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ABSTRACT 

In this work, the model of Doi-Edwards with 
independant alignment approximation describing the 
dynamics of polymer melts is simulated. The main 
aim of this work is the analysis of some new 
simulation techniques operating on the Fokker-
Planck equation related to that model. For this 
purpose we consider the kinetic theory description of 
the Doi-Edwards model, implemented in the 2D and 
3D cases under shear and elongational flows. The 
Fokker Planck equation which governs the evolution 
of the distribution function involves two variables: 
the tube orientation (described by a unit vector 
defining the unit surface in 3D and the unit circle in 
2D) and the coordinate that locates the segment tube 
on the molecular chain, taking values in the unit 
interval. To separate both variables during the 
problem resolution we make use of the Alternating 
Direction Implicit method (ADI) which allows 
reducing the computation time and efforts.  

A model reduction technique is also 
proposed and analyzed. It consists of considering an 
optimal representation basis which is constructed 
during the problem resolution. Thus, a reduced 
number of approximation functions, now defined in 
the whole domain, are enough to describe the 
solution evolution during the entire time interval 
considered in the simulation, with significant CPU 
time savings.    

Keywords: Polymer melt, Kinetic theory, Doi-
Edwards model, Reptation, Alternating Direction 
Implicit Mehod, Model reduction, Karhunen-Loeve 
decomposition, Krylov subspaces 

INTRODUCTION: DOI-EDWARDS MODEL 
WITH INDEPENDENT ALIGNMENT 
APPROXIMATION 

In most polymer processing operations such 
as injection molding, film blowing and extrusion, the 
polymers are in the molten state. A widely applied 
class of molecular-based models for concentrated 
polymer solutions and melts relies on the notion of 
reptational motion: Doi-Edwards model (M. Doi and 
S. F. Edwards., 1978) being one a such model. 

The key idea of this model is application of 
the reptation mechanism introduced by De-Gennes 
(P. G. De Gennes., 1971) to a tube (along which the 
molecule can move) in order to describe the 
viscoelastic behaviour of entangled polymers. The 
molecule is described as sliding or reptating through 
a tube whose contours are defined by the locus of 
entanglements with neighbouring molecules. The 
motion of a molecular chain in any other direction 
than the one defined by the tube axis is strongly 
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restricted, except at both tube ends, where it can 
move in any possible direction. The tube moves 
itself due to two mechanisms: (i) by means of the 
motion of the central chain itself, which partially 
leaves its original tube, for extending it in other 
directions, and (ii) by the fluctuation induced by the 
motions of the neighbour chains defining the tube 
lateral border. In addition to the reptation 
mechanism, the Doi-Edwards model assumes affine 
tube deformation induced by the macroscopic flow 
as well as a complete chain, but neglects other 
phenomena like the stretch of the chain and the 
Convective Constraint Release. Within this reptation 
picture and these assumptions, the dynamics of a 
single segment is given by: 

( )  du I u u gradv u
dt

= − ⊗

Where u  is the unit vector describing the orientation 
of the tube segment, grad v  the velocity gradient 
and I  the unit tensor. The distribution function ψ  
is such that ( , , , )  u s x t du dsψ represents the joint 
probability that at time t and position x a tube 
segment has an orientation in the interval 
[ ,u u du+ ] and contains the chain segment labelled 
in the interval [ s , dss+ ]. Thus, the configuration
space is Ω=B(0,1)× [0, 1], where B(0,1) is the 
surface of the unit sphere centered at the origin. The 
Fokker-Planck equation related to the Doi-Edwards 
model is the convection-diffusion equation that 
governs the conservation balance of the distribution 
function: 

2

2 2
1( )  

d

d I u u gradv u
dt u s
ψ ψψ

π τ
∂ ⎡ ⎤= − − ⊗ +⎡ ⎤⎣ ⎦⎣ ⎦∂ ∂

∂

Where 
d
dt

 represents the material derivative, dτ is 

the disengagement time, namely the characteristic 
time for a chain to come out the tube by reptation. 
We can define the diffusion coefficient related to the 

s-coordinate as 
d

rD τπ 2
1= . To solve the Fokker-

Planck equation, one needs to prescribe appropriate 
boundary conditions at the tube borders s=0 and s=1 
(the orientation coordinate being defined on the unit 
sphere does not require any boundary condition). In 
general, as previously indicated, an isotropic 
orientation distribution is prescribed at both ends, 
which reads: 

( )1( , 0, , ) ( , 1, , ) 1
4

u s x t u s x t uψ ψ δ
π

= = = = −  
where δ is the Dirac delta distribution. Knowing the 
distribution function, the stress can be computed 
from: 

1

0 (0,1)
   

p B
G u u duτ ψ= ⊗∫ ∫ ds  

where G is an elastic modulus and 
p

τ is the polymer 

stress tensor. 

RESOLUTION STRATEGY: ALTERNATING 
DIRECTION IMPLICIT 

The alternating direction implicit method, 
ADI, (Jr. J. Douglas and J. E. Gunn.,1964) has been 
found to be effective for many problems, and 
generally has a faster convergence rate than SOR 
strategies. The idea is an alternating resolution of the 
problems defined in each coordinate.  Thus, the ADI 
strategy instead of solving the 2D (respectively 3D) 
problem, solves a succession of two (respectively 
three) one-dimensional problems. The major 
advantages of the ADI method are: (i) it is 
unconditionally stable for some operator due to its 
implicit character; (ii) it can be applied for solving 
numerous multidimensional problems (in moderate 
dimensions).  

The first step to define a finite-difference 
scheme for solving a partial differential equation is 
to discretize the continuous space domain with a 
grid, whose number of nodes depends on the 
solution to be approximated. In what follows we are 
considering only homogeneous flows, which allows 
to write ( , , )u s tψ  (that does not depend on the 
physical coordinates). The degree of freedom related 
to a grid point (i, j, n) is ( , , )i j nu s tψ  that is usually 

denoted by n
j,iψ .  

Now, at each time step n, the alternating 
directions method solves (in the 2D case) two steps: 

Step I: U-updating: 
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Step II: S-updating: 
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Due to the convection-diffusion character of the 
equation to be solved in the first step an appropriate 
stabilization is needed to avoid numerical 
instabilities induced by the convection term. In our 
simulations we considered a streamline upwinding, 
where the upwinding parameter β  approaches to 1 
when advection becomes dominant and 
(respectively to zero for dominant advection 
and ). When the diffusion term is 
dominant  

1( ) 0iE u >

1( ) 0iE u <
β  approaches to 0.5 and then, both terms 

affected by the beta coefficients are equivalent to the 
centred finite difference. 

In the 2D case, step I, requires the resolution 
of a system of equations. This resolution must be 
done as many times as the number of nodes of s-axis 
discretization (we exclude the nodes located at the 
border where the boundary condition is prescribed). 
The linear system can be expressed by: 

  M G Sψ ψ
•

+ =  
The difference between the 2D and the 3D cases is 
that in the first case, vector u  can be easily
described by the scalar ϕ  ( 0 2ϕ π≤ ≤ ) whereas in 

the 3D case u  needs two scalars, ϕ  and θ  if one
considers polar coordinates ( 0 2ϕ π≤ ≤  and 
0 θ π≤ ≤ ).  

NUMERICAL RESULTS 

The distribution function is represented in 
the space of configurations and shows a periodic 
evolution according to the space orientation ( ( )u ϕ
in the 2D case and ( , )u ϕ θ  in the 3D case) and a 
parabolic evolution according to the curvilinear 
coordinate (s), see Figures 1, 2, 3 and 4, proving, as 
expected, that segments located in the central region 
are more stretched, and their orientations more 
constrained, than the ones located in the borders 
neighbourhood. 
2D simulations: 
Figure 1 Evolution of the distribution function in a 
2D shear flow case with Dr=1 and We=1. 

Figure 2 Evolution of the distribution function in a 
2D shear flow case with Dr=1 and We=100. 

Figure 3 Evolution of the distribution function in a 
2D elongation flow case with Dr=1 and We=1. 



Figure 4 Evolution of the distribution function in a 
2D elongation flow case with Dr=1 and We=50. 

We can also notice at these figures that as 
the Weissenberg number increases the peaks become 
more prominent and more localized noticing that the 
chain is the more and more sollicitated. 

3D simulations: 
In this case, due to the symmetry of the 

chain, we consider only a half, Figure 5.   

Figure 5 Evolution of the distribution function in a 
3D case with Dr=1 and We=1: (left) Shear flow 
(right) Elongation flow. 
The micro-macro modeling is done by the 
calculation of the stress tensor, and then the shear 
and elongation viscosities. The steady shear 
viscosity, depicted in Figure 6, decreases as the 
shear rate increases (shear thinning behaviour). At 
high shear rates, the asymptotic viscosity curve 
related to the Doi-Edwards model possesses a slope 
of –3/2 (in the double logarithmic presentation), 
higher than the –1 slope (also indicated in that plot) 
noticing for the instability of that model. 

Figure 6 Steady shear viscosity, 2D case. 

Besides, we observe that the shear stress 
shows transient overshoots in the start-up shear flow 
at low shear rates, which is one of the major features 
that the Doi-Edwards model is not able to predict. 

MODEL REDUCTION 

The goal of the reduction model is to define 
an optimal approximation subspace able to represent 
accurately the whole field evolution, in our case the 
time evolution of the distribution function. As the 
number of approximation function is much lower 
than the number of grid points, the associated linear 
system is of low dimension and significant CPU 
time savings can be attained. The new shape 
functions are defined in the whole domain in an 
appropriate manner (the most characteristic 
functions related to the model solution) (A.Ammar 
et al., 2005). The construction of those new 
approximation functions is done with ‘a priori’ 
approach. 

In this section we are going to apply the 
ideas just introduced to the discrete problem 
resulting from the discretisation of the Fokker-
Planck equation that we can express in the matrix 
form: 



  M G Sψ ψ
•

+ =  
whose implicit time discretization results: 

( ) 1

t t
M tG Mψ

−

+Δ
= + Δ ( ) 1

t
t M tG Sψ

−
+ Δ + Δ

We consider that the probability distribution have 
been accurately described in [0, αt ]. We assume that 
at time αt the reduced approximation basis is given 
by ( )nB . Moreover, at certain times , withpt

pt ≤ αt , the solution is assumed known and defined

by the reduced vectors ( )n
p

ξ . Knowing ( )n
p

ξ , the 

finite element description of ψ at time  results: pt
( ) ( )p n

p
B nψ ξ= . We can assume that the first 

approximation basis (0)B  contains a single vector 

that corresponds with the initial probability 0ψ . 

Now, we compute the evolution of ψ  in  ,t tα β⎡ ⎤⎣ ⎦  

solving the reduced form related to implicit scheme: 

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

1 1( ) ( ) ( ) ( )

Tn n n
B B t t

T Tn n n n
B M tG M B t B M tGt

ξ

ξ

=+Δ

− −
= + Δ + Δ + Δ S

The new reduced approximation basis ( 1)nB +  is 
defined by adding to the significant information 
extracted from ( )n

p
ξ , p α∀ ≤ , some Krylov’s

subspaces computed at tβ . We are going to explicit 

the construction of ( 1)nB + . 
We define the matrix Q  which contains the 

reduced vectors ( )n
p

ξ , p α∀ ≤ . Now, we solve the 

eigenproblem related to the Karhunen-Loeve 
decomposition, given by: 

Q TQ ϑ λϑ=  

Whose solution results in α  couples ( kϑ , kλ ), 
where we assume that eigenvalues are ordered 

1 2 .... kλ λ≥ ≥ λ , and we select the eigenvectors 

kϑ related to the eigenvalues verifying 8
110kλ λ−≥ , 

that constitute the columns of matrix V . Now we
can write: 
(( 1)nB V+
=% )( 1)nB +

Obviously, the change in the reduced approximation 
basis implies a change in the expression of the 
reduced vectors 

)n(

p
ξ , p α∀ ≤ . For this purpose one 

could enforce: 
( 1)( 1) ( ) ( )nn n n
p p

B Bξ ξ
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=%%

which it results: 
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Now, the updated basis consist of 
( 1)nB +%  completed 

with some Krylov subspaces generated from the 
residual R  at time tβ : 

( )( 1) ( ) , ,n nB V B R+ = L

where the residual is computed according to: 

( ) ( ) ( )

( ) ( )

1 1( ) ( ) ( )

n n
t

Tn n n
M tG M B t B M tG St

R B
β
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− −
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= −

−

In order to analyze the capabilities of this 
technique we consider the 3D Doi-Edwards model. 
The technique just described allows to define a 
reduced approximation basis that is able to represent 
the entire time evolution of the distribution using 
only 8 functions, and then only 8 degrees of freedom 
(at each time step one needs to perform the inversion 
of a matrix of size 8x8) instead the 642 nodes 
considered in the coarse mesh illustrated in Figure 7. 
The computed results are in agreement with the ones 
obtained using the ADI strategy. 



Figure 7  The eight  most significatives reduced 
basis functions:3D case.(up-left) First most 

significative reduced basis function; (up-right) 
Second most significative reduced basis function ;...; 
(down-left) Seventh most significative reduced basis 

function;(down-right) Eighth most significative 
reduced basis function. 

CONCLUSIONS 

In this paper, the Doi-Edwards model with 
independant alignment approximation has been 
analyzed, by solving the associated Fokker-Planck 
equation using two different numerical strategies 
that combine great accuracy and significant CPU 
time savings. The first strategy makes use a 
decoupling between the different model coordinates 
during the discretization, and the second one is 
based on the construction of a reduced 
approximation basis able to represent accurately the 
entire time evolution of the distribution function. 

At present we are developing a second 
generation of model reduction techniques based on 
the use of separated representations of fields 
combined with tensor product approximation spaces. 
These techniques have been applied in some of our 
former works (A.Ammar et al., 2006) for solving 
dumbbells modes (FENE, MBS, …) and seem 
to be excellent candidates for treating models 
describing entangled polymers based on the 
reptation motion or in the molecular networks.  

In any case, more realistic models are being 
considered to avoid the previously referred 
overshoot in the shear viscosity, being an appealing 
model the one propose by Ottinger (H.  C. Ottinger., 
2000). 
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