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Abstract

Purpose The purpose of this paper is to apply the method of separation of variables to obtain the
current distribution in the slot of an electrical machine, taking into account the skin effect.

Design/methodology/approach A slot in an electrical machine, filled with a solid conductor, and
fed with an externally imposed density current, presents a current distribution that depends on the
skin effect. The magnetic potential vector is formulated and solved using a separate representation as
a finite sum of unidimensional (space and time) functions, taking into account the boundary
conditions. The proposed method obtains the transient and permanent distribution of the current in
the interior of the slot, both in transient and steady regime, and the results at the end of the transient
are compared with the analytic ones in permanent regime.

Findings The magnetic potential vector in the interior of a slot filled with a solid conductor can be
expressed as a finite sum of just 16 modes, which capture the evolution of the field during the transient
and permanent regime. These modes are expressed as the product of space and time functions, which
have been obtained automatically by the separation of variables algorithm. Instead of solving multiple
field problems, one for each time instant, the proposed method just solves two single variable
differential equations, one in the time domain and other in the spatial one.

Research limitations/implications The application of the proposed method to non sinusoidal
currents, such as those generated by variable speed drives, would allow to compute the field taking
into account both the very small time scale of the pulse width modulation pulses, in the range of
kiloHz, and the wide time scale of the currents envelope, in the range of 0 100 Hz. Extension to 2D and
3D spatial configurations is also under consideration.

Originality/value Using the method of separation of variables to solve electromagnetic problems
provides a new method which can simplify and speed up the computation of transient fields in
multidimensional time and space domains.

Keywords Modelling, Computer applications, Electric current, Electromagnetism, Transient voltages,
Simulation
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I. Introduction
Separated representations based on finite sums can help to reduce drastically the
computer resources and the calculation costs that the functional approximation
requires in multidimensional problems (Ammar et al., 2006, 2007, n.d.; Chinesta et al.,
2008; Gonzalez et al., 2010). For example, the simulation of transient currents in motor
slots exhibits an exponential growing, characteristic of mesh-based discretization
strategies, as we introduce new dimensions (either spatial one or the time) in the model.
Using the method of separation of variables, on the contrary, the number of degrees of
freedom scales just linearly with the dimension of the space in which the model is
defined. This method, also known as finite sums decomposition or proper generalized
decomposition, expresses an N-dimensional function uðx1; x2; . . . ; xN Þ as:

uðx1; x2; . . . ; xN Þ <
Xi r

i 1

Fi
1ðx1Þ ·Fi

2ðx2Þ· · ·Fi
N ðxN Þ ð1Þ

where the dimensions can be either spatial ones (x, y, z), time, etc. If function u is the
unknown field involved in a partial differential equation (PDE), expressing it as
equation (1) can reduce drastically the size of the mesh required to obtain it: instead of
N-dimensional mesh, the problem can be solved with N meshes of a much lower size.
The problem with this approach is to be able to obtain the decomposition of the
unknown field with an easy to apply numerical procedure. This procedure exists
(Chinesta et al., 2008) and it is presented here applied to the problem of computing the
current distribution inside of a machine slot with an externally imposed current
distribution. This problem is solved in a 2D domain (one spatial dimension and time),
but it can readily extended to a 3D or even to a 4D (x, y, z, t) domain.

II. Analytical solution of the current in a rectangular slot in permanent
regime
The method of separation of variables is used to obtain the total current in the slot of an
electrical machine filled with a solid copper conductor, fed with an externally imposed
density current (Figure 1). First, the analytical solution in permanent regime will be
obtained. Second, the transient solution will be obtained with the proposed method,
and compared with the analytical solution once reached the permanent regime.

The slot has dimensions b £ L and it is occupied by a material with constant
properties m 4p10 7 Henries/m and s 59 £ 106 Siemens/m. The slot has a total
depth of L 30mm. An external density current J0 J 0max cosðvtÞ is imposed in the
conductor, in the z direction, with v 2p50 rad/s and J0max 104A/m2. The magnetic
field H and the magnetic flux density B verify:

rot H J Ampere’s law

rot E ›B
›t Faraday’s law

B mH; J sE Constitutive equations

8>><
>>: ð2Þ

As all the currents have only z-component, so does the magnetic vector potential (MVP).
The total current density in the conductor will be the sum of the externally imposed one
and the induced current due to the time-variation of the magnetic flux density:
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J Jext þ Jind Jext þ sEind ð3Þ
Using the MVP A, so that B rotðAÞ; Faraday’s law gives:

J J0 s
›A

›t
ð4Þ

Both the currents and the MVP have only a z-components. Besides, as it is assumed
infinite magnetic permeability of the iron (magnetic flux density normal to the walls),
and due to the symmetry of the problem, this component has no variation in the
y direction, so applying Ampère law to equation (4) gives:

›2A

›x 2
ms

›A

›t
mJ0 ð5Þ

Assuming that the all the magnitudes vary sinusoidally with time (permanent regime),
equation (5) can be expressed by means of complex phasors as:

›2A

›x 2
jvmsA mJ 0 ð6Þ

what constitutes the diffusion equation of the magnetic potential vector in the slot.
Assuming that the top of the slot is a flux line, and that the magnetic flux density at

the bottom of the slot is null the following boundary conditions hold:

Að0Þ 0
›A

›x

����
x L

0 ð7Þ

Figure 1.
Slot with a solid copper

conductor
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Equation (7) is a second order inhomogeneous differential equation with constant
coefficients, so:

A

General Solution

C1e
jvms

p� �
x þ C2e

jvms
p� �

x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}þ
Particular Solution

J 0

jvs|{z} ð8Þ

The constants C1 and C2 are found applying to equation (9) the boundary conditions (8),
which gives:

A
J 0

jvs
1

e jvms
p� �

ðL xÞ þ e jvms
p� �

ðL xÞ

e jvms
p� �

L þ e jvms
p� �

L

0
@

1
A ð9Þ

And, applying the definition of the depth of penetration factor d (which only depends on
the material properties and on the frequency):

d
2

vms

s
2

2p50 · 4p10 7 · 59:6 · 106

r
9:21 · 10 3 m ð10Þ

A
J 0

jvs
1

e ðL xÞ=de jðL xÞ=d þ e ðL xÞ=de jðL xÞ=d

eL=de jL=d þ e L=de jL=d

� �
J 0

jvs
1

coshðð1þ jÞðL xÞ=dÞ
coshðð1þ jÞL=dÞ

� � ð11Þ

The current density in the slot is given by equation (6):

J J 0
e ðL xÞ=de jðL xÞ=d þ e ðL xÞ=de jðL xÞ=d

eL=de jL=d þ e L=de jL=d
J 0

coshðð1þ jÞðL xÞ=dÞ
coshðð1þ jÞL=dÞ ð12Þ

The variation of the magnitude and phase of equation (12) with the depth in the slot is
shown in Figure 2.

Figure 3 shows the current in a phasor view, and also a 2D and 3D sinusoidal waves.

Figure 2. Variation of the magnitude of the current with the depth (left) and phase lag of the
current (right), with respect to the current at the top of the slot
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III. Transient solution of the current in a rectangular slot in transient
regime
In transient regime, the total current density in the slot J can be found by solving
equation (5), which is a 1D diffusion problem. In the case of homogeneous boundary
conditions, the diffusion PDE is given by:

K · ›uðx;tÞ›t D · ›
2uðx;tÞ
›x 2 bðx; tÞ in V ð0;LÞ; I ð0;TÞ

uð0; tÞ uðL; tÞ 0 on G ; ›V Essential boundary conditions ðEBCÞ
uðx; 0Þ at t 0 Initial conditions

8>><
>>: ð13Þ

The field u(x,t) and the second member b(x,t) are represented as separate variables
products:

uðx; tÞ
Xn
i 1

XiðxÞTiðtÞ bðx; tÞ XbðxÞTbðtÞ ð14Þ

So equation (14) can be expressed (the independent variables are no longer shown for
simplicity) as:

K ·
Xn
i 1

Xi
›Ti

›t
D ·

Xn
i 1

›2Xi

›x 2
Ti XbTb ð15Þ

Modes Xi and Ti can be computed numerically, using an iterative non-linear procedure.
Suppose that the first (n-1) modes are known. The nth mode is obtained via a Galerkin
method using equation (13):

u
Xn 1

i 1

XiTi þ XnTn ) u* X*nTn þ XnT
*
n ð16Þ

Z x L

x 0

Z t T

t 0

u* K ·
Xn
i 1

Xi
›Ti

›t
D ·

Xn
i 1

›2Xi

›x 2
Ti XbTb

!
· dt · dx 0 ð17Þ

Figure 3. Variation of the current density with depth, relative to the current at the top of the slot
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Tofindmode n an iterative procedure is followed. Suppose that themodeTn is known at a
given iteration, ðu* X*n ·TnÞ so by substitution of equation (16) in equation (17) we get:

Z x L

x 0

X*n K
Xn
i 1

Z t T

t 0

Tn
›Ti

›t
dt

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ai

X i D
Xn
i 1

Z t T

t 0

TnTidt

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

bi

›2Xi

›x 2

0
BBB@

Z t T

t 0

TnTbdt

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

g

Xb

1
CCCAdx 0

ð18Þ

This corresponds to the PDE:

K
Xn
i 1

ai ·Xi D
Xn
i 1

bi ·
›2Xi

›x 2
g ·Xb 0 ð19Þ

And passing all the known terms to the second member we get:

K ·an ·Xn D ·bn ·
›2Xn

›x 2

Xn 1

i 1

K ·ai ·Xi þ D ·bi ·
›2Xi

›x 2

� �
þ g ·Xb ð20Þ

This equation is solved in the spatial domain with a simple finite differences or finite
element method (FEM), giving the value of Xn in the present iteration. With this value,
the computation of a new value of Tn is performed:

Z t T

t 0

Tn* K
Xn
i 1

Z x L

x 0

XnXidx

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

b0
i

›Ti

›t
D
Xn
i 1

Z x L

x 0

Xn
›2Xi

›x 2
dx

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a0
i

Ti

0
BBBB@

Z x L

x 0

XnXbdx

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

g 0

Tb

1
CCCAdt 0

ð21Þ

This corresponds to the PDE:

K
Xn
i 1

b
0
i ·
›Ti

›t
D
Xn
i 1

a
0
i ·Ti g 0 ·Tb 0 ð22Þ

And passing all the known terms to the second member we get:

K ·b
0
n ·

›Tn

›t
D ·a

0
n ·Tn

Xn 1

i 1

K ·b
0
i ·
›Ti

›t
þ D ·a

0
i ·Ti

� �
þ g 0 ·Tb ð23Þ
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This equation is solved in the spatial domain with a simple implicit or Runge-Kutta
method, giving the value ofTn in the present iteration. At each iteration the new values of
Xn andTn are comparedwith theprevious ones, and if the absolute value of their difference
falls below a predefined threshold, the iterations are finished, and the solution is updated
with the newvalues. This process begins again for computing the next n þ 1mode.When
the absolute value of the new mode falls below a predefined threshold, the solution is
considered valid and the process finishes.

IV. Non-homogeneous boundary conditions
To obtain the MVP in the slot, the non-homogeneous boundary conditions at the
bottom of the slot (7) must be satisfied. This kind of conditions can be imposed by
adding to the solution of equation (13) a new function c, continuous in V, that verifies
them (Gonzalez et al., 2010). So, the solution of equation (13) can be obtained in the form
u c þ z, and the problem becomes:

K ·
›zðx;tÞ
›t

D ·
›2zðx;tÞ
›x 2

bðx;tÞ K ·
›cðx;tÞ

›t
D ·

›2cðx;tÞ
›x 2

inV ð0;LÞ; I ð0;TÞ
zð0;tÞ zðL;tÞ 0 EBC

zðx;0Þ uðx;0Þ cðx;0Þ IC

8>>>><
>>>>:

ð24Þ

The problem (24) gets simplified if function c is chosen such as:

›2cðx; tÞ
›x 2

0 in V ð0;LÞ; I ð0;TÞ ð25Þ

In 1D, this goal can be accomplished by defining a linear function such as:

cðx; tÞ uð0; tÞ þ uðL; tÞ uð0; tÞ
L

� �
x x [ ½0;L� ð26Þ

V. Current in the slot solved with the separation of variables method
In the case of the slot of Figure 1, the method of separation of variables converges in
16 modes, as shown in Figure 4.

The solution obtained by the proposed method is shown in Figure 5. After a short
transient, the current reaches its steady state value, equal to the one obtained
analytically (Figure 3). The norm of the relative error with respect to the theoretical
solution (12), computed at the last time interval, has been shown in Figure 6.

VI. Extension to higher dimensions
The proposed method can be easily extended to higher dimensions: instead of solving
the spatial equations in a 2D or 3D grid, the unknown field can be expressed as a
product of one-dimensional modes in the form:
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Figure 5. Total current in the slot: 2D view (left) and 3D view (right)
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uðx; y; z; tÞ
Xn
i 1

XiðxÞYið yÞZ iðzÞTiðtÞ ð27Þ

One of the difficulties of applying this technique is the imposition of EBCs on
arbitrarily-shaped spatial domains V. For example, a slot defined on R2 can have a
shape like that in Figure 7, left. A work in progress is to treat these general domains
with the method of the characteristic function (Rvachev and Sheiko, 1995). The field u
is multiplied by a real function F that acts as a “distance” function: it has continuous
derivatives, and it is zero on the boundary and outside the irregular shape surface or
volume of the slot. In Figure 6, right, such a function is shown for a slot in 2D. In this
case, the method of variables separation is applied to the function:

uðx; y; tÞ F ·
Xn
i 1

XiðxÞYið yÞTiðtÞ ð28Þ

VII. Conclusions
In this paper, the method of separation of variables has been presented, and has been
applied to solve the currents distribution in an electrical motor slot in transient regime.
The numerical technique presented in this paper allows the numerical construction of
the low dimensional functions whose product approximates the MVP in the slot. This
approximation has been compared with the analytical solution to verify the accuracy of
the method. The great advantage of this method is that it scales linearly with an
increase in the dimensionality of the problem, instead of exponentially, as traditional
mesh-based methods. Nevertheless, some issues like the application of the method to
non-rectangular domains in high dimensions are an open research field.

Figure 7. Slot with a complex 2D shape (left) and distance like characteristic function F 
associated to it (right)
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Valencia. His research interests include condition monitoring of electrical
machines, applications of the wavelet theory to electrical engineering, and
efficiency in electric power applications.
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he joined the Universidad Politécnica de Valencia and is currently Professor of
Electrical Installations and Machines. His research interests focus on induction
motor diagnostics and maintenance, numerical modelling, and automation of
industrial installations.

F. Daım is a postdoctorant in Centre des Matériaux of Ecole Nationale Supérieure
des Mines de Paris. She has a PhD degree at Applied Mathematics from
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