Hyperspectral super-resolution of locally low rank images from complementary multisource data

Abstract : Remote sensing hyperspectral images (HSI) are quite often locally low rank, in the sense that the spectral vectors acquired from a given spatial neighborhood belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images (MSI) in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective. The derived methods have led to state-of-the-art results when the spectral information lies in a low dimensional subspace/manifold. However, if the subspace/manifold dimensionality spanned by the complete data set is large, the performance of these methods decrease mainly because the underlying sparse regression is severely ill-posed. In this paper, we propose a local approach to cope with this difficulty. Fundamentally, we exploit the fact that real world HSI are locally low rank, to partition the image into patches and solve the data fusion problem independently for each patch. This way, in each patch the subspace/manifold dimensionality is low enough to obtain useful super-resolution. We explore two alternatives to define the local regions, using sliding windows and binary partition trees. The effectiveness of the proposed approach is illustrated with synthetic and semi-real data.
Type de document :
Communication dans un congrès
21st IEEE International Conference on Image Processing (ICIP 2014), Oct 2014, Paris, France. pp.n/c, 2014, 〈10.1109/ICIP.2014.7025141〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01010408
Contributeur : Miguel Angel Veganzones <>
Soumis le : jeudi 19 juin 2014 - 16:35:19
Dernière modification le : jeudi 11 janvier 2018 - 06:26:25
Document(s) archivé(s) le : vendredi 19 septembre 2014 - 11:26:08

Fichier

ICIP2014_Veganzones_LocalSR.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Miguel Angel Veganzones, Miguel Simoes, Giorgio Licciardi, José M. Bioucas-Dias, Jocelyn Chanussot. Hyperspectral super-resolution of locally low rank images from complementary multisource data. 21st IEEE International Conference on Image Processing (ICIP 2014), Oct 2014, Paris, France. pp.n/c, 2014, 〈10.1109/ICIP.2014.7025141〉. 〈hal-01010408〉

Partager

Métriques

Consultations de la notice

321

Téléchargements de fichiers

309