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Robust synchronization of different coupled
oscillators: application to antenna arrays

Florin HUTU Sebastien CAUET Patrick COIRAULT

University of Poitiers, Laboratoire d’Automatique et d’'Informatique Indigsie, 40
Avenue du Recteur Pineau, 86022 Poitiers Cedex France

Abstract

This paper treats the synchronization of a chain of non linear and uncertain aiouoin
identical oscillators. Using the Lyapunov theory of stability, a dynamicatrotiar guar-
antying the oscillators synchronization is determined. The problem of synication is
transformed in a problem of asymptotic stabilization for a nonlinear system andtfoen
mulated as a system of linear matrix inequalities where the parameter variations obthe tw
oscillators and their differences are modeled by polytopic matrices. Theetiwdresult

is successfully applied to an array of transistor-based oscillators usechart antenna”
systems.
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1 Introduction

The demand of mobile communication services is in a contisugrowth, more-
over, it is estimated that the rate will be maintained in thgtryears. This contin-
uous development has stimulated the research of new hagdmdrsoftware solu-
tions in order to increase the volume of exchanged data amdter tmanagement
of the emitted or received electromagnetic field.

Smart antennas are a part of communication systems thatedpnnhmprove their
global performances. These devices can increase the ajpsititiency and reduce
the multi path fading, bit error rate (BER), the co-channeifgrences (CCl) and
the system complexity (Godara, 1997). This is possible bgtednically adjusting

their radiation patterns in order to present important ¢@ithe desired signals and
small gain for interference signals.
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One of the challenges to control such devices is to geneigitals with the same
frequency and different phases and amplitudes. This pajg@opes variation of
a technique inspired from radar applications: the germraif synchronized and
phase shifted signals using arrays of coupled non linealtaiscs.

The work that has been done in the field of dynamics of coupbedimear oscilla-
tors using a harmonic approach (Guan et al., 2004; Hwang anohly}y1998; Liao
and York, 1993, 1994; Tombak and Mortazawi, 2003; York aot,1t1998; York
and Popovic, 1997) has shown that they offer simple methdgshase control
among array elements and hence beam scanning capabillitiaisb implies prob-
lems of stabilization. This paper treats the synchromiratf a system made by
two oscillators with a unidirectional coupling and this plem of synchronization
is transformed in a problem of stabilization for a nonlinegstem. The strategy
chosen is to find an output feedback dynamic controller usyagpunov functions.

The problem of calculating dynamic output feedbacks on Lifieér time invari-

ant) systems in term of matrix inequalities is difficult tdw&o In fact this solution
can be found by solving a set of bilinear matrix inequali{i@MI). There are two

known techniques: the iterative algorithms and the elinmomedf variable products
by using the matrix separation lemma. It has been chosen toadenethod who,
in certain cases, transforms the initial BMI into a set of L&Nvho can be numeri-
cally solved (Arzelier et al., 2002; Arzellier et al., 2008¢ehdi et al., 2003; lwasaki
et al., 1998; Peaucele and Azellier, 2001; Boyd et al., 1994).

This technigue involves the use of Lyapunov functions tlegeshd on the polytopic
structure of the uncertainty in order to reduce the consismeof the method. This
work refers to the results of (Peaucelle, 2000). The readavited to see (Geromel
et al., 1998; Feron et al., 1996; Chilali et al., 1999; Pedecalal., 2000) where
tractable results relevant to parameter-dependent Lyapluimctions are proposed.

It was demonstrated in (Geromel et al., 1998) and (de Olweliial., 1999) that the
polytopic structure reduces conservatism. This improverhas been numerically
verified in (Bachelier et al., 1999). In the discrete casexigte a less pessimistic
condition which consists on increasing the number of véemi LMI (Leite and
Peres, 2003; Ramos and Peres, 2001). The originality of #pempcomes from
using both kind of uncertainties (polytopic and nonlingaloound) and solving the
problem of synchronization using the interior point tecjuas.

The variation of the parameters is taken into account byideniag the state matrix
as a polytopic one. Once the stability of the vertices, ddfiioe the polytope is
demonstrated, the stability and hence the synchronizafidime two oscillators is
assured for all systems inside the polytope.

The nonlinear character of the oscillators allows the syowization (if their free
running frequencies are in a certain domain (Liao and Yo2®4)) but also makes
them dependent of initial conditions. The main objectivéoigliminate the non-



linear effect and to maintain the synchronization when thysjcal parameters of
the oscillators and external conditions are modified. Thgimality if the method
comes from the inclusion of the non-linear term and the une@yariations in a
perturbation. This problem is transformed i#4, optimization.

In section 2 is presented an overview of the antenna arrayryth section 3 a
theory of dynamical controller design for this particulaasd of nonlinear systems
is developed. Section 4 presents the numerical resultseircaise of an array of
coupled nonlinear oscillators.

2 Antennaarray theory overview

In this section, a brief overview on the antenna array thésmyiven. It will be
shown how, by controlling the phases and amplitudes of théecaignals associ-
ated to each elementary antenna, the directional gain caariisolled.

Generally, a unspecified volume in the space who is able tb @sgtromagnetic
radiation is formed by an infinity of elementary electricgdaes. If it is consid-
ered that the radiation of a elementary dipole does not infleehe others in the
volume, the total emitted electromagnetic radiation istleeghted sum of the elec-
tromagnetic fields radiated by all dipoles.

A smart antenna is composed by an array of individual ragiagiements (elemen-
tary antennas), which are disposed in a particular configurdlinear, circular or
matrix). By grouping these elementary antennas in such suaay by changing
the characteristics of the signals associated to each ptethe array can present
different gains according to the direction. These gaingepeesented in so called
radiation patterns and, because of the property of the negty of the antennas
(Harlington-Villeneuve principle), the radiation patterare the same at the emis-
sion as at reception.

Let us consider an uniform linear array Mfidentical patch antennas placed at the
same distancd between them as in Fig. 1.
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Fig. 1. An uniform antenna array



For the theoretical study of this configuration, it is suppmbt®t in the elemen-
tary antennas, harmonic signals of the same frequency fhertadit amplitudes and
phases are injected.

The electromagnetic field of the antenna arrays is compogsaddrm who depends
on the amplitudes and phases of the injected signals:

Etotal = Eref * f(@) (1)
WhereE,q is the electromagnetic field of an elementary antenna andcritasy

factor can be written as follows:

N .
f(©) = z Wmefj(mfl)kodcose (2)
m=1

This equation shows that the only way ti modify the spatiatrébution of the elec-
tromagnetic field is to modify the value of the array facfd®©). This became
possible by changing the values of thig, complex coefficients.

2.1 Emission case

In the simplest case, in order to steer the main lobe of theatiad pattern in a
unspecified directio®ne the carrier signals associated to each elementary antenna
must verify two conditions:

ehp =

Zl =

e the amplitudes must have the same value. Usually it is cersid\ =

¢ the phase difference between two consecutive signals neustebsa
¢ii1— @i =ct;Vie [1...N]

3

In this particular case, the mathematical expression ofatgtion pattern is:

B lSII’]T

= —
N sin;

f(8) (3)

wherey = ¢ —kodcog0); N the number of antennad the distance between them.
It can be seen that a quantity of the radiated energy is Ia$igiside lobes which
implies a certain weakening of the antenna array gain.

For the theoretical study, the Chebyshev method is consid€hedsame example

. A
of N equally spaced antennas, placed at the same disthace- between them
is considered. The reference antenna is located into thdlenaf the array and a



constant phase gradient is assum@g:- ¢m-1 = 0; Vme {—N/2,N/2}.

n—1
f(@) =2 Z A;nTZerl(W) n= %
0 4)
f(©) =Y Anlm(w) n= N
m=0
whereT,(X) represents the Chebyshev polynomial of ondand variablex.
The variablew is defined as follows:
W= cos(%) : (5)

. - L
Fig. 2 presents the array factor and the radiation patteemi= % =2.The
SL
maximum in®@ = 60° direction is tackled when a phase gradiémif 90° is assured.

Array factor f(©) Gain of the antenna array

Fig. 2. The array factor and the gain of antenna array in the cale-08 patch antennas
and Dolph-Chebyshev optimization

2.2 Estimation of direction of arrival

In modern communication systems, it is often used the pia@f channel re-use.
That means that neighbor clusters use the same communicatmnel and so, the
signal to noise ratio become weak. In order to solve thislprabthe antenna array
can be able to present different directional gains; monedtive system must be able
to dynamically modify this gain in order to follow the usefuik. The following
example shows how such antennas are able to accomplishskis t

Let us consider the same array Mf= 8 identical antennas placed at the same
distanced = % between themfp = 2GH?2). It is supposed also that there is one



privileged signal having the angle of the position vectatyirgy in interval ©p €
[0°...75°]. There are supposed two others fixed interference signaieli, having
the angle of the position vector &1 = 90° and®;, = 120 respectively, as in fig.
3.

The antenna array is supposed to present a certain gaindiréotion of the privi-
leged signal and to cancel the interference signals by ptiegea null gain in their
direction. The algorithm is initialized with a random setdightingw and at each
variation of the privileged signal direction.

y
) O, =90
Interference signals

Privileged signal

iz = 1205\\.\_x\ Ope[0°... 75
*

Antenna array' O X

Fig. 3. Typical problem of DOA technique

Fig.4 presents the amplitudes and phases variations negdbd eight carrier sig-
nals in order to follow the useful signal and to eliminatetthie other interferences.
It can be seen that the variations are dispersed in the én¢gjomometric circle.

Using these two examples, it can be seen that the both varsatif the amplitudes
and the phases of the carrier signals are in a large intéFigd. paper proposes a
new technique to generate such signals having the sameefregand different

0.7 ooy
DDDDDDDD

2 o
Z0s y! uuuuuuuuuuuuuuuu 6 . Ay
5 apcopocer W
2 o, ] 2
s 0P 00 g 5
3 A 6, & 3
5 041 007 g 0 & <
8 O et B Ky peoniissgatioo, g o
g 2
S 0 / g
s £ 501
£
<<
&

o
N

-100

o
e

-150

L]

o

i i i i i i i ~200 i i i i i i i
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Privileged signal orientation [deg] Privileged signal orientation

Fig. 4. The amplitudes and phases variations



phases and amplitudes.

3 Problem formulation
3.1 Problem statement

One can conclude that both variation of the amplitudes arsdgdhare in a large
interval. If the amplitude variation can be easily solvedusing variable gain am-
plifiers, the problem of the phase variation is more consimngi

There are several technigues who permits solving this probThese techniques
can be divided in two main approaches: one which use the sygmarated by one
oscillator and the second who use signals generated by@ircaypled oscillators.

Signals with the same frequency but different phases anditags can be built
by delaying the signal generated with one master oscillasorg high-frequency
power dividers and variable delay lines or Butler coupletisBpproach is very
useful when discrete systems are conceived. Another agprsdo use polyphasic
oscillators and a multiplexing system (Guan et al., 2004 disadvantage of these
techniques is that it cannot be obtained continuous phassioars.

The second approach is based on the synchronization ofsanfayscillators hav-
ing their free running frequencies with a weak dispersiar{Liao and York, 1994;
York and Itoh, 1998) it was demonstrated that arrays of cadiplonlinear oscil-
lators can synchronize, moreover, according to the cogmtrength and to free-
running frequencies, phase variations can be assured. Recss (Heath, 2005)
presents how the phase variation can be assured by changintpe free-running
frequencies of all coupled oscillators in the array.

In this paper, the problem of generating the carrier sigwélsthe same frequency
and different phases is treated. In order to generate tlasercsignals, the follow-
ing general schematic Fig. 5 is proposed:

(fo-A1.91) (fo-A2.92) (fo-A3.93) (fo-An:¢N)

! T ! T

%Gainl 2 % Gainp Z % Gaing

O MA oA om0
Master ° Slave2 ° Slave3

Fig. 5. Unidirectional coupling of a chain of oscillators

This schematic is a variation of the York’s approach presgmb (York, 1993).



Because of the unidirectional coupling, each slave osaillet driven only by its
left neighbor so, the study of this configuration is redueethe study of a pair of
two non-linear systems like in Fig. 6.

The purpose is to design the parameters obihsystem in order to make thyg(t)
output to tend toward zero. When this objective is accomptisthe delayed output
of the master oscillator and the output of the slave osoilleecomes identical, so
the two oscillators are synchronized.

Generally, because of the technological realization, g@llators don’t have the
same free running frequencies. This is the reason why trdb&edk loop was in-
troduced: to guarantee the robust synchronization betteetwo oscillators. The
delay element and the variable gain amplifier will assureedéht phases and am-
plitudes for the output signals.

The difference between the oscillators will be modeled aaration of the slave
oscillator's parameters around those of the master osmilfsarameters, which is
considered as the reference. The variations due to the tatope or at the ageing
of the components are modeled by a polytopic uncertainth@htaster oscillator
parameters around the nominal values.

In order to model the two oscillators, a class of nonlineacastain systems having
the following state-space representation will be congider

x=A(61)x+g(x,t,61)+ Bu )
y =CX

The x € R™ vector represents the state vecior R™ the input vector ang
R", the output vector. The vectorial functigix,t, 8;) : R™ x R x RM — Rl s
supposed to be a continuous function. The ve6idnas the sizéM and it contains
all the uncertain parameters of the state matrix.

Assume tha#\(6;) is a matrix who belongs to a set defined as in (7). This set
is a polytope of matrices and it represents a convex combmaf the extreme
matricesA;, i = 1...2M, the vertices of7 .

2M
o = {A(em ABY) = 3 GA: § eAl} (7)



with:
é1 ”
A=< | eRzMyEi20;Viel...2M;Za:1 ®)
i=

Som

The structure represented in Fig. 6 is made by two differestesys who belongs to
the class previously described. The master system is canesidndependent(=

0) and the dynamical controlleic drives the slave system using the error signal
as reference. The error signal is constituted by the difileeebetween a delayed
version of the master’s output and the slave’s output.

ym () IME=T) ye(

Ye(t)
+
Master » Delay —» Slave
ys(t) W

Fig. 6. Master-slave synchronization

The state-space representation of the master system carittes\as follows:

XM = AM (el)XM + 9m (XM 7t7 61)
M - (9)
ym = Cxu

For the slave system, the state-space representation eenittes as:

Xs = Ag(61)Xs+ 0s(Xs,t, 81) + Bou
5.0 s(61)Xs+0s(Xs,t, 61) + B2 (10)

ys=CXs

It is considered that between the state matriggsandAs there is a small variation
described by, (6,) matrix:

Am(61) = As(61) +B1(62) (11)
The vectorf, has the siz& < M and it contains all the parametersnthat varies

from the master system to the slave one.

The matrixB1(62) also belongs to a se#, defined as follows:

2P
B = {31(92)! B1(62) = _ZlZiBli; s Az} (12)



with:

(1 »
Ay = : eR2P|zizo;Viel...P;Zzi:1 (13)
i=
{op
Let us note the non linearities difference as follows:
am (Xm,t, 61) — Os(Xs, t, B1) = €g(Xm, Xs,t, 61) (14)

and let us consider that the matey(xu,xs,t,81) can be boundedys(8;) being
its upper bound:

Ng(61)e < eg(X|\/|,Xs,t, 61) (15)

Ng(61) is a time invariant matrix who belongs to a polytopé;:

2M
Nop = {NB(Gl)! Ng(61) = _ZlEiNBi; & e A} (16)

wherel; defined as in (8).

Remark 1 A(6;) and Ns(6;) are two polytopic matrices that depends on the same
parametersd;. The sum A(61) = A(81) + Ng(61) is a polytopic matrix, A(61) €
v, where:

2M
Ay = {AN(91)| An(6r) = _Zi'fiANi; e A} (17)

where Ajj = A + Ng;

If an error state is defined as

e(t) = xu(t — 1) —xs(t), (18)
a state-space representation can be written:

;. {éAN(Bl)eBl(Gz)stzu )

Ye=Ce

10



3.2 Controller synthesis

Assume that the dynamical output controller has the folhgnstate-space repre-
sentation and its dimensionmg:

. B
S Xe = AcXe cYe (20)

U= CcXc+ DcYe

The purpose of this controller is to force the slave systerfollow the delayed
output of the master system. This condition is accompliskieen the error signal
defined in (18) tends toward zero. The teB(62)xs, representing the difference
between the two systems, acts like a perturbation on the staitee. In order to
reject this perturbation, th&, transfer between th&, output defined in (21) and
thexs state, will be minimized (22).

Zo =Cxe (22)

10

whereC, = )
01

The transfeil is defined as follows:

To=[Zolla (22)
||XS||oo

This is a classical#, problem who consists in finding the controlk€rand the real
scalary as small as possible:

Xs Zoo
—_— —

Ye 2e

L
2

Ye

A

2c

Fig. 7..7¢, principle

The closed loop system can be described by the following-sjaéce representa-

11



tion:

Xel = Aql(61)Xel + B1(62)Xs (23)
Zoo = Co X

where:Aq = An(61) + BoKC; Cy = [Co O] and:

_ Aol - [-mo
L e] Aoy (6y) = N(B1) L 2
Xe I O O O I
(24)
D¢ ~ CO ~ B1(6
K _ [ Cc] e Ba(6y) — 1(62)
B¢ |Ac _@ I @)

Using the real bound lemma (see(Chilali et al. (1999); Boyd e(1£194))), the
condition (22) applied to the closed loop system (23) can higeem as follows:

Au(61)"P(61) +P(B1)As  P(6)B1(82) Cu”
B1(6,) P(6y) yi 0 |<0 (25
Ceal O —yI

whereP(6,) is a positive definite, symmetric and parameter-dependeaiixrde-
fined by:

2M
P(61) = &R (26)
2
To study the stability of this system, the stability of théreme matriceg\y;, the
vertices ofazy should be studied.

Assumption 1 It is supposed that it exists a stabilizing state feedbackrober
Ko that is the solution of the following LMI:

Al (80X +XAqT +Bolo+ (BoLo)T  Bi(8) XCyT |

B1(6,) —wl O
<0 (27)

CaX 0O —wl

12



where X is a symmetric, positive definite matrix, having theesaimensions as
P(61). The state feedback controllep ks solution of lg = KgX.

The P(6;) andK unknown variable matrices and the unknown positive comstan
y that makes the (25) inequality feasible, can be calculatéd i the vertices

of o/ and %, sight that each valu&(6,) and I§1(62) can be written as a convex
combination of those vertices.

The following theorem solves the problem of variable masiproduct in (25) by
introducing extra unknown variable matrices. The equivakxpression (28) of
(25) can be numerically solved using Matlébd_MI Toolbox".

Theorem 1 If there exists a set of matrices P 0, a matrix Ky that is solution of
(27), a unknown variable square and nonsingular matrix ®™ ", a unknown
variable matrix He R t1)x(NutNe) and four unknown variables matrices, Fs €
R(MHNe)x(Mete) |, ¢ RMx (MetNe) gnd Ry € R(=11e) < (+1e) sych that the inequality
(28) is verified, then the dynamical controller¥& G—1L makes the error system
(19) asymptotically stable for all matricesyf0:) and B;(6,) described as convex
combination of the elements iy and %, respectively and with respect of (22)
condition.

N

@2+ 1Sym LICOOOO

Jt

[@ 000B,| $+Sym
Fa

= © O © ©

(28)

+Sym G|-K00O-I|}<0;

= © © © O

1 Sym{X} =XT+X; VX € R"

13



The matrix®, is defined as follows:

_ - - \
0 O Cy"RO =
O -yl O OO0 )
®=|Cy O —y10O|+Sym{ | R | |Ag By 0 -10 29
P O O 00 Fa
O 0O 0 00 \ @) )
Vie{1...2M} andvj e {1...27}
Whereﬂoi = Ani+ BKo. Let us introduce the following notation:
S=KC—Kq (30)

See Proof in the appendix.

4 Numerical results

In order to verify the theoretical result, a transistor-laesienulation has been done
using Agilent's ADS software and models of MOSFET transistors i8%um
silicon technology. The oscillators are conceived usingpabie differential pair
structure. In order to determine the value of the dynamicatroller, the non linear
oscillators were modeled using the van der Pol model. Thidehis composed by
an ideal resonant circuit coupled with a nonlinear elemewirtg the following
conductanceg(v) = —a + V% a, B € R%.

The parametersr = 0.379 andf3 = 0.281 were identified using a simple least
square algorithm and the current-voltage characterisbwiged by the differen-
tial pair of transistors. The values for the components efrésonant circuitl(y =
6,33nH andCy = 1pF) are chosen to assufg = 2GHzoutput frequency.

4.1 The van der Pol model of a transistor based-oscillator

In order to model the non-linear behavior of the oscillattne,van der Pol model
was used. There are two possible ways to write its stateesggresentation. The
usual manner is to consider as state-space variables, thatdansion and its
derivative. In this article, the considered variables & dutput tensiorvg and

14



the inductance curremt:

dic 1
dt Lo °
dw 1. (31)

a
—= L+ =<V Voo +—||nj

dv B
dt Co- Co° Go Co

This system can be rewritten in a state-space form who is/algut to the repre-
sentation given in (6):

{ x = A(By)X+g(xt, 61) + Bu (32)
y=Cx
where:
1
I 0 L_
X = AB)=| 1 O
Vo _C_O 0
. 0
u:l'% g(xt,61) = —a +Bx3 )
Co 2 G

)

with the uncertain parameter; = [a, Lo, Co).

It is considered the structure in fig. 6 made by two such @goils and with the
dynamical controller calculated with (28). Between the patams of the master
and the slave oscillators, it is considered that there iséimee differenceé:

p

s=Lm(1+9)
=Cwv (1+9) (34)

as=amv (1+9)

| Bs=PBum(1+9)

This difference is translated into the difference betwéey, andAs matrices as

15



in (11). With the assumptions in (3433 (6,) can be written as follows:

o -9
BiB)=| 5 @ MOTO (35)
Cv(1+9) 0

4.2 Nonlinear bound determination

In order to determine the bounds of the nonlinearities diffiee, the scalar function

f: 91— 25, (x) = —ax+ Bx3 is considered. The bounds can be considered as
the slopes of the tangents at the graphical representdtifiixpin the pointsx = xn,
andx= 0 as in Fig. 9.

—a(—x1) < (f() — f(x1)) < (—a +3Bxm”) (X2 —X1)
(36)

VX1,X2 € D

Fig. 8. The choice of the bound of the nonlinear function

If it is considered the case of the two nonlinear oscillatmdg the domainz; =
[—1.35V,1.35V], the bound of the nonlinearities difference (14) can betemits
follows:

0 0

) < N(xm,Xs,t,0) < (37)
1 092 g
o (a+3B-0.27) o

16



Fig. 9. The choice of the bound of the nonlinear function

In the worst case, the superior limit is taken and the m#j%0) becomes:
1
° L,
ANO)=| 1 ° (38)
Co Co
It was considered that all the parametersAgf{6) have £5% variation around
the nominal value. This variation can be seen as the vaniatepending on the
temperature of the oscillators that are built on the sanegmated circuit substrate.
This is mathematically translated by the variation of tteesmatrixAy (61) inside
the polytopeay. Using the Matlab’s "LMI Toolbox” in order to solve the sytem

of inequalities (28) applied to the 8 vertices of the polgag ,, the following
state-feedback controller was found:

2.66588 1011\ 22.3994
7.51499 10° ‘—1.1885

(39)

This controller has the structure given in (24) and the firgieois chosen in re-
spect of implementation constraints. It assures the spnration of oscillators
having ) = +5% difference between parameters. This difference is septed
by variation of the perturbation matrB (6,) inside the polytope#;.

The difference betweeny, Cy andLs, Cs parameters, translates a possible differ-
ence between the free-running frequencies of the two asmifi:

fos € [ fou (1—13))? fow (1-+3])?] (40)

17



In our case the guaranteed synchronization interval is:

fos € [0.9f0|\/| 1.1f0|\/|] (41)
The difference betweemy, By andas, Bstranslates a possible difference between
the transistor operating points of the two non linear oatolis.

Fig. 10 presents the eigenvalues of the closed loop systBw2enAy(0;) takes
random values in the polytopey. andB;(6;) in the polytope#; It can be seen
that all the eigenvalues are in the left half-plan.

Realaxis  yio"

Fig. 10. The poles and the zeros of the closed loop system

The state controlleKp that has been found and who permits the initialization of
(28) LMl is:
2.33.-10" 6.25.-10'Y —5.26 —0.54
Ko=| 6.76-10'1 1.17-10'! —8.09 —0.24 (42)
—1.22-10° -1.89.-10° 0.10 —2.60

This controller was applied to a pair of two non-linear datdrs having coupled
as in (6). Their free running frequencies dgg = 2GHzand fops = 2.2GHz

In fig. 12 there are presented the two output voltages forenasid slave oscillators
and is divided into three sequences:

I. a first sequence in which, because the contrdllgiis not activated, the two
oscillators oscillates from their free-running frequasciyy = 2.2GHzandfs=
1.8GHz the limits of the guaranteed region of synchronization.(41

II. att = 55ns the controllerz; is activated. It can be seen that, after approxima-
tively two periods, the two oscillators are synchronizethat master oscillator
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50 52 54 56 58 60 62 64 65

time [nsec]

Fig. 11. Output tensions of the two oscillators

frequency:fy = fs=2.2GHz The obtained delay is closed to the imposed value
(r =T /4=1.25-10"1%). This delay will correspond to a orientation of the main
lobe in® = 120°.

lll. at t = 60ns in order to verify the robustness of the dynamical congplthe
free running frequency of the master oscillator was changegy = 2GHz It

can be seen that the slave oscillator, after the transigimheg locks on the new
referencefy = fs=2GHz

Error signal [Volts]
()
|

50 52 54 56 58 60 62 64 65

time [nsec]

Fig. 12. The error between the two signals provided by the oscillators

In fig. 11 the error between the two output signals is preskertecan be seen
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that the error tends toward zero after a short period of tinber dfie controller’s
activation and the modification of master oscillator’s freqcy.

5 Conclusion

This paper presents a robugt, synthesis used to determine a dynamical con-
troller who synchronize two non linear oscillators couplada delay line. The
polytopic form of the system includes the variation of thggbal parameters due
to the temperature variation, to the uncertainties of thel@hand the oscillators
differences. The proposed technique was successfullyeapid a system of two
coupled non linear oscillators. It has been extended sseftdsto a chain of eight
unidirectionally coupled oscillators. Additional reselawill be made to constrain
the dynamical controller to realize the desired delay ireotd eliminate the delay
element.

6 Appendix : Proof of theorem

PROOF. In order to prove this theorem, two particular forms of maseparation
lemma will be introduced. These lemmas permits to elimimatalucts of vari-
ables by increasing the order of the final system. Their destnations are given in
(lwasaki et al., 1998).

Lemma 2 The two following affirmations are equivalent:

1. Letd, a and b, three matrices such that:
@+ Sym {abT} <0

2. Let @, a and b, three matrices such as the next LMI has a solution @its
variable:

(ON0)
(ONO)
d®<O0

+ Sym 4 [(Q) ]1] + Sym
)

Lemma 3 The two following affirmations are equivalent:
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1. Let®, a and b, three matrices such that the next LMI has a solutidn ¥yiand
fo as variables:

2. Let®d, a and b, three matrices such that:
®+Sym{ab'} <0

It is supposed that the inequality (28) is verified. Usingitiverse form ol.emma
2 for the triplet(¢p, ap, bp) with:

FB

B
o= | 2| and sz:[S@@@} (43)
FaB

F,B

the following equivalent inequality is obtained:

T ¢ T )

[0 0 ¢y R F1
0O -yl O O PRlr- - -
+Sym Ani+B2KC Byj O —1| p <O
Cqg O —yIO = (44)
R O OO || Fs

Vie{1...2M} andvj € {1...27}

Remark 2 The expressiod, < O is a equivalent form of the (27) inequality. This
inequality is verified because it was supposed that it existalailizing state feed-
back controller lg (seeAssumptionl).

If we apply to the inequality in (44) the direct form bemma 3 using(qbl, a, blT)
as variables, the equivalent form of (25) is obtained. Theesfor®,, a; andb; "
are:

0 0 Cy' R
P1= |0 -yl O |a=|0|b'=|Ai+BKCE, O] 5
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The inequality in (25) proves the asymptotic stability oé thystem (27) in the
vertex points of the polytopesyy and %;. Or, each matriXAy(61) andB;y(6,) in
the polytopes can be written as a convex combination of thé fpoints so the
system (25) is asymptotically stable for all values inshuese polytopes.

Using (27) a dynamical controller defined by (28) (and who lcarseen as a filter
having the transfer function like in (46)) can be calculated

H(s) = Cc (s —Ac) "B +Dc (46)

This dynamical controller guaranties the robust synclaation of the system pre-
sented in Fig.(6).
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7 Reviewerscomments

Reviewer 3: Fig.6 clearly shows that the error state equdfi8i rather than the
original (13) is used in the design of &h, controller. The idea behind this is the
nonlinearity within the system can be removed for the cdrslystem design. The
authors claims the reason that this can be dofié)ite) s, <= (V)(e)z, due to (14).
However this is not trivial and a proof is necessary.

Moreover, egn 14 is very confusing. First, it needs to makarolvhat the inequality

means in (14) because the involved quantities are vectersrfd, this inequality

indicates the difference of the nonlinear parts betweenenasnd slave systems
tends to zero when the two systems reach synchronizatidtra ealistic assump-

tion?
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