A decomposition of the electric field. Application to the Darwin model

Patrick Ciarlet 1 Eric Sonnendrücker
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, ENSTA ParisTech UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : In many cases, the numerical resolution of Maxwell's equations is very expensive in terms of computational cost. The Darwin model, an approximation of Maxwell's equations obtained by neglecting the divergence free part of the displacement current, can be used to compute the solution more economically. However, this model requires the electric field to be decomposed into two parts for which no straightforward boundary conditions can be derived. In this paper, we consider the case of a computational domain which is not simply connected. With the help of a functional framework, a decomposition of the fields is derived. It is then used to characterize mathematically the solutions of the Darwin model on such a domain.
Type de document :
Article dans une revue
Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 1997, 7 (8), pp.1085-1120. <10.1142/S0218202597000542>
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-01010405
Contributeur : Aurélien Arnoux <>
Soumis le : jeudi 19 juin 2014 - 16:32:39
Dernière modification le : jeudi 9 février 2017 - 15:28:13

Identifiants

Collections

Citation

Patrick Ciarlet, Eric Sonnendrücker. A decomposition of the electric field. Application to the Darwin model. Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 1997, 7 (8), pp.1085-1120. <10.1142/S0218202597000542>. <hal-01010405>

Partager

Métriques

Consultations de la notice

116