()] < Cxlex (0)])-

The following bound can be given on the mean integrated squared error:



3.1 Theorem. Let K be supported on [—1,1]. Assume that (A1)-(A4) are satisfied and that for
some positive integer p, E[|Y1|*] < co. Assume, moreover, that ¢’ . is integrable. Then for some
positive constant C' depending only on p,

E[ HfX — fxn ;

} < 2| fx — Kn #fx|[t2

1/h |ul 1/h Ju|

CCxG(X,e,1,1/h) (1 1 )p
+ - / /|905 5 dzdu+ CG(X,e,p,1/h) / n/7|<py(z)|2 dz | du,
—1/h —1/h 0
with '
oy (2) = E[e™2] = 9(0,2) = px(2)pe(2)
and

[ul
0 p
GOX, om0 = (eels + B ol + Ioee o) + ([ 1= log w(0.0) do)
0

E[|Y1[?]1 >0y u”
np—1 +

1
E2 [y [*].

In analogy with (A4), we impose the following assumption on the characteristic function of the
erTors:

(A5) For some positive constant Cg,

Vuv € Ryt (v <) = (Jpe(u)] < Celipe(v))):

The following bound can then be given on the mean integrated squared error of J/”;:

3.2 Theorem. Assume that K is supported on [—1,1] and the assumptions (A1)-(A5) are met.
Assume, moreover, that for some positive integer ¢ > 2, E[|Y1[*9] is finite. Then for some positive
constant C' depending only on q,

1/h |ul
2 G(X,¢e,1,1/h)
]E[ LQ} < |Ife — Kp #fe]%s + CC. {¥ / /MX dz du
—~1/h 0
1/h Ju u|
G(X,e,q,1/h) 1 -t
+ L / </ dz)(/dz) du
na—1 \@X lox (2 loy (2)]2
—1/h 0
1
G(X,¢e,2,1/h)'/?
+ 5 du
n 2 \@X |%0Y
( P 1/ Jul 1/h
G(X,e,2q,1/h / (/ ) 1 / 1
+ du + — —— dul.
n4 \@x )| ey (2 n? lpx (u)[* ]
0 —1/h

Discussion It is easily seen that the assumptions (A4) and (A5) are not very restrictive. They
are met, for example, for normal or mixed normal distributions, Gamma distributions, bilateral
Gamma distributions and many others. By a location shift, one can always ensure that E[e] = 0.
The integrability condition on ¢’ ¢, is also very mild. Under the above assumptions, it is auto-
matically met if ¢, is integrable but can also be checked in most other cases.



The upper bound in Theorem 3.1 differs from the bounds which are commonly found in deconvolu-
tion problems in two ways: For one thing, there appears an additional inner integral in the variance
term. This could be a consequence of the two-dimensional nature of the underlying problem. On
the other hand, it is completely unexpected to find, in the second variance term, the characteristic
function of the target density appearing in the denominator. On an intuitive level, this phenomenon
could be understood as follows: To draw inference on X some information on the noise is required.
However, in comparison to standard deconvolution problems, ¢ is itself an unobservable quantity
and is contaminated by X. Consequently, X does not only play the role of a random variable of
interest but also, with respect to the error term, the role of a contamination. This might explain
the occurrence of px in the denominator.

3.2 Rates of convergence

In what follows, we derive rates of convergence under regularity assumptions on the target density
fx and on the density f. of the noise. For sake of simplicity, we assume in this section that K is
the sinc-kernel, FK = 1;_y 1.
Let us introduce some notation: For p,Cy > 0, 8,¢ > 0, Cy > 1, we denote by F*(Cy, Ca, ¢, 5, p)
the class of square integrable densities f such that the characteristic function ¢(-) = [ €' f(z) dx
satisfies

Vu,0 R (u20) = (lp(u)] < Calp(v))) (3.1)

and ,
VueR: Jo(u)| < (14 Cyluf?)~ze e,

If ¢ = 0, the functions collected in F*(C1, Ca, ¢, B, p) are called ordinary smooth. For ¢ > 0, they
are called supersmooth. By F*(Cy, Ca, ¢, 3, p), we denote the class of square integrable densities for
which (3.1) holds and, in addition,

VueR: |pw)| > (1+ Cylul?)~Feelul’.

For C3 > 0, we denote by G(Cjs,p) the class of pairs (fx, fe) of square integrable densities for
which the following conditions are met: For the characteristic function ¢x of fx and ¢, of f.,

(¢ ee + Ele?]oxgellir + @k eellf=)? + E[X + ] < Cs
holds and moreover, (log¢x4c)’ is square integrable, with
|(log @X+a)/||ig < Cs.
Finally, we use the short notation
FH(X,e,p) = [EFU(CLX7C27X70X7ﬁX7,0X> X iﬂ(cl,a,czmce,ﬁaps)} NSG(Cs,p)
and

3%711(*)(75‘:717) = [gé(CI,X702,XuCX76X7pX) X ?u(01,5702,5705u657p5):| N 9(03,]9)

Estimation of the target density

We start by providing rates of convergence for the estimation of fx. Let p > 2. We may limit
the considerations to bandwidths A > n~!/2) so the term n’,f: appearing in the definition of
G(X, e, p,u) is readily negligible. We consider three different cases:

Case I: Ordinary smooth density with ordinary smooth errors , cx =c. =0,8x > 1/2,8. > 1/2.
Then the choice of the kernel, Theorem 3.1 and the definition of F*“*(X,¢,p) give

—~ 1 1 .
s E[lfx = Fxallfe] = Oun) == 0((/m)" + - (/02 + —(1/h)*)
(fx . f)€F (X e,p) n n



with
1 =-28x +1, %2 =2B8:4+2, v3=p(28x +20e+1)+ 1.
Minimizing r, ;, with respect to h yields for the optimal bandwidth h*,
1/h* = nZFFRmAR
Plugging h* in gives

T L esxn
sup E[fo — fx.h LQ} = O(n 2;35+2<1+1/p);ax+1>.

(fx,fe)€Tw4(X e,p)

Case II Ordinary smooth density with supersmooth errors, 8x > 1/2,cx = 0,¢. > 0. Then

s B[|fx = Feallts] = O(ran)
(fx,fe)€TH(X e,p)

= O((1/R)™ + 1/ exp(2ea(1/)") + - (1/h)™ exp(2pe.(1/)")),
with
T1=-28x+1, 2=[28:+1-p)+ +1—pels, 13 =1[p(26: +28x + 1 —pc)s +1—pc]4.

Selecting h* as the minimizer of r, ;, gives

1

2c,

1/pe
1/h* = (2;(logn) log(logn)” + O(l)) .

with

w:nmﬂ%3+2@x—L1mg?+2@x—n}

€

From this we derive that

~ 9 2Bx -1
sup E[HfX _ fX’h*||L2} -0 ((1ogn) = )
(fx,f-)eFwt (X e,p)

Case III Supersmooth density with ordinary smooth errors, cx > 0,¢. = 0, 8 > 1/2. In this case,

s E[llfx — FaelE:] = Oran)

(fx,fe)eTFm*(X,e,p)

- 0(<1/h>71 exp(~2x (1/W)") + S (/) + (1 /my» eXp(2PCX(1/h)px>a

with
M=-26x+1-px, 2=28:4+2, v3=[p20x+2B:+1—px)++1—px]s+

Minimizing r, 5 yields

1/px
1/h* = (QC(p(logn) - i log(logn)” + 0(1)>

x(p+1)
with
_ mmm
(p+1)px
Then it holds that
N 2 __p_ p/(p+1)v1+1/(p+1)v3
sup E ||fX — fX,h* L2:| =0 n 1 (logn) PX
(fx,fe)€TwE(X,e,p)



Estimation of the residuals

In analogy with the rates for the estimation of fx, we consider the following different cases:

Case I Both, f. and fx are ordinary smooth, cx = ¢. =0,8x > 1/2, 8. > 1/2. Then by Theorem
3.2 and by the definition of F4*(X, ¢, p),

s E[Ife - fon

2] = O(ran)
(fx,fe)€TH (X e,p)

= 0 (U™ + 2™ + R+ (U + (/0.
with

T=-28:+1, y%2=26x+2, 13=48x+2B+2, nau=20p+1)px+2(p—-1)p-+p+1,
v =2(p+2)Bx + 2pB +p+ 1.

Minimizing ry, j gives

1
1/h* = n20+2/(p-))Bx +2AF1/(p—1)Be F1+1/(p—1)

Consequently,

~ _ 28 —1
sup ]E[HfE — fenr iz} =0 (n 2(1+2/(P*1))ﬁx+2(1+1/(P71>)Bg+1+1/(r)*1)) .

(fx,fe)€FH" (X e,p)

Case II Ordinary smooth f. and supersmooth fx, cx > 0,¢c =0, 8 > 1/2. In this case,

swp  B[Ife— Fonll] = O(ran)
(fx,fe)€FEH*(X,e,p)

=0 (U™ + (10 explex(1/1)) 4 5 (1) explaex(1/))

1

+
np—1

(1 exp(zex (p+ 10/0P) 4 (1107 expl(exp+ 2(1/10) ).

with
T = _268 + 17 V2 = [(Qﬂx +1-— pX)+ +1-— pX]"ra
13 =[(268x +2B: +1—px)+ +28x +1— px]4,
Yo =1[p—1)2Bx +28: +1—px)+ +(26x +1—px)+ +26x +1— px]y,
75 = [p(2Bx +2B8: +1—px) +48x + 1 — px]+.
Then y
(p—l) 1 o X
1/ = ———1 — —1 I 1
i = (Gab s toun = 5 tog (o) + O(1)
with

= 1/<p+1><g—;+2/35 - 1).

This implies

sup E erffe,h*
(fx,fe)€TH(X,e,p)

i2] =0 ((logn)_%) .



Case III f. is supersmooth and fx is ordinary smooth. Then

sup IE[Hfa — ﬁ7h||iz =O(rpp) == O((l/h)'YI exp(—2c:(1/h)P¢) + l(l/h)’”
(fx,fo)€THH(X e.p) n
g (LA exp(2ec (/1)) + i (/R explecto — D1 /pP7) + SE expleea(1 /1))

with

N1 =-28+1—pe; 12=2Bx+2, 13=[028x+28+1—p:)4++28x+1—pcl4,
V4 = [(p - 1)(26X +26. +1— ,05)+ +46x +2 — pE]-‘r,

We arrive at

—1 1 1/pe
1/h* = ((1;205) logn — 2. log(log n)”) ,

with
o= WP =)
pe

which, in turn, implies

sup E\llfe = fen
(Fx,f2)EFE (X 2p)

b 2=ly+dag
%z] =0 (n_pr’l(logn) . )

Discussion: We have not considered the case where both, the target density and the error density,
are supersmooth. Deriving rates of convergence in this framework requires the consideration of
various different subcases, leading to rather tedious and cumbersome calculations. We omit the
details and refer to Lacour (2006) for a detailed discussion on the subject.

Comparison to earlier results

We have mentioned that the rates of convergence derived above differ substantially from the rate
results given in Li and Vuong (1998). To illustrate this point, the rates are listed in the table below.

cx =0, c.=0 cx =0, ¢c.>0 cx >0, c.=0
-~ _ 28x —1 _28x -1 p
fx n 20+1/p)Bx +2B:+1 (10g n) Pe (log n)’vn*m
~ __28x-—1 _28x -1 1
v n ABx AT (logn)™ - (logn)’n~3

Table 1: Rates of convergence for estimating the target density

We need to be careful about the fact that the rates of convergence given in Li and Vuong (1998)
are derived under the assumption the moments of all orders and even all exponential moments are
finite, which compares to p = co. There is no difference in the rate when an ordinary smooth target
with supersmooth noise is being considered. In any other case, the gap in the rate is striking.

It is interesting to note that the rates of convergence found in the present publication do also differ
from the rates which have been found for estimators in the structurally simpler case of panel data



cx =0, cc=0

cx =0, c.>0

cx >0, c.=0

28 —1
R _ _ 28 —1
i TED T | (lognym 5 | (logn)”
R 2By —1 28 —1
v n~ OBx ToB=Ta (logn)In~3 (logn) ™ ox

Table 2: Rates of convergence for estimating the noise density

cx =0, c.=0

cx =0, ¢c.>0

cx >0, c.=0

~ . 26x-1 _28x—1 __p_
fx n~ ZAFI/p)bx F26=F1 (logn)~ "~ »- (logn)Yn™ #+1
N 28x —1 28x —1
sym S Crav oS BT - —14e
1 n~ 2Bx VB T2h: (logn)~ " »- (logn)'n

Table 3: Rates of convergence for estimating fx, symmetric vs. non-symmetric error case.

with symmetric errors, see Delaigle et al. (2008) and Comte et al. (2014). In the table below, /;S(ym
is understood to be the estimator for the symmetric error case, defined according to Comte et al.
(2014) and € € (0,1/2) is arbitrary.

The convergence rates coincide if an ordinary smooth target density with supersmooth errors is
being considered. When both, fx and f. are ordinary smooth and Sx > 5. holds, f*¥™ attains

2 —1
the rate n—%ljf‘w’ which is known to be optimal in deconvolution problems. In this situation,
[x shows a slightly worse performance than f3¥", which is not surprising in light of the fact that
the model with non-symmetric errors has a more complicated structure. However, it is certainly
surprising to notice that for 8. >> (1 + 1/p)Bx + 1/2, the rates for fx are substantially better

than the rates for A)S(ym.

4 Simulation studies

4.1 Some data examples

For the practical choice of the smoothing parameter, we use a leave-p-out cross validation strategy.
We consider the parameter set M = {1,---,+/n} with each parameter m corresponding to the
bandwidth 1/m. Given any subset N := {nq,--- ,n,} C {1,--- ,n} of size p, we build an estimator
P of px based on the subsample (Y;)kren, as well as an estimator @}N based on (Yj)rgn. For
m € M, we may use

N R 1 -
Uox, Px,1/m) = m Z ||¢%3K1/\/ﬁ — oV F Ky |17

p/ N={ny,--,np}
as an empirical approximation to the loss function
~ ~ 2
Upx, Px,/m) = lox — Px,1/mllte-
Minimizing the empirical loss leads to selecting

o~

m = argmin{m € M : {(ox,Px,1/m)},

10



and working with the bandwidth h= 1/, thus defining the adaptive estimator % = @Xﬁ.
Simulation experiments indicate that the procedure works reasonably well with p = 10. However,
it is evident that even for small sample sizes, the complexity of the algorithm explodes and the
procedure is numerically intractable. To deal with this problem, we use a modified algorithm. We
subdivide {1,---,n} into n/5 disjoint blocks Bi,---, B,/ of size 5 and build our leave-10-out
estimators, based on the subsets Ny, = By U Bgy1,k=1,--- ,n/5 — 1.

We work with a Gaussian kernel and try the procedure for the following target densities and errors:

(i) X has a I'(4,2) distribution and e has a bilateral Gamma distribution with parameters
2,2,3,3, that is, the corresponding density is the convolution of a I'(2, 2)-density, supported
on R, and a T'(3,3)-density, supported on R_. In the sequel, we abbreviate this type of
distributions by dI'(2, 2, 3, 3).

(ii) X hasadI'(1,1,2,2)-distribution and the errors are, up to a location shift, I'(4, 2)-distributed,
that is, €4+ 2 ~ I'(4, 2). In the sequel, we write ¢ ~ I'(4,2) —2. (The location shift is necessary
to ensure that E[e] = 0 holds true.)

(iii) X has a standard normal distribution, X ~ N(0,1) and ¢ ~ bI'(2,2, 3, 3).

(iv) X has again a standard normal distribution. € is a mixture of two normal distributions with
parameters —2; 1 and 2, 2. We use the notation € ~ mN(-2,1,2,2).

We use a Gaussian kernel and run the procedure for n = 100, 1000, 10000 observations. Based on
500 repetitions of the adaptive procedure, we calculate the empirical risk 7¢ and compare this
quantity to the empirical risk 7°" of the ”estimator” with oracle choice of the bandwidth. The
values are summarized in the table below.

X ~T(4,2), € ~bI'(2,2,3,3) X ~N(0,1),e ~ bI'(2,2,3,3)

n 7o pod o pod

100 0.0151 0.0198 0.0104 0.0198
1000 0.0034 0.0076 0.0019 0.0044
10000 0.0015 0.0040 0.0007 0,0016

X ~N(0,1),e ~ mN(-2,1,2,2)

X ~bI(1,1,2,2),e ~ T'(4,2)-2

n A pod T pod

100 0.0310 0.0410 0.0135 0.0172
1000 0.0118 0.0352 0.0027 0.0074
10000 0.0040 0.0067 0.0013 0.0038

4.2 Comparison to the symmetric error case

We have mentioned that so far, the model of repeated observations has mainly been studied under the
additional assumption that the error terms are symmetric. In Section 3, it turned out that our rates of
convergence are, in some cases, better than the rate results presented in Delaigle et al. (2008) or Comte
et al. (2014). So far, it is not clear if this gap in the rate is due to a sub-optimal upper bound in the
mentioned papers or to a different performance of the estimators themselves.
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Simulation studies indicate that the estimator which has been designed to handle the case of skew errors
does indeed outperform, in some cases, the standard estimator for the symmetric error case.

Before having a look at some data examples, let us give a brief outline on the estimation strategy for the
symmetric error case: In the panel data model, suppose that € has a symmetric distribution. In this case,

d .
Yiin—Yje=¢1—-€2=¢€1+¢2 j=1,--,n

Consequently, ¢y, v, = 2. An unbiased estimator of ¢? can then be built from the data set (Y1 —
Y 2)j=1,... ,n. Taking square roots gives an estimator @. of p. and a regularized version of this estimator is
plugged in the denominator. Again py can be estimated directly from the data. For the details, we refer
to Comte et al. (2014). In the sequel, we denote by $3™ the estimator for the symmetric error case.

As indicated by the theory, it turns out that $x performs substantially better than @™ if the error
density is very smooth, in comparison to the target density. To illustrate this phenomenon, we have a look

at the following examples:

(i) X has a I'(2,4)-distribution and € ~ bI'(3,2, 3, 2).

(ii) X ~bI'(1,2,1,2) an € ~ bI'(4, 3,4, 3).
When we consider target densities which are very smooth, in comparison to the error density, the estimator
discussed in the present paper does, on small or medium sample sizes, still perform slightly better than the

estimator for the symmetric error case. However, this difference in the performance is small and vanishes
completely as the sample size increases. For illustration, we consider the following examples:

(iii) X ~ bI'(4,3,4,3) and € ~ bI'(1,2, 1,2).
(iv) X ~N(0,1) and € ~ bI'(3,5, 3, 5).

In the table below, based on 500 repetitions of the estimation procedure (with oracle choice of the band-

~or

width), we compare the empirical risk 7°" of $x to the empirical risk 7°¥"™°" of &% .

X ~T(2,4), e ~bI'(3,5,3,5) X ~bI(1,2,1,2) £ ~ bI'(4,3,4,3)

n For Fsym,or por psym.or
100 0.09721 0.25311 0.04373 0.12089
1000 0.05917 0.15747 0.02442 0.08018
10000 0.03955 0.10378 0.01491 0.05250

X ~bI(4,3,4,3), e ~bI'(1,2,1,2) X ~N(0,1), € ~bI'(3,5,3,5)

n For psym,or por psym,or
100 0.00930 0.01446 0.00631 0.00903
1000 0.0032 0.00424 0.00184 0.00254
10000 0.00057 0.00058 0.00077 0.00071

Conclusion: Our simulation studies indicate that our estimator is, in some cases, preferable to the estima-
tion procedures designed for the symmetric error case. In other cases, the performance of both procedures
is practically identical.

However, if the errors are unknown it is clear that in practical applications, one cannot be sure if the
symmetry assumption on the errors is satisfied, so we conclude that it is preferable, in either case, to work
with the procedure which is designed for the non-symmetric case.
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5 Proofs

5.1 Proof of Theorem 3.1

We start by providing some auxiliary results to prepare the proof of Theorem 3.1. In the sequel, we use
the following short notation.

N N P AL R OSSN () = iY e Yie O :
R(u) T W {/;(u)’ c(u) E 6U1¢(07u) Ouy w(ovu)’ CJ(u) i Z)G,le 6u1¢(0’u)’
Z(u) = (0,u) —(0,u) and U'(up) := 9 log (0, u2).

8u1

Moreover,

[ 2500u) (0, u2)
A(“)'O/ < SO b0 )

First, we consider the deviation of 1/ {/; from its target:

5.1 Lemma. [t holds that for some positive constant C' depending on p,

| < cmin{ \w<§,_;>|4v’ |w(o,1u>|2p J

Proof. Consider first the case where [1(0,u)| > n~1/2. We start by observing that

E[Ibw) ] < 47 (E[ (0, u) — (0, )] +E[15:(0,w) — (0, w)**]).
By Rosenthal’s inequality, for some constant C' depending on p,

E[[9(0,u) - §0,wf*] < <.

nb

2p

__
Y(0,u)  $(0,u)

Moreover, by definition of {Z;,

E[15(0,w) — 90, 0) ] < E[(150,w)] + 1) "1 50wy 1217y < 47077

Consequently, E[|§(u)|2p] < Cn™?. Now,

2p

E(U

1 1
’w(o,uﬂ(o,u)

’«/»(Ovu) 9(0,u)

=

2 [b(w)[* [b(w)[*
< — .
(| $(0, u)[P |w<o,u>\4p\w<o,u>|2p)

We have

b(u)[*” n’?

o R om

and, since 1/]1(0,u)| < y/n by definition,

o) n?
E = <C .
o wivigo e < CTe

On the other hand, for W(O, u)|] < n~Y/2, we have the series of inequalities

EHw((iu) 50, )Zp] < (@ am *E[|@(o,1u)|2p]) < (Ggam )
S410(|1/J 0,u) \217)
This completes the proof. O

The following result gives control on A:
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5.2 Lemma. Assume that E[|Y1|??] < oco. Then for some positive constant C,

E[|A(W)[1awi>13] £ CG(X, e, u,p)— (/ [ ( O u2) )p

with
G(X7 E? u7 p)
Ju

p
(ke + Elloxeelus + Iekecl) + ([ 10V @F )" +
0

uPlp,50) E[|Y: %]

np—1

+E2vi[)

Moreover

[ul

1 1 P
E[‘A(U)|2p1{m(u)\§1}] < CG(X@,uJ))E(/W dUQ) .
0

O,UQ

Proof. We can estimate

’_‘/< o(;:m - w(o((;zm ) e U(;’w Ovjw(o U2)> e

‘/ (0, uz) R(uz) dus| + ./( fa%lw(o,ug» R(uz) dus

=:A1(u) + Az(u) + As(u).
Rosenthal’s inequality (see, for example, Ibragimov and Sharakhmetov (2002) ) gives for some constant C
depending only on p:

2p [ %12’\(07“2)* ulw(O u2) 2p
|20 ]_EHO/<8 (0,0) >d"2

30(%@[ ) dus 2]) ’/Jjouiz dus| ).

Using Fubini’s theorem, the Cauchy-Schwarz inequality and Lemma 6.1, we derive that

wf] - [ [ CG@.E0) oy,
0 0

2p

%(0,2)9(0,-y)

E[ zYl 2z y)Y2 // zYle””Yz IEZYle'iyYﬂ
dxd dx d
// 00,y YT )i (0,y) Y

|E 2 Z(z y)Yz]‘ / . 2 i(a—y)Y: r 1
dzxdy < sup E[(iY1)%e"* ™Y 2 |dy | ———— dy
//) .7 iy TEOY ] po.P

1

< (l¢% e + E[e? . /7(1.

< (llpx e +E[e"px pellLr) oE
0

For p > 2, the Cauchy-Schwarz inequality gives

u u p
¢;j(u2) 1 1 v /A 2
< d E i|°d
"2” ! ‘/¢ 0, uz) ] ~ onPrt (/ (0, u2)[? uz) [ ( o
0 0
AEY] b / r
- n?-l [( 0 u2) '
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‘We have thus shown

[ul

E[A ()] < 0G(X .2, u)(%/mduzy

0

Next, thanks to Lemma 5.1 and the Holder inequality,

2p

]E[Ag(u)2 ] —IE '/8 (0, u2) R(uz2) duz

\ [u

’/ (u2)1h(0, uz) R(u2)
wia)ae) Bl [ \w<o,u2)|2|R(u2>\2duz)

/ |
O/u ul [u|

wPar) 0/ Wm)pl 0/ Gy (0. ) V[ | Rua) ]

Ju Jul Jul
C / 2 P 1 P 1 1 P
s ([rverse) ([ wamm ) = ccvera (G [ pap )
0 0 0

Finally, another application of Lemma 5.1 and the Hélder inequality gives

= ‘ / ’UQ d’UQ
0

<(/ foar ) / "w(o’“2)'QPE['E<“2>R%>IP] s

P

E[A3(U)P] _EH/U (8%112(0 uz) — aa »(0, u2)> R(uz) dus|

07 U2 |¢(0,U2)‘2

duz

<(/¥du )p1 /u|¢(0,u2)|2p15§ [|5(u2)|2p] E: [|R(u2)‘2p]
=\ [0,u)

0, uz)[? [%(0, uz)[?
0 0

B2 ([v3 7] ! ’ ! 1 v
< [ e aen) <cocenn(, [ i ae)

We set
A = Aj(w) = {|A(u)| > 1} N {argmax,_y 5 5 |Ax(u)] = j}.
We may use the fact that on A;, A(u) < 3A,(u) as well as A;(u) > 1/3, to conclude that
E[IA@)1a@i>n] < 3(E1A1w)1a,] +E[JA2(w)[1a,] +E[|As(w)[14,])
< 3% (E[|A1 ()] + E[| A ()] + E[|Aa(w)]"]).

Combining this inequality with the moment bounds on the Aj(u), we have shown that for a constant C
depending only on p,

1 1 P
EDA(U)H{\A(u)bl}] < CG(X,e,p, U)E(W du2> :

Next, we define
B; = {|]A(uw)] <1} N {max{Ax(u)|k = 1,2,3} =5}, 7=1,2,3.
It holds that

E[| AW 1awi<n] < 9 (ElA1 w7 15,] + E[A) 15, + E[|Aw)["15,])

< 9 (E[A1(w)*15,] + E[A2(w)* 1 5,] + E[As () 15,]).
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This implies, using again the moment bounds on the Aj,

lul

1 1 P
E[|A(U)|2p1{IA(u)\S1}] < CGUQ&I%“)(;/WdU?) .

0

We can now prove the upper bounds for fx,h:

Proof of Theorem 3.1. Parseval’s identity gives
B[lIf - Fulfa] <207 = Knef 2+ 1 [ 19Kn@PE lox ) - fx ()] du

We use the trivial observation that |px (u) — @x (u)] < |px (u) — P%*(u)|, as well as the fact that for z € C
with |z] <1, |1 — exp(z)] < 2|z] holds, to derive that
lox (w) = &x (W) Lyag) <1y < lox (w) = 88 (W) *Lag)<1y
=[x (u)(1 = X" (u) /ox () *Liaw<1y = lox (w)(1 = exp(A(w)*Lyawi<n
<2|px (u)Aw)|*1(ja@w)<13-

On the other hand, using the fact that |px(u) — Px(u)| < 2, as well as the Markov-inequality, we can
estimate

lox (u) = Bx (W)[*Lgawis1y < 4°1AW) Ly ag) 13-
Lemma 5.1, Lemma 5.2 and (A4) thus give

E[I@X(U) - @X(U)IQ] < 2lpx (w) PE[JAW)[*1awyi<1y] + 4E[JAW)|1gaw)>1}]

[ul [ul

CG(X,e,1,u) 2 1 !
ST ex(ll /|w<o,u2>| duz + CG(X,&,p,u ( /|w0u2 )
0

Jul
<CCXG(X,E,1,u)/ 1
- e

n

1 1 P
2du2+CG(X,E,p,U)(E/mdU2) .
0

Hence, by assumption on the support of K,

1/h
[ 1Ku@PE [lox (@ - Bx (] du
—1/h
COxG(X,e 1, 1/m) [ F coX,ep/n) (1 v
< 'xG(X,e,1,1/h) / / dzdu—|— 7( &0, 1/h) / (/7dm> du.
n lpe (2 np |1(0, uz)]
—1/h O —1/h 0
This completes the proof. O

5.2 Proof of Theorem 3.2

5.3 Lemma. Let ¢ > p. Assume that E[|Y1|??] < co. Then for some positive constant C depending only

on p and q,
1 1
2w |

G(X,¢e,p,u) (l i 1 )p G(X,¢e,q,u ( )q 1
<o n/\w<o,u2>|2 du *wx Jina—r /\woug iz )+ )

0

2p
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Proof. We have

2p

1 L o) — Fx (@)
EHW*@T@ =2 st )

Using the definition of $%*, as well as the fact that | exp(z)| > 1/e holds for z € C, |z| < 1, we derive that

B (W) |Lgaw)<iy = lox ()] exp(A(w)[1awi<1y > 1elox (u)1jaw)<1y-
Consequently, by definition of gx and px,
|Px ()| Lja@i<iy 2 1@x (W)lgaw)<iy = (wa (W (g uy <1y + 1{|Am(u>|>1})1{m<u)\<1}
Zé\sox(u)ll{m(unsu-
Next,
() = @x () < 4° (Jox (w) = Bx @[ + [ (w) - Bx (W)
and it holds that
E|[|5x (u) - &x ()] = E[18x (w) = x (@)1 154 (1)1<n-1/2)]
<E[(8x )]+ 17100 jenm1rzy] < 47077

We use Lemma 5.2 to conclude that

]E[WX(U) - @X(U)Fpl ] < ED@X(U) _ &x(u)\%l{m(u)‘gl}]
lox (W)gx (w)[ze ~1AMISH] = 1/e20|px (u)|™
2[ox (w)|*P E[|A(w)*P 1 aquy<1y] + 77
<
= 1/e2P[px (u)|%

G(X,e,p,u P 1
(Gt ( /|w0uz ) + T )

Next, using the fact that by definition of gx, [1/@x (u)| < 4/n holds, as well as the fact that

1 1

1
ox(u)

lox(w) - Ex )|

213 o (0)Bx ()]

. 1
ex(u)  px(u)

x| = :2\

‘ <PX1(U)

we conclude that

2p

E[VPX(“) — px (u)]

_ 1 }
lox (w)px (w)ze 1AW

p(]ED“OX(“) - ¢X(“)\2p1{m(u>\>l}} pED‘PX(“) - SZX(“)|4'71{|A(u)|>1}} )

+n
lpx (uw)]*P lox ()|
E[|A(")\1{\A<u>\>1}} +n" E[IA(U)Il{m(u)m}] +n
<s"( - o i )
lpx (u)[*P lox (w)[*
CG(X,e,q,u ( / )q 1
S o +—|
= Jex(u |4p [( 0 u2) np]
This completes the proof of the lemma. O

Proof of Theorem 3.2 . By Parseval’s inequality and by assumption on the support of K,
1/h

] <2l - Knshollfa + 1 [ E[loctw) - o] du.

—1/h

B[lf. - .
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It holds that
[P0 B0
‘506(11’) QOE(’LL)‘ - QOX(U) @X(U)
[$(0,u) = $(0,u)? ~o el 1 I > 1
<3 0 — (0 - = 0, — = .
S ot WO 0 s | O S - )
Since ¥(0,u) is a characteristic function and J(O,u) its empirical counterpart
E[[(0,u) = 9(0,w)) _ 4 1
ex@P =" Tex @l
Lemma 5.3 and assumption (A5) yield
) 1 1 )?
0, El|l— — ——
pO0rE | - s }
(X, 571,u G(X,e,q,u 4 nt
<cmvio,of [0 / ST O Tt ( soar®) +
2[G(X,e,1,u) G(X,e,q,u ( )q 1
<l / S0 st ( oar ) * e
G(X,e,1,u a1
s ([ )</|¢0z )

SCCS[G(X,s,l,u)/ Ly,
n ) lox (2)] |90X

.
nlox (u)|* 1
Finally, using the Cauchy-Schwarz inequality and again Lemma 5.3, we derive that
o) - 0w A - Lol < B [0, - d0.01 62 H# o
’ ’ ox(u)  @x()| | = ’ ’ px(u)  @x(u)
g[ (X,e,2,u)3 du+G(X52q, é(/“ )q+ 1 }
Tl Tex(@Pe S 0w T fex (u)fine? [0, u2) nleox ()1}
Putting the above together we have shown that for some positive constant C,
1/h 1/h |ul
/E[cpg(u)f(o\() | du < co [FRELUD (XE’Ll/h // _ dz du
lox (2
—1/h 71/h 0
C(Xe1/h) [ 1 v b -t
o ] N )
ni- lox (u)|? \cpx
—1/h 0
|
1/2
4 G(X,s,2;1/h) / 1 , ( dz) du
n lpx ()]
~1/h
1/h Jul 1/h
L G(X.e,20,1/1)'? / 1 ( / ) ! du
nd lpx (u)|* (0 |<PX( I
—~1/h 0 —1/h

which gives the statement of the theorem

6 Appendix
6.1 Lemma. The following holds for the partial derivatives of i
3k k _iuaY>s u k s \k—m (k)
Far(0u) =E[0V) ™| = 37 () El(e)" e (ua)f (wa).
m=0
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Proof. By definition of ¢ and by independence of X,e;1 and €2,

ak k iuq Y] +iug Ys . k iugY:
0= {@ I B (S
k k ] ]
= Z < ) ’LEl)k metuaX g w252] Z ( > ] m}E[(iX)WGWQX}E[eWQS]
m=0 m=0
k
= < ) T e (u2) 0 (u2).
O
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