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Abstract—In this paper, we present EEWAA, a new Energy-
Efficient Wireless sensor Architecture for Activity recognition
Applications. Contrary to existing approaches, our solution aims
at optimizing the lifetime of every battery-operated devices that
may contribute to the activity recognition, including sensors but
also smart phones or tablets. Depending on the environment
opportunities, our approach balance the load among multiple
base stations (mobile phone, tablet, laptop) and when beneficial,
enables the energy-limited base stations and/or sensors to offload
a part of their tasks to back-end servers. In order to do this, we
propose a new decision metric to select the best execution config-
uration, considering the latency and accuracy requirements, as
well as the energy of every device involved in the computation.

I. INTRODUCTION

The recognition of human activities has received a signif-

icant attention in the medical field, because it is a task of

interest for many applications, including assisted living of

elderlies, physical assessment, and supervision of patient with

chronic diseases such as diabetes, obesity, cognitive disorder

or arrhythmia [1]. In a typical scenario, wearable sensors

like accelerometers or ECG are attached to the patient to

measure inertial and physiological data. These data are further

analyzed to provide a feedback to caregivers who can assess

the efficiency of a new treatment, adjust medication, better

study a disease or supervise a patient behavior [2]. In practice,

such systems face a major challenge that limit their widespread

adoption : the significant energy consumption of battery-

operated devices for continuous sensing and communications.

Indeed, radio transmissions, data processing and sensing tasks

actively stress the nodes reserves, whereas they are expected

to operate during the course of the day without maintenance.

To tackle this problem, many solutions have been proposed

to save energy in activity recognition applications. Among

them we can cite sensor set selection [3]–[5], deactivation

of power-hungry sensors [2], [6], [7], adaptive sampling rate

[8], [9], communications reduction [10], duty-cycling [11] and

resource sharing [12], [13]. However, these works are usually

interested in the energy consumption of the sensors but never

consider that the base station can also be energy-constrained.

Traditionally, powerful laptop acted as base station, but for

mobility consideration most of the works now consider mobile

phone as base station. Although phones are more powerful

devices compared to wearable sensors, the truth is that they

also face energy consumption problems [14].

We believe that activity recognition architectures can take

advantage of the proliferation of smart devices (phones,

tablets, laptops) and their daily usage to balance the load

among base stations. For example, when at home and at the

office, body sensors can communicate with a laptop or an

access point. When outdoor, a mobile phone or a tablet can

alternatively take the relay depending on their availability and

battery state. Furthermore, additional energy can be saved

at a base station through computation offloading, that is, a

base station can execute (a part of) its tasks on a back-

end server. This approach has proven to be energy-efficient

under some conditions [13], [15], [16], and the usage of

devices with higher computing, storage and energy capabilities

allows to incorporate more complex algorithms and models.

As computation offloading is a trade-off between energy and

performances, we propose a new metric to determine when

offloading is beneficial, based on the energy consumption

of every devices involved in activity recognition, the latency

and the classification accuracy. Besides, our solution is self-

adaptive to the environment, that is the balancing and the

offloading strategies are highly dependent on the available

connections and devices, as well as their internal state. Fi-

nally, our architecture is complementary to the energy-efficient

mechanisms already proposed in the literature, as we are still

able to implement them to further enhance the system lifetime.

In what follows, in Section II we study traditional architec-

tures for activity recognition applications. In section III, we

present the general idea of our EEWAA architecture. In section

IV, we propose a new metric for offloading decisions. Section

V concludes the paper and highlights challenges.

II. ACTIVITY RECOGNITION

The main stages for activity recognition include sensing,

processing and analysis, as illustrated in Figure 1. More

specifically, sensing corresponds to the data acquisition at

sensor nodes. Data processing generally consists in filters

and features extraction to obtain relevant characteristics of

the signal. The analysis refers to the activity recognition

which is done through classification. Depending on where

these tasks are executed, the energy/performance profile of

the body sensor network varies. For example, the sensors

have the possibility to directly store the raw data, leaving

all the processing for later. The drawbacks of this method



Fig. 1. The main stages of activity recognition applications.

is that it prevents real-time feedback to the patient and it

requires a lot of memory, even if to save space, the sensor can

store extracted features. Another solution consists in sending

the raw data to the base station, but it results in a huge

amount of energy consumption due to transmissions. In the

meantime, using a more powerful base station allows to have

access to more complex algorithms and models. Furthermore,

to save communications, the sensor can send only the extracted

features, the compressed signal or the results, which decreases

communication cost but increases the computation load. From

the energy point of view it may be optimal, but sensor scarce

resources limit the implementation to lightweight algorithms.

Actually, some classification algorithms are very expensive in

terms of memory and computation requirements which makes

them not suitable for sensor platforms [1].

Wang et al. [17] compare the energy/performance trade

off between an on-node scheme where the classification is

performed on the accelerometer, and an off-node scheme

where the accelerometer sends its raw data to the base station.

They show that with the on-node scheme 40% energy can

be saved with 13% reduction in classification accuracy. So,

their results suggest that it is more energy-efficient to perform

all the tasks on the sensors. However, we can make several

observations to nuance this statement. First, as mentioned

by the authors, if the user stays in active state or if he/she

changes activity often, on-node scheme may consume more

energy due to additional processing and data communications.

Second, the study only consider accelerometers, but other

kind of sensors may require more complex processing like

ECG. In this case, on-node signal processing may not be

possible, or at the cost of accuracy loss. Third, computation

offloading is more energy-efficient than local computation in

some scenarios. For example, in SociableSense [16] it is more

energy-efficient to offload the speaker identification task when

using a microphone. In METIS [16], sensing offloading can

save up to 35% energy over pure phone sensing. Fourth, energy

is not the unique metric of interest and some applications may

not accept a loss in accuracy. In these cases, leveraging energy

consumption for more accurate classification may be necessary

to maintain the desired performance.

As we can see, a static architecture can not satisfy the

requirements of every body sensor networks. Indeed, activ-

ity recognition applications are constrained by the types of

sensors and processing to perform, the patient behavior and

the resource availability. That’s why we propose a more

general architecture that optimizes the energy/performance

trade-off depending on the applications requirements and the

environment opportunities. The idea is to switch from an

operating mode to another when there is a change in the

context. For example, if a patient leaves its office to go at

a meeting, the sensors can stop sending their data to the PC

and redirect their transmissions towards the patient’s phone. If

the phone has enough energy to last until the end of the day,

it can process the received signals. Otherwise, the phone will

only carry out the classification task. So, EEWAA supports

many execution scenarios thanks to context-aware adaptation,

which enables us to leverage energy consumption for accuracy

and vice versa.

III. EEWAA ARCHITECTURE

Our architecture is composed of:

• A set of body sensors (e.g. accelerometer, EMG, gyro-

scope, ECG).

• A set of ambient sensors (e.g. a microphone in a room,

an RFID tag on objects, a GPS in a phone).

• A set of candidate base stations, mobile or not, with

different energy, storage and computing capabilities (e.g.

laptop, mobile phone, tablet, access point).

• A back-end server.

At a given time t, only a subset of base stations may be

available (possibly none), for two reasons : a base station

may not be in the patient environment or it is in the patient

environment but there is no wireless connections between the

sensors and the base station. Consequently, the connection to

the back-end server does not always exists. Similarly, there

may not be ambient sensors in the environment. We denote

by Dt = {d1, d2, .., dq} the set of devices available at time t.

Each device (sensor/base station/server) can execute a set of

tasks, like sensing, signal processing, classification or result

display. For a given environment, there exist several execution

configurations, depending on where each task is executed

and resulting in different energy/performance profile. Through

the load balancing and offloading strategies, the objective

of EEWAA is to select the configuration that achieves a

satisfactory tradeoff. We give in section IV a new metric for

configuration selection.

In Figure 2 we illustrate an execution configuration. In this

scenario, the phone is elected as base station (BS). The phone

is equipped with a microphone, but it offloads its sensing

task to a microphone embedded in the environment. The BS



Fig. 2. An example of an execution configuration.

receives extracted features from the accelerometer and the

microphone, and it receives raw data from the ECG and the

gyroscope. The BS computes the features for the gyroscope

but it offloads the task for the ECG. So, the back-end server

perform the feature extraction of ECG data, send the result

back to the phone and store them in the data base. Finally, the

phone is able to perform the classification using the features

extracted from every signal and display the result. We can

imagine that after a while, if the phone battery has decreased

below a threshold, the tablet can take the relay as base station.

We first construct a matrix of constraints, where (i, j)
represents the costs of computing a task j ∈ [1, n] on a device

i ∈ [1, q], as illustrated in Table I. If the device i cannot

execute the task j, then the cost is set to infinity. The cost

may be a tuple of different costs, e.g. (eij , lij) which are

respectively the energy and latency costs of executing the task

j on device i. We then periodically select a configuration using

the metric defined in section IV, so that every task is assigned

to one and only one device.

TABLE I
MATRIX OF CONSTRAINTS

task 1 task 2 ... task n

d1 (e11, l11) (e12, l12) ... ∞

d2 ∞ ∞ ... (e2n, l2n)
: : : : :
dq (eq1, lq1) ∞ ... ∞

IV. OFFLOADING STRATEGIES

In this section, we present a new metric for computation

offloading decision in EEWAA. Our objective is to decide

where to execute each task, based on energy-efficiency, latency

and accuracy requirements. It is often assumed a client/server

architecture, where a mobile device can offload a part of its

tasks to a back-end server. In this scenario, only the energy

consumption of the mobile is of interest. This is the case

of SociableSense [16], an architecture dedicated to activity

recognition for sociable interactions, where a phone with inte-

grated sensors can offload its tasks to the cloud. SociableSense

selects the configuration ci that maximizes a weighted additive

utility function (1), which takes into consideration the energy

consumption, the latency and the amount of data sent over the

network.

uci = weuei + wluli + wdudi
(1)

with uxi
=

xmin − xi

xi

x ∈ (e, l, d) (2)

where ei is the energy consumption of the architecture when

choosing the configuration ci, li is the resulting latency and di
is the amount of data transmitted over the network. Depending

on the phone battery state, more prevalence can be given to

the energy metric by adjusting the weights wi dynamically.

Few works have considered that mobile devices can offload

their data between them [18], [19]. In this case, the energy

of every device is of interest. Mtibaa et al. [19] maximize

the lifetime of the whole network, which is define as the

time until the first mobile runs out of energy. They take into

consideration the cost for computing locally Ecomp and the

costs for transmitting and receiving Ecomm. A node u offloads

a task to a neighboring node v if the response time of migrating

the task to v is within the task deadline and the estimated

remaining energy is maximized as in Eq. (3) [19].

maxv∈G{(E
u
t −Ecomm(u,v))+(Ev

t −Ecomp(v)−Ecomm(v,u))}
(3)

where Eu
t is the remaining energy of node u. After selecting

v, if v == u the node executes its task locally, otherwise it

offloads the task. The results show that this approach manages

to fairly distribute the load among nodes.

Shi et al. [18] maximizes the lifetime of the first depleted

node under the constraint that tasks complete before their

deadline. They minimize the following utility function to

take into consideration the energy consumption of all nodes



involved in the remote computing and the residual energy

available to these nodes:

u(T ) =
∑

i∈NT

eTi

Ri

(4)

where NT is the set of nodes involved in the remote computing

of task T , eTi is the energy consumption of node i for task

T , and Ri is the residual energy of node i [18].

We propose a new metric for decision offloading in EE-

WAA, that takes into account the application accuracy, the

latency, and the energy spent by every battery-operated devices

involved in the activity recognition. We aim at maximizing a

weight additive utility function as in [16], while considering :

• δi, the error accuracy of the classifier used in configura-

tion ci.

• li, the latency of the application in configuration ci.

• ei, the energy consumption of the architecture in ci.

uci = weuei + wluli + wδuδi (5)

We can define ei as the sum of the energy spent in every

battery-operated devices involved in the computation over their

residual energy as in [18]. However, it is not fair because

phones are not only dedicated to the health supervision appli-

cation, so the fraction of their energy dedicated to the activity

recognition application must not be as high as the one of

the sensors. In other words, a part of phones energy must

be preserved to be dedicated to other tasks, like calling or text

messaging. That’s why we propose to introduce a factor αj

that represents the desired implication of the device j in the

application. We redefine ei as in Eq (6):

ei =
∑

j∈Ni

αj

Eij

Rj

(6)

where Ni is the set of devices involved in the computation

in configuration ci, Eij is the energy spent by the device

j in configuration ci, Rj is its residual energy and αj is a

weight that represents how much a device can dedicate its

energy to the activity recognition application. An αj equal

to 1 means that the device is exclusively dedicated to the

healthcare application, while an higher value means that the

device will not spend all its energy in the application. The

energy consumption Eij of a device j in ci includes the energy

spent for sensing, computing and communications. Notably,

the energy spent in communications will depend on the size

of data to be transferred [15], the bandwidth availability [20]

and the communication technology (Wi-Fi, 3G) [21].

V. CONCLUSION

This paper describes the work in progress towards the

development of EEWAA, an Energy-Efficient Architecture for

Activity recognition Applications. EEWAA adapts its operat-

ing mode to context changes in order to take advantage of the

opportunities provided by the environment. Many challenges

need to be addressed. First, it will be necessary to manage

data fusion and synchronization when signal processing are

distributed over multiple devices, like in the scenario of Figure

2. Moreover, the presence of a remote server can be exploited

to implement more complex classification algorithms based on

prediction. It would be possible to progressively construct of a

data base of the patient habits and infer additional knowledge.
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