C. Amrouche and V. Girault, On the existence and regularity of the solution of Stokes problem in arbitrary dimension, Proc. Japan. Acad, pp.171-175, 1991.
DOI : 10.3792/pjaa.67.171

D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates, ESAIM: Mathematical Modelling and Numerical Analysis, vol.19, issue.1, pp.7-32, 1985.
DOI : 10.1051/m2an/1985190100071

F. Bassi, L. Botti, A. Colombo, D. A. Di-pietro, and P. Tesini, On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, Journal of Computational Physics, vol.231, issue.1, pp.45-65, 2012.
DOI : 10.1016/j.jcp.2011.08.018

URL : https://hal.archives-ouvertes.fr/hal-00562219

L. Beirão-da-veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini et al., BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS, Mathematical Models and Methods in Applied Sciences, vol.23, issue.01, pp.199199-214, 2013.
DOI : 10.1142/S0218202512500492

L. Beirão-da-veiga, F. Brezzi, and L. D. Marini, Virtual elements for linear elasticity problems, SIAM J. Numer. Anal, vol.2, issue.51, pp.794-812, 2013.

L. Beirão-da-veiga, F. Brezzi, L. D. Marini, and A. Russo, Hpdivq and Hpcurlq conforming VEM, 2014.

L. Beirão-da-veiga, V. Gyrya, K. Lipnikov, and G. Manzini, Mimetic finite difference method for the Stokes problem on polygonal meshes, Journal of Computational Physics, vol.228, issue.19, pp.7215-7232, 2009.
DOI : 10.1016/j.jcp.2009.06.034

L. Beirão-da-veiga, K. Lipnikov, and G. Manzini, Arbitrary-order nodal mimetic discretizations of elliptic problems on general meshes, SIAM J. Numer. Anal, vol.5, issue.49, pp.1737-1760, 2011.

F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, of Springer Series in Computational Mathematics, 1991.
DOI : 10.1007/978-1-4612-3172-1

J. Carrero, B. Cockburn, and D. Schötzau, Hybridized globally divergence-free LDG methods. Part I: The Stokes problem, Mathematics of Computation, vol.75, issue.254, pp.533-563, 2006.
DOI : 10.1090/S0025-5718-05-01804-1

P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau, An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems, SIAM Journal on Numerical Analysis, vol.38, issue.5, pp.1676-1706, 2000.
DOI : 10.1137/S0036142900371003

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, vol.31, pp.308-340, 1961.

B. Cockburn, D. A. Di-pietro, and A. Ern, Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods, ESAIM: Mathematical Modelling and Numerical Analysis, vol.50, issue.3, 2015.
DOI : 10.1051/m2an/2015051

URL : https://hal.archives-ouvertes.fr/hal-01115318

B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems, SIAM Journal on Numerical Analysis, vol.47, issue.2, pp.1319-1365, 2009.
DOI : 10.1137/070706616

B. Cockburn, N. C. Nguyen, and J. Peraire, A Comparison of HDG Methods for Stokes Flow, Journal of Scientific Computing, vol.45, issue.8, pp.215-237, 2010.
DOI : 10.1007/s10915-010-9359-0

J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. Liu, A Supernodal Approach to Sparse Partial Pivoting, SIAM Journal on Matrix Analysis and Applications, vol.20, issue.3, pp.720-755, 1999.
DOI : 10.1137/S0895479895291765

D. A. Di-pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods, of Mathématiques & Applications
DOI : 10.1007/978-3-642-22980-0

D. A. Di-pietro and A. Ern, Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes, IMA Journal of Numerical Analysis, vol.37, issue.1, 2013.
DOI : 10.1093/imanum/drw003

URL : https://hal.archives-ouvertes.fr/hal-00918482

D. A. Di-pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes, Computer Methods in Applied Mechanics and Engineering, vol.283, pp.1-21, 2015.
DOI : 10.1016/j.cma.2014.09.009

URL : https://hal.archives-ouvertes.fr/hal-00979435

D. A. Di-pietro, A. Ern, and S. Lemaire, Abstract, Computational Methods in Applied Mathematics, vol.14, issue.4, pp.461-472, 2014.
DOI : 10.1515/cmam-2014-0018

URL : https://hal.archives-ouvertes.fr/hal-00318390

D. A. Di-pietro and S. Lemaire, An extension of the Crouzeix???Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow, Mathematics of Computation, vol.84, issue.291, pp.1-31, 2015.
DOI : 10.1090/S0025-5718-2014-02861-5

URL : https://hal.archives-ouvertes.fr/hal-00753660

D. A. Di-pietro and M. Vohralík, Error Analysis, and Adaptive Algorithms for Numerical Modeling in Geosciences, Oil & Gas Science and Technology ??? Revue d???IFP Energies nouvelles, vol.69, issue.4, pp.701-730, 2014.
DOI : 10.2516/ogst/2013158

URL : https://hal.archives-ouvertes.fr/hal-00783068

J. Droniou, Finite volume schemes for diffusion equations: Introduction to and review of modern methods, Mathematical Models and Methods in Applied Sciences, vol.24, issue.08, pp.1575-1619, 2014.
DOI : 10.1142/S0218202514400041

URL : https://hal.archives-ouvertes.fr/hal-00813613

T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces, Mathematics of Computation, vol.34, issue.150, pp.441-463, 1980.
DOI : 10.1090/S0025-5718-1980-0559195-7

H. Egger and J. Schöberl, A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems, IMA Journal of Numerical Analysis, vol.30, issue.4, pp.1206-1234, 2010.
DOI : 10.1093/imanum/drn083

H. Egger and C. Waluga, hp analysis of a hybrid DG method for Stokes flow, IMA Journal of Numerical Analysis, vol.33, issue.2, pp.687-721, 2013.
DOI : 10.1093/imanum/drs018

A. Ern and J. Guermond, Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol.159, 2004.
DOI : 10.1007/978-1-4757-4355-5

V. Girault, B. Rivì, and M. F. Wheeler, A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems, Mathematics of Computation, vol.74, issue.249, pp.53-84, 2004.
DOI : 10.1090/S0025-5718-04-01652-7

URL : https://hal.archives-ouvertes.fr/hal-00020211

R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, Finite Volumes for Complex Applications V, pp.659-692, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00429843

W. Joerg and M. Koch, BOOST uBLAS C++ Library

R. J. Labeur and G. N. Wells, Energy Stable and Momentum Conserving Hybrid Finite Element Method for the Incompressible Navier???Stokes Equations, SIAM Journal on Scientific Computing, vol.34, issue.2, pp.889-913, 2012.
DOI : 10.1137/100818583

C. Lehrenfeld, Hybrid Discontinuous Galerkin methods for solving incompressible flow problems, 2010.

K. Lipnikov and G. Manzini, A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation, Journal of Computational Physics, vol.272, pp.360-385, 2014.
DOI : 10.1016/j.jcp.2014.04.021

N. C. Nguyen, J. Peraire, and B. Cockburn, A hybridizable discontinuous Galerkin method for Stokes flow, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.9-12, pp.582-597, 2010.
DOI : 10.1016/j.cma.2009.10.007

A. Toselli, hp-finite element discontinuous Galerkin approximations for the Stokes problem, M3AS, vol.12, issue.11, pp.1565-1616, 2002.

M. Vohralík and B. Wohlmuth, MIXED FINITE ELEMENT METHODS: IMPLEMENTATION WITH ONE UNKNOWN PER ELEMENT, LOCAL FLUX EXPRESSIONS, POSITIVITY, POLYGONAL MESHES, AND RELATIONS TO OTHER METHODS, Mathematical Models and Methods in Applied Sciences, vol.23, issue.05, pp.803-838, 2013.
DOI : 10.1142/S0218202512500613