Hybridization of Mixed High-Order Methods on General Meshes and Application to the Stokes Equations

Joubine Aghili 1, * Sébastien Boyaval 2, 3 Daniele Di Pietro 1
* Auteur correspondant
3 MATHERIALS - MATHematics for MatERIALS
ENPC - École des Ponts ParisTech, CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique, Inria Paris-Rocquencourt
Abstract : This paper presents two novel contributions on the recently introduced Mixed High-Order (MHO) methods [D. Di Pietro, A. Ern, hal-00918482]. We first address the hybridization of the MHO method for a scalar diffusion problem and obtain the corresponding primal formulation. Based on the hybridized MHO method, we then design a novel, arbitrary order method for the Stokes problem on general meshes. A full convergence analysis is carried out showing that, when independent polynomials of degree k are used as unknowns (at elements for the pressure and at faces for each velocity omponent), the energy-norm of the velocity and the L2-norm of the pressure converge with order k+1, while the L2-norm of the velocity (super-)converges with order k+2. The latter property is not shared by other methods based on a similar choice of unknowns. The theoretical results are numerically validated in two space dimensions on both standard and polygonal meshes.
Type de document :
Article dans une revue
Computational Methods in Applied Mathematics, De Gruyter, 2015, 15 (2), pp.111-134. 〈10.1515/cmam-2015-0004〉
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01009723
Contributeur : Joubine Aghili <>
Soumis le : dimanche 22 février 2015 - 10:35:50
Dernière modification le : mercredi 10 octobre 2018 - 10:17:32
Document(s) archivé(s) le : mardi 30 juin 2015 - 12:46:30

Fichier

ABD15.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Joubine Aghili, Sébastien Boyaval, Daniele Di Pietro. Hybridization of Mixed High-Order Methods on General Meshes and Application to the Stokes Equations. Computational Methods in Applied Mathematics, De Gruyter, 2015, 15 (2), pp.111-134. 〈10.1515/cmam-2015-0004〉. 〈hal-01009723v2〉

Partager

Métriques

Consultations de la notice

799

Téléchargements de fichiers

290