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1 INTRODUCCION 
 
Reinforced concrete (RC) bridges are subjected to 
actions that could affect its serviceability and safety 
during their whole life- cycle, e.g., chloride penetra-
tion, fatigue, creep, etc… (Bastidas 2010). Under 
these actions, a structural reliability analysis is es-
sential to anticipate maintenance actions that opti-
mize costs and ensure appropriate levels of servicea-
bility and safety. Nowadays, there are significant 
advances in probabilistic modeling of these deterio-
ration processes. However, the most part of studies 
focus the reliability analysis on a single section of 
the structure (Stewart M.G. et al 2008). Recent 
works have demonstrated that deterioration process-
es and loading are highly space-variant (Bastidas et 
al 2010). Therefore, the consideration of their spatial 
variability is essential for proper reliability assess-
ment. 

Within this context, this paper focus to analyses 
reliability structural considering the spatial variabil-
ity of its parameter. The firth, we proposes an exten-
sion of random field theory for modeling spatial var-
iability of deterioration processes and an expansion 
Karhunen-Loève is used (section 3). Thus, the stud-
ied structure is discredited into several elements and 
system reliability is used to evaluate the probability 
of failure. Herein, we propose method estimation se-
ries system reliability (section 4). Some considera-
tions for optimal discretization will be also discussed 
in the paper. The proposed methodology will be ap-
plied to the reliability analysis of a RC bridge girder 
placed in a chloride-contaminated environment. Data 
coming from real measurements will be used in both 

the definition of the variables with larger spatial var-
iability and in their characterization (section 5). The 
results of this study illustrate the importance of in-
cluding spatial variability in the problem. 

 
2 CHLORIDE-INDUCED RC DETERIORATION 

IN SATURATED ENVIRONMENTS 
 
Assessment of corrosion effects on RC structures is 
a difficult task because several deterioration mecha-
nisms interact in the process. The deterioration of 
RC induced by corrosion involves the interaction be-
tween three mechanisms: ingress of the corroding 
agent –i.e., chlorides or carbon dioxide, corrosion of 
reinforcing steel and concrete cracking. The ingress 
of the corroding agent induces corrosion of the rein-
forcing bars. The accumulation of corrosion products 
in the steel/concrete interface generates concrete 
cracking, which plays an important role in the steel 
corrosion rate when excessive concrete cracking is 
reached. Based on the previous considerations, the 
corrosion process is divided into two stages namely 
‘corrosion initiation’ and ‘corrosion propagation’. 
The following sections describe the physical phe-
nomena as well as outline the adopted models to de-
termine the time to corrosion initiation caused by 
chloride ingress 

2.1 Chloride ingress mechanism and modeling 
Fick's second law of diffusion is usually used to 
study the flow of chlorides into concrete (Tuutti, 
1982); then for the unidirectional case (flow in x-
direction): 
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where Cfc is the concentration of chlorides dissolved 
in the pore solution, t is the time and Dc is the effec-
tive chloride diffusion coefficient. Assuming that 
concrete is a homogeneous and isotropic material 
with the following initial conditions: (1) the concen-
tration is zero at t=0 and (2) the chloride surface 
concentration is constant; the free chloride ion con-
centration C(x, t) at depth x after time t for a semi-
infinite medium is: 
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Where Cs is chloride surface concentration and 
erf(�) is the error function. 

The closed-form solution of Fick's diffusion law 
can be easily used to predict the time to corrosion in-
itiation. However, equation (2) is valid only when 
RC structures are saturated and subjected to constant 
concentration of chlorides on the exposed surfaces. 
These conditions are rarely present for real structures 
because concrete is a heterogeneous material that is 
frequently exposed to time-variant surface chloride 
concentrations. Besides, this solution does not con-
sider chloride binding capacity, concrete aging and 
other environmental factors as temperature and hu-
midity (Saetta et al 1993; Bastidas et al 2010, 2011). 

The European Union project, (Duracrete, 2000), 
proposes an expression similar to equation (2) which 
considers the influence of material properties, envi-
ronment, concrete aging and concrete curing on the 
chloride diffusion coefficient: 
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where ke is an environmental factor, kt is a factor 
which considers the influence of the test method to 
measure the diffusion coefficient Do, kc is an influ-
ence factor for concrete curing, Do is the chloride 
migration coefficient measured at defined compac-
tion, curing and environmental conditions, to is the 
reference period to measure Do and nD is the age fac-
tor. The lifetime assessment resulting from this ap-
proach is better than the one provided by equation 
(2) because it accounts for the type of concrete, the 
w/c ratio, the environmental exposure (submerged, 
tidal, splash and atmospheric), aging and concrete 
curing. In addition, the strength of the Duracrete ap-
proach lies in considering the randomness related to 
chloride penetration. Although this method does not 
take into consideration chloride flow in unsaturated 

conditions, this model will be used herein to illus-
trate the phenomena of spatial variability of corrod-
ing RC structures. 

2.2 Corrosion initiation 
After corrosion initiation, the diameter reduction of 
reinforcing bars induced by corrosion can be esti-
mated in terms of a change in the volumetric rate by 
using Faraday’s law: 
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where du(t) and dp(t) are the residual diameters of the 
reinforcing bar at time t for uniform and pitting cor-
rosion, respectively, d0(t) is the initial diameter of 
the bar in mm, α is the ratio between pitting and uni-
form corrosion depths, and icorr(t) is the time-variant 
corrosion rate (µA/cm2). Given the complexity of the 
corrosion process in RC, icorr depends on many fac-
tors such as concrete pH and availability of oxygen, 
and water in the corrosion cell. However, for the sa-
ke of simplicity, this work assumes that corrosion 
rate is constant after corrosion initiation. 

3 PROBABILISTIC MODELING 
3.1 Probability of corrosion initiation 
The time to corrosion initiation, tini, is defined as the 
time at which the chloride concentration at the steel 
reinforcement surface reaches a threshold value, Cth. 
This threshold concentration represents the chloride 
concentration for which the rust passive layer of 
steel is destroyed and the corrosion reaction begins. 
Note that this threshold is sensitive to the chemical 
characteristics of concrete components: sand, gravel 
and cement. Therefore, it is assumed herein that Cth 
is a random variable. The time to corrosion initiation 
is obtained by evaluating the time-dependent varia-
tion of the chloride concentration at the reinforcing 
steel. This is computed in this work by using equa-
tion (3). The cumulative distribution function of the 
time to corrosion initiation, Ftini(t), is defined as: 
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The limit state function that defines corrosion ini-
tiation can be written as: 
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where Ctc(X, t) is the total concentration of chlorides 
at the concrete cover depth ct at time t. The probabil-
ity of corrosion initiation, pini, is obtained by inte-
grating the joint probability function over the failure 
domain –i.e., equation (5) 



3.2 Probability of failure 
In this section, we considered the probability of fail-
ure of a structure concrete submitted by a loading S 
and determined by: 

∫=≤= dxxftMtMPtP SRf )()),(),((),( XXX  (7) 
 

where X is the vector of random variables and f(x) is 
the joint probability density function of X, MR and 
MS is a capacity moments and effected moment of 
the structure at the time t. If structural failure is 
achieved when the crack or pit size reaches a critical 
value, inducing the cross-section failure, the limit 
state function becomes: 

( ) )(),()),(( XXX ssRs MaAMaAg −=  (8) 
 

where As(a) is the net steel area, X is the vector of 
random variables (i.e., applied load, concrete com-
pressive strength, etc.), MR(As(a), X) is the bending 
moment capacity and MS(X) is the applied moment 
at the time t. With the )(aAs  is determined by (Mark 
G.S. et all 2008): 
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with d0 is the initial diameter of the steel bar. 
 
And the equation (7) will be replaced by: 
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3.3 Spatial variability 
Risk Based Inspection analysis or reliability methods 
applied to real structures generally assume: 
- Either that there is no stochastic field involved in 
the problem; 
- Neither that the location of the most critical defect 
from reliability point of view is known and the dis-
tribution of defects in the neighboring doesn’t affect 
the reliability. 
It is well known that the reality is more complex and 
that we should account for stochastic fields too and 
non perfect inspections for condition assessment. 
Then the stochastic field could take several forms 
more or less complicated: 
- The most simple is the stationary stochastic field 
that is able to model the chloride distribution or oth-
er properties in the concrete for instance (Bazant 
1991, 2000a, 2000b); 
- More sophisticated is the piecewise stationary pro-
cess that can integrate the variability of the con-
creating by steps or the corrosion of structures in 
contiguous but different environments; 
- Finally, fully non stationary fields are certainly the 
most acceptable for a fine representation of proper-
ties. 

However, except for natural soils, materials used 
for bridges building are produced following a quality 
process and control. We can consider that some vari-
ation are fair, for instance the spatial change of the 
mean value. This paper focuses on the first case on-
ly. 

3.3.1 Description the spatial variability  
With the hypothesis the stationary stochastic field, 
the spatial variability will be represented by a trajec-
tory with the distance. In this paper, we used an ex-
pansion Karhunen – Loève to represent the spatial 
variability (Schoefs et all 2011): 
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where,   µZ is value mean of the field of Z, σZ is val-
ue standard deviation of the field of Z, n is number 
of terms in the expansion, ξξξξI is a set of centered 
Gaussian random variable reduced, λi and fi are re-
spectively the eigenvalues and eigenfunctions of the 
covariance function: )( x∆ρ  

  
To determine the eigenvalues λi and eigenfunc-

tions fi, we assume that the field is second order sta-
tionary and use the exponential form of correlation 
function as follows: 
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And obtain results of eigenvalues and eigenfunctions 
λi and fi: 
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where, b is lounge of correlation and ωi is solution 
of transcendental equations: 
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3.3.2 Spatial variability of moment capacity. 
In this paper, we consider that concentration chlo-
rides surface Cs and the diffusion coefficient D0 are a 
stochastic field and represented by equation 12. And 
we obtain the cross-section area of armature by 
equation 3 and 9 along the RC beam. 

The moment capacity of the RC beam is a func-
tion of concrete compressive strength, fc’; effective 
depth d; beam width, b; yield stress, fy and cross-
sectional area of armature As(a). The moment ca-
pacity can closely be approximated as: 
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for singly reinforced rectangular beams. If the rein-
forcement layout comprises n reinforcing bars then 
moment capacity of the beam is a parallel system di-
rectly proportional to them sum of yield capacity of 
each reinforcing bar at time t. The moment capacity 
at any element j at time t is: 
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We assume that RC beam comprising m ele-

ments, parameter of each element is constant, and 
the failure mode of the beam will be modeled as a 
series system. More detailed numerical modeling 
will lead to more accurate estimates of structural ca-
pacities of corroding structures. 

4 STRUCTURAL RELIABILITY ANALYSIS 
CONSIDERING SPATIAL VARIABILITY OF 
GEOMETRICAL CHARACTERISTIC 
 

For the series system, the critical limit state occurs 
when actual load effects exceed the resistance at any 

element. In general, if it is assumed that n load 
events S at times t. With a beam comprising m ele-
ments, the critical limit state at ith element is: 
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where MR

i and Si represents the structural resistance  
and load effect at the mid-point of ith element. With 
the n load event, we obtain Gi is a random variable. 
The cumulative probability of failure of the RC 
beam at the time t is: 
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where, Φm is a multinormale distribution, ββββ    is a vec-
tor of reliability indices, { }mββββ ,...,, 21=

!
with βi 

is a reliability indices of the element ith and [ρ] is a 
matrix correlation of the limit state G.  

If it is assumed that failure elements are independ-
ent elements, then the cumulative probability of fail-
ure is: 
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To solution equation (21), the FORM method will 

be used and based on Bi-normal problem. The prin-
cipal in this method, we use Bi-normal model for the 
replacement each of two elements by one equivalent 
element. Figure 1 show detail this method. 

 
Figure 1: Description evaluation reliability structural in series 
system method   

The firth, we will replace two elements E1 and E2 
by one equivalent element E12 with value reliability 
indices β12 calculated by: 

 [ ]),,( 12212
1
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And the correlation coefficient entre new equiva-
lent element E12 with element ith, i=3…m, ρ12k ob-
tained by (X.-X. Yuan 2006): 
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where, β12k is an equivalent reliability index of E1, 
E2 and Ek : 
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where, β1k , β2k , ρ12|k determinate by: 
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where, φ(.) noted the PDF of Normal distribution 
standard. 

The Monte-Carlo simulation is used herein to 
evaluate equation (19). At each element ith at the time 
t, the limit state Si is randomly generated, for this paper, 
we consider the random Gaussian. 

In the numerical example later, we present results for 
the reliability structural with the correlation between el-
ements. 

5 ASSESSMENT OF THE 
AUTOCORRELATION PARAMETER  

 
We assume that the stationary stochastic field can 

be characterized by an autocorrelation function 
(ACF).  
Table 1 presents the most interesting ACF consid-
ered for spatial variability of structures with their pa-
rameter, called scale of fluctuation θ. A complete 
overview of the auto-correlation functions and their 
application is available in Kenshel (2009). 

 
Two major procedures have been reported in the lit-
erature for the estimation of θ for a spatially variable 
property from a digitized record of data. In the first 
procedure, reported by Li (2004), the Maximum 
Likelihood Estimate method (MLE) is used in which 
different values for the model parameter of the pro-
posed ACF model is assumed and the value that 
maximizes the corresponding MLE is taken as the 
model parameter. In the second procedure, proposed 
by Vanmarke (1983), a proposed ACF model (from  
Table 1) can be adjusted to provide the best fit to the 
actual sample correlation coefficients ρ(∆x) thereby 
providing estimates of the corresponding model pa-
rameter (i.e. a, b, c, d, e or f in Table 1). 

 
 

Table 1: Autocorrelation function and corresponding scale pa-
rameter θ 

In this paper, we select the model 2: 
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and we use the likelihood estimate for the estimation 
of b.  
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Where νi is the ith component of the vector of inde-
pendent standard values obtained from equation: 
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where z is the  vector of realizations of random vari-
able Z, µz and σz respectively the mean value and the 
standard deviation of the stationary field Z(x,θ) , and 
C a lower triangular matrix such that CCT= ρ ρ ρ ρ and ρρρρ 
the autocorrelation matrix. 
And, maximize L is equivalent to minimize L1: 
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The data treatment lies on a previous physical 

analysis to gather similar situations and distinguish 
others. By considering the second Fick law without 
initial chloride concentration (i.e. C0=0) we consider 
that: 

- the apparent coefficient of diffusion D0 depends 
on the material and the quality of concreting and 
is assume not to be influence by the exposure; 

- the surface chloride content CS depends on the 
environment and two exposures are considered: 
for each beam: north and south. 

 
 ACF Name ACF Model 
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For the structure considered in section 5, Figure 2 
shows the evolution of L1 with scale of fluctuation b 
for Cs and two minimum values of this function are 
obtained for the two exposures: 0.7 and 1.9 respec-
tively for the North and the South exposures. 

  

Figure 2: Evolution of function L1 with scale of fluctuation b of 
Cs (Data of Bridge Ferry-Carring, Irlande) 

Figure 3 gives the same representation for the 
scale of fluctuation of D0. The minimum values for 
the two exposures are more close 0.8 and 1.4 respec-
tively for the North and the South exposures. That 
confirms that the scale of fluctuation should be the 
same because governs by the material properties and 
not the exposure. The value 1.1 that corresponds to 
the merging of data at North and South exposure is 
selected in the following. 
 

Figure 3: Evolution of function L1 with scale of fluctuation b of 
D0 (Data of Bridge Ferry-Carring, Irlande) 

6 NUMERICAL EXAMPLE 

6.1 Problem description 
In this paper, we present the influence of variable 
spatial of the geometrical characteristics Cs and D0 
in the reliability analyses of RC beam (Figure 4). We 
consider here three materials: 

- Poor: cover =38mm, w/c=0.65 and f’ck=28 MPa. 
- Fair:  cover =38mm, w/c=0.50 and f’ck=40 MPa. 
- Good: cover =38mm, w/c=0.45 and f’ck=46 

MPa. 
With two conditions different of environment: Tidal 
and Atmospheric. The considered random variables 
are presented in Table 2. 
  
 

Figure 4: Configuration of the bridge girder 
 
Table 2: Statistical and deterministic parameters for the consid-
ered variables of the RC beam 
 
Variable     Distribution   Mean   COV 
P        Lognormal    115kN   0.20 
fc

’   Poor    Normal     37MPa   0.15 
Fair    Normal     53MPa   0.15 
Good    Normal     61MPa   0.15 

fy        Normal     600MPa  0.10 
ke        Deterministic   0.924 
kt        Deterministic   1 
kc        Deterministic   0.8 
D0   Poor    Normal     1320mm²/yr 0.07 

Fair    Normal     473mm²/yr  0.09 
Good    Normal     316mm²/yr  0.10 

t0         Deterministic   28 days 
Ccr  Poor    Normal     0.675*   0.27 

Fair    Normal     0.900*   0.17 
Good    Normal     0.875*   0.16 

ACs** Tidal    Normal     7.758   0.17 
   Atmospheric Normal     2.565   0.14 
εCs**  Tidal    Normal     0    σ=1.105 

Atmospheric Normal     0    σ=0.405 
nD        Determined   0.4 
α         Gumbel     5.56    0.22 
icross       Normal     2 µA/cm²   0.10 
* Percentage of weight of binder; ** to estimate 
Cs=ACs(w/c)+εCs 

6.2 Results 
In the firth results, this paper presents the influence 
of spatial variability in probability of corrosion initi-
ation. In Figure 5 present the probability with the 
three cases of type material without spatial variabil-
ity. It shows that influence of corrosion in structure 
is different when the environment is variable. We re-
alize also that, with the same material, if structure 
put in Tidal environment, the corrosion is faster than 

Live load, P Dead  load 

l=10 m 



in the Atmospheric. The influence of environment 
into corrosion is clear than type material. In all re-
sults later, we focus calculate the Tidal environment. 

 
 

Figure 5: The cumulative distribution function of the time to 
corrosion initiation 

 
Figure 6 and Figure 7 show the influence of spatial 
variability in the probability of corrosion initiation. 
With the considering the spatial variability and the 
correlation between elements, we realize that at the 
time t, when considering this variability, structure 
reaches its limit state faster than without the consid-
ering (you see in Figure 6, this factor can reach to  
200%). So, the considering in estimate reliability 
structure is indispensable. In results later, we will 
detail this influence in estimation of reliability struc-
ture of RC beam.  

  

Figure 6: Influence of spatial variability in the probability of 
corrosion initiation (the case Fair in Tidal environment) 
 

Figure 7: Influence of spatial variability in the probability of 
corrosion initiation (the case Good in Tidal environment) 
 

Figure 8 and Figure 9 presents the results of prob-
ability of failure in the case with and without consid-
ering the spatial variability of the case study of Tidal 
environment. Based on the results, we can also real-
ize that probability of failure obtained by consider-
ing spatial variability are higher than for the case 
without spatial variability.  
 

Figure 8: Influence of spatial variability in the probability of 
failure (the case fair in Tidal environment) 
 
 

Figure 9: Influence of spatial variability in the probability of 
failure (the case Good in Tidal environment) 
 
If we give a critical of probability of failure, we will 
obtain the result that show influence of spatial varia-
bility into the time initiation corrosion and the time 
reinforcement of structure. In the result later (Figure 
10 and Figure 11), we present for example: Pf =0.5. 
 

 
Figure 10: Estimation the times reinforced the RC beam (the 
case Fair in Tidal environment) 
 



 

Figure 11: Estimation the times reinforced the RC beam (the 
case Good in Tidal environment) 

 
It can be noted that with a critical accepted of 

probability of failure, the times reinforced of RC 
beam obtained by the considering spatial variability 
is smaller than for the case without the variable from 
10 to 50%. 

7 CONCLUSIONS 

This paper presented the model assessment prob-
ability of failure in considering spatial variability of 
RC beam. The method based on problem Binormale 
and FORM method in calculated the multi-
distribution integral. The results of the numerical ex-
ample show that influence of spatial variability is 
very important in assessment reliability structural. 
The considering of spatial variability of corrosion in 
estimation probability of failure is indispensable. 
The results show that the failure probabilities within 
spatial variability are higher than without the varia-
ble from 10 to 50%.   
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