
HAL Id: hal-01007680
https://hal.science/hal-01007680

Submitted on 17 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust synchronization of different coupled oscillators:
Application to antenna arrays

Florin Doru Hutu, Sébastien Cauet, Patrick Coirault

To cite this version:
Florin Doru Hutu, Sébastien Cauet, Patrick Coirault. Robust synchronization of different coupled
oscillators: Application to antenna arrays. Journal of The Franklin Institute, 2009, 346 (5), pp.413-
430. �10.1016/j.jfranklin.2009.01.001�. �hal-01007680�

https://hal.science/hal-01007680
https://hal.archives-ouvertes.fr


Robust synchronization of different coupled
oscillators: application to antenna arrays

Florin HUTU Sebastien CAUET Patrick COIRAULT

University of Poitiers, Laboratoire d’Automatique et d’Informatique Industrielle, 40
Avenue du Recteur Pineau, 86022 Poitiers Cedex France

Abstract

This paper treats the synchronization of a chain of non linear and uncertain model of non
identical oscillators. Using the Lyapunov theory of stability, a dynamical controller guar-
antying the oscillators synchronization is determined. The problem of synchronization is
transformed in a problem of asymptotic stabilization for a nonlinear system and thenis for-
mulated as a system of linear matrix inequalities where the parameter variations of the two
oscillators and their differences are modeled by polytopic matrices. The theoretical result
is successfully applied to an array of transistor-based oscillators used in"smart antenna"
systems.

Key words: L MI , Robust contol, Control applications, Antenna arrays

1 Introduction

The demand of mobile communication services is in a continuous growth, more-
over, it is estimated that the rate will be maintained in the next years. This contin-
uous development has stimulated the research of new hardware and software solu-
tions in order to increase the volume of exchanged data and a better management
of the emitted or received electromagnetic field.

Smart antennas are a part of communication systems that can help improve their
global performances. These devices can increase the spectral efficiency and reduce
the multi path fading, bit error rate (BER), the co-channel interferences (CCI) and
the system complexity (Godara, 1997). This is possible by electronically adjusting
their radiation patterns in order to present important gainfor the desired signals and
small gain for interference signals.
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One of the challenges to control such devices is to generate signals with the same
frequency and different phases and amplitudes. This paper proposes variation of
a technique inspired from radar applications: the generation of synchronized and
phase shifted signals using arrays of coupled non linear oscillators.

The work that has been done in the field of dynamics of coupled nonlinear oscilla-
tors using a harmonic approach (Guan et al., 2004; Hwang and Myung, 1998; Liao
and York, 1993, 1994; Tombak and Mortazawi, 2003; York and Itoh, 1998; York
and Popovic, 1997) has shown that they offer simple methods of phase control
among array elements and hence beam scanning capabilities but also implies prob-
lems of stabilization. This paper treats the synchronization of a system made by
two oscillators with a unidirectional coupling and this problem of synchronization
is transformed in a problem of stabilization for a nonlinearsystem. The strategy
chosen is to find an output feedback dynamic controller usingLyapunov functions.

The problem of calculating dynamic output feedbacks on LTI (linear time invari-
ant) systems in term of matrix inequalities is difficult to solve. In fact this solution
can be found by solving a set of bilinear matrix inequalities(BMI). There are two
known techniques: the iterative algorithms and the elimination of variable products
by using the matrix separation lemma. It has been chosen the second method who,
in certain cases, transforms the initial BMI into a set of LMI-s who can be numeri-
cally solved (Arzelier et al., 2002; Arzellier et al., 2003;Mehdi et al., 2003; Iwasaki
et al., 1998; Peaucele and Azellier, 2001; Boyd et al., 1994).

This technique involves the use of Lyapunov functions that depend on the polytopic
structure of the uncertainty in order to reduce the conservatism of the method. This
work refers to the results of (Peaucelle, 2000). The reader is invited to see (Geromel
et al., 1998; Feron et al., 1996; Chilali et al., 1999; Peaucelle et al., 2000) where
tractable results relevant to parameter-dependent Lyapunov functions are proposed.

It was demonstrated in (Geromel et al., 1998) and (de Oliveira et al., 1999) that the
polytopic structure reduces conservatism. This improvement has been numerically
verified in (Bachelier et al., 1999). In the discrete case, it exists a less pessimistic
condition which consists on increasing the number of variables in LMI (Leite and
Peres, 2003; Ramos and Peres, 2001). The originality of this paper comes from
using both kind of uncertainties (polytopic and nonlinearity bound) and solving the
problem of synchronization using the interior point techniques.

The variation of the parameters is taken into account by considering the state matrix
as a polytopic one. Once the stability of the vertices, defined for the polytope is
demonstrated, the stability and hence the synchronizationof the two oscillators is
assured for all systems inside the polytope.

The nonlinear character of the oscillators allows the synchronization (if their free
running frequencies are in a certain domain (Liao and York, 1994)) but also makes
them dependent of initial conditions. The main objective isto eliminate the non-
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linear effect and to maintain the synchronization when the physical parameters of
the oscillators and external conditions are modified. The originality if the method
comes from the inclusion of the non-linear term and the undesired variations in a
perturbation. This problem is transformed in aH∞ optimization.

In section 2 is presented an overview of the antenna array theory. In section 3 a
theory of dynamical controller design for this particular class of nonlinear systems
is developed. Section 4 presents the numerical results in the case of an array of
coupled nonlinear oscillators.

2 Antenna array theory overview

In this section, a brief overview on the antenna array theoryis given. It will be
shown how, by controlling the phases and amplitudes of the carrier signals associ-
ated to each elementary antenna, the directional gain can becontrolled.

Generally, a unspecified volume in the space who is able to emit electromagnetic
radiation is formed by an infinity of elementary electrical dipoles. If it is consid-
ered that the radiation of a elementary dipole does not influence the others in the
volume, the total emitted electromagnetic radiation is theweighted sum of the elec-
tromagnetic fields radiated by all dipoles.

A smart antenna is composed by an array of individual radiative elements (elemen-
tary antennas), which are disposed in a particular configuration (linear, circular or
matrix). By grouping these elementary antennas in such arrays and by changing
the characteristics of the signals associated to each element, the array can present
different gains according to the direction. These gains arerepresented in so called
radiation patterns and, because of the property of the reciprocity of the antennas
(Harlington-Villeneuve principle), the radiation patterns are the same at the emis-
sion as at reception.

Let us consider an uniform linear array ofN identical patch antennas placed at the
same distanced between them as in Fig. 1.

wmsin2π f0tw1sin2π f0t w2sin2π f0t wN sin2π f0t

Θ z0

d

Fig. 1. An uniform antenna array
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For the theoretical study of this configuration, it is supposed that in the elemen-
tary antennas, harmonic signals of the same frequency but different amplitudes and
phases are injected.

The electromagnetic field of the antenna arrays is composed by a term who depends
on the amplitudes and phases of the injected signals:

Etotal = Ere f ∗ f (Θ) (1)

WhereEre f is the electromagnetic field of an elementary antenna and thearray
factor can be written as follows:

f (Θ) =
N

∑
m=1

wme− j(m−1)k0dcosΘ (2)

This equation shows that the only way ti modify the spatial distribution of the elec-
tromagnetic field is to modify the value of the array factorf (Θ). This became
possible by changing the values of thewm complex coefficients.

2.1 Emission case

In the simplest case, in order to steer the main lobe of the radiation pattern in a
unspecified directionΘnec, the carrier signals associated to each elementary antenna
must verify two conditions:

• the amplitudes must have the same value. Usually it is consideredAi =
1
N

.

• the phase difference between two consecutive signals must be the same:∆ϕ =
ϕi+1−ϕi = ct; ∀i ∈ [1. . .N]

In this particular case, the mathematical expression of theradiation pattern is:

f (θ) =
1
N

sinNγ
2

sinγ
2

(3)

whereγ = ϕ −k0dcos(θ); N the number of antennas,d the distance between them.
It can be seen that a quantity of the radiated energy is lost inthe side lobes which
implies a certain weakening of the antenna array gain.

For the theoretical study, the Chebyshev method is considered. The same example

of N equally spaced antennas, placed at the same distanced =
λ
2

between them

is considered. The reference antenna is located into the middle of the array and a
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constant phase gradient is assumed:ϕm−ϕm−1 = δ; ∀m∈ {−N/2,N/2}.




f (Θ) = 2
n−1

∑
m=0

AmT2m+1(w) n = N
2

f (Θ) =
n

∑
m=0

AmT2m(w) n = N−1
2

(4)

whereTn(x) represents the Chebyshev polynomial of ordern and variablex.

The variablew is defined as follows:

w = cos

(
δ −k0dcosΘ

2

)
. (5)

Fig. 2 presents the array factor and the radiation pattern whenR=
LML

LSL
= 2. The

maximum inΘ= 60◦ direction is tackled when a phase gradientδ of 90◦ is assured.
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Fig. 2. The array factor and the gain of antenna array in the case ofN = 8 patch antennas
and Dolph-Chebyshev optimization

2.2 Estimation of direction of arrival

In modern communication systems, it is often used the principle of channel re-use.
That means that neighbor clusters use the same communication channel and so, the
signal to noise ratio become weak. In order to solve this problem, the antenna array
can be able to present different directional gains; moreover, the system must be able
to dynamically modify this gain in order to follow the usefullink. The following
example shows how such antennas are able to accomplish this task.

Let us consider the same array ofN = 8 identical antennas placed at the same
distanced = λ0

2 between them (f0 = 2GHz). It is supposed also that there is one
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privileged signal having the angle of the position vector varying in intervalΘp ∈
[0◦ . . .75◦]. There are supposed two others fixed interference signalsi1 andi2 having
the angle of the position vector atΘi1 = 90◦ andΘi2 = 120◦ respectively, as in fig.
3.

The antenna array is supposed to present a certain gain in thedirection of the privi-
leged signal and to cancel the interference signals by presenting a null gain in their
direction. The algorithm is initialized with a random set ofweightingw and at each
variation of the privileged signal direction.

✻

✲

x

y

0

⑥

⑥

Privileged signal

⑥Interference signals

Θi2 = 120◦ ✛ Θp ∈ [0◦ . . .75◦]

✲

Antenna array

Θi1 = 90◦

Fig. 3. Typical problem of DOA technique

Fig.4 presents the amplitudes and phases variations neededby the eight carrier sig-
nals in order to follow the useful signal and to eliminate thetwo other interferences.
It can be seen that the variations are dispersed in the entiretrigonometric circle.

Using these two examples, it can be seen that the both variations of the amplitudes
and the phases of the carrier signals are in a large interval.This paper proposes a
new technique to generate such signals having the same frequency and different
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phases and amplitudes.

3 Problem formulation

3.1 Problem statement

One can conclude that both variation of the amplitudes and phases are in a large
interval. If the amplitude variation can be easily solved byusing variable gain am-
plifiers, the problem of the phase variation is more constraining.

There are several techniques who permits solving this problem. These techniques
can be divided in two main approaches: one which use the signalgenerated by one
oscillator and the second who use signals generated by arrayof coupled oscillators.

Signals with the same frequency but different phases and amplitudes can be built
by delaying the signal generated with one master oscillatorusing high-frequency
power dividers and variable delay lines or Butler couplers. This approach is very
useful when discrete systems are conceived. Another approach is to use polyphasic
oscillators and a multiplexing system (Guan et al., 2004). The disadvantage of these
techniques is that it cannot be obtained continuous phase variations.

The second approach is based on the synchronization of arrays of oscillators hav-
ing their free running frequencies with a weak dispersion. In (Liao and York, 1994;
York and Itoh, 1998) it was demonstrated that arrays of coupled nonlinear oscil-
lators can synchronize, moreover, according to the coupling strength and to free-
running frequencies, phase variations can be assured. Recent works (Heath, 2005)
presents how the phase variation can be assured by changing only the free-running
frequencies of all coupled oscillators in the array.

In this paper, the problem of generating the carrier signalswith the same frequency
and different phases is treated. In order to generate these carrier signals, the follow-
ing general schematic Fig. 5 is proposed:

(
f0,AN ,ϕN

)

-

+

-

+

-

+

Slave3Slave2Master SlaveN

ΣCτN−1ΣCτ2ΣCτ1

Gain1 Gain2 Gain3 GainN

ΣΣΣ

(
f0,A1,ϕ1

) (
f0,A2,ϕ2

) (
f0,A3,ϕ3

)

Fig. 5. Unidirectional coupling of a chain of oscillators

This schematic is a variation of the York’s approach presented in (York, 1993).
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Because of the unidirectional coupling, each slave oscillator is driven only by its
left neighbor so, the study of this configuration is reduced to the study of a pair of
two non-linear systems like in Fig. 6.

The purpose is to design the parameters of theΣC system in order to make theye(t)
output to tend toward zero. When this objective is accomplished, the delayed output
of the master oscillator and the output of the slave oscillator becomes identical, so
the two oscillators are synchronized.

Generally, because of the technological realization, the oscillators don’t have the
same free running frequencies. This is the reason why the feedback loop was in-
troduced: to guarantee the robust synchronization betweenthe two oscillators. The
delay element and the variable gain amplifier will assure different phases and am-
plitudes for the output signals.

The difference between the oscillators will be modeled as a variation of the slave
oscillator’s parameters around those of the master oscillator parameters, which is
considered as the reference. The variations due to the temperature or at the ageing
of the components are modeled by a polytopic uncertainty of the master oscillator
parameters around the nominal values.

In order to model the two oscillators, a class of nonlinear, uncertain systems having
the following state-space representation will be considered:





ẋ = A(θ1)x+g(x, t,θ1)+Bu

y = Cx
(6)

The x ∈ R
nx vector represents the state vector,u ∈ R

nu the input vector andy ∈
R

ny, the output vector. The vectorial functiong(x, t,θ1) : R
nx ×R×R

M 7→ R
nx×1 is

supposed to be a continuous function. The vectorθ1 has the sizeM and it contains
all the uncertain parameters of the state matrix.

Assume thatA(θ1) is a matrix who belongs to a setA defined as in (7). This set
is a polytope of matrices and it represents a convex combination of the extreme
matricesAi, i = 1. . .2M, the vertices ofA .

A =

{
A(θ1)| A(θ1) =

2M

∑
i=1

ξiAi; ξi ∈ ∆1

}
(7)
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with:

∆1 =








ξ1
...

ξ2M


 ∈ R

2M
| ξi ≥ 0; ∀i ∈ 1. . .2M;

2M

∑
i=1

ξi = 1





(8)

The structure represented in Fig. 6 is made by two different systems who belongs to
the class previously described. The master system is considered independent (u =
0) and the dynamical controllerΣC drives the slave system using the error signal
as reference. The error signal is constituted by the difference between a delayed
version of the master’s output and the slave’s output.

-

+
Master Delay ΣC Slave

yM (t) yM (t − τ )

Σ

yS(t)

ye(t)

Fig. 6. Master-slave synchronization

The state-space representation of the master system can be written as follows:

ΣM :





ẋM = AM(θ1)xM +gM(xM, t,θ1)

yM = CxM

(9)

For the slave system, the state-space representation can bewritten as:

ΣS :





ẋS = AS(θ1)xS+gS(xS, t,θ1)+B2u

yS = CxS

(10)

It is considered that between the state matricesAM andAS there is a small variation
described byB1(θ2) matrix:

AM(θ1) = AS(θ1)+B1(θ2) (11)

The vectorθ2 has the sizeP≤ M and it contains all the parameters inθ1 that varies
from the master system to the slave one.

The matrixB1(θ2) also belongs to a setB1 defined as follows:

B1 =

{
B1(θ2)| B1(θ2) =

2P

∑
i=1

ζ iB1i ; ζ i ∈ ∆2

}
(12)
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with:

∆2 =








ζ1
...

ζ2P


 ∈ R

2P
| ζ i ≥ 0; ∀i ∈ 1. . .P;

2P

∑
i=1

ζ i = 1





(13)

Let us note the non linearities difference as follows:

gM(xM, t,θ1)−gS(xS, t,θ1) = eg(xM,xS, t,θ1) (14)

and let us consider that the matrixeg(xM,xS, t,θ1) can be bounded,NB(θ1) being
its upper bound:

NB(θ1)e≤ eg(xM,xS, t,θ1) (15)

NB(θ1) is a time invariant matrix who belongs to a polytopeNB:

NB =

{
NB(θ1)| NB(θ1) =

2M

∑
i=1

ξiNBi ; ξi ∈ ∆

}
(16)

where∆1 defined as in (8).

Remark 1 A(θ1) and NB(θ1) are two polytopic matrices that depends on the same
parametersθ1. The sum AN(θ1) = A(θ1)+NB(θ1) is a polytopic matrix, AN(θ1) ∈
AN , where:

AN =

{
AN(θ1)| AN(θ1) =

2M

∑
i=1

ξiANi ; ξ ∈ ∆

}
(17)

where ANi = Ai +NBi

If an error state is defined as

e(t) = xM(t − τ )−xS(t), (18)

a state-space representation can be written:

Σe :





ė= AN(θ1)e−B1(θ2)xs−B2u

ye = Ce
(19)
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3.2 Controller synthesis

Assume that the dynamical output controller has the following state-space repre-
sentation and its dimension isnc:

ΣC :





ẋc = Acxc +Bcye

u = Ccxc +Dcye

(20)

The purpose of this controller is to force the slave system tofollow the delayed
output of the master system. This condition is accomplishedwhen the error signal
defined in (18) tends toward zero. The termB1(θ2)xs, representing the difference
between the two systems, acts like a perturbation on the error statee. In order to
reject this perturbation, theT∞ transfer between theZ∞ output defined in (21) and
thexs state, will be minimized (22).

Z∞ = C∞e (21)

whereC∞ =


 1 0

0 1


.

The transferT∞ is defined as follows:

T∞ =
||Z∞||∞
||xS||∞

< γ2 (22)

This is a classicalH∞ problem who consists in finding the controllerK and the real
scalarγ as small as possible:

ye

Σe

Σc

xs z∞

yc

Fig. 7.H∞ principle

The closed loop system can be described by the following state-space representa-
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tion: 



ẋcl = Acl(θ1)xcl + B̃1(θ2)xs

z∞ = Cclxcl

(23)

where:Acl = ÃN(θ1)+ B̃2KC̃; Ccl = [C∞ O] and:

z=


 e

xc


 ÃN(θ1) =


 AN(θ1) O

O O


 B̃2 =


−B2 O

O I




K =


 Dc Cc

Bc Ac


 C̃ =


 C O

O I


 B̃1(θ2) =


 B1(θ2)

O




(24)

Using the real bound lemma (see(Chilali et al. (1999); Boyd et al. (1994))), the
condition (22) applied to the closed loop system (23) can be written as follows:




Acl(θ1)
TP(θ1)+P(θ1)Acl P(θ)B̃1(θ2) Ccl

T

B̃1(θ2)
T
P(θ1) −γI O

Ccl O −γI


 ≤ O (25)

whereP(θ1) is a positive definite, symmetric and parameter-dependent matrix de-
fined by:

P(θ1) =
2M

∑
i=1

ξiPi (26)

To study the stability of this system, the stability of the extreme matricesANi, the
vertices ofAN should be studied.

Assumption 1 It is supposed that it exists a stabilizing state feedback controller
K0 that is the solution of the following LMI:




Acl(θ1)X +XAcl
T + B̃2L0 +(B̃2L0)

T B̃1(θ2) XCcl
T

B̃1(θ2) −γ0I O

CclX O −γ0I




≤ O (27)
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where X is a symmetric, positive definite matrix, having the same dimensions as
P(θ1). The state feedback controller K0 is solution of L0 = K0X.

The P(θ1) andK unknown variable matrices and the unknown positive constant
γ that makes the (25) inequality feasible, can be calculated only in the vertices
of A andB1, sight that each valuẽA(θ1) andB̃1(θ2) can be written as a convex
combination of those vertices.

The following theorem solves the problem of variable matrices product in (25) by
introducing extra unknown variable matrices. The equivalent expression (28) of
(25) can be numerically solved using Matlab’s© "LMI Toolbox".

Theorem 1 If there exists a set of matrices Pi > 0, a matrix K0 that is solution of
(27), a unknown variable square and nonsingular matrix G∈ R

nu+nc, a unknown
variable matrix H∈R

(nu+nc)×(nu+nc) and four unknown variables matrices F1,F4 ∈
R

(nx+nc)×(nx+nc), F2∈R
nx×(nx+nc) and F3∈R

(n∞+nc)×(nx+nc) such that the inequality
(28) is verified, then the dynamical controller K= G−1L makes the error system
(19) asymptotically stable for all matrices AN(θ1) and B1(θ2) described as convex
combination of the elements inAN and B1 respectively and with respect of (22)
condition.

Φ2 + 1Sym








F1

F2

F3

F4

O




[
O O O O B̃2

]





+Sym








O

O

O

O

I




L
[

C̃ O O O O

]





+Sym








O

O

O

O

I




G
[
−K0 O O O −I

]





< O;

(28)

1 Sym{X} = XT +X; ∀X ∈ R
n

13



The matrixΦ2 is defined as follows:

Φ2 =




O O Ccl
T Pi O

O −γI O O O

Ccl O −γI O O

Pi O O O O

O O O O O




+Sym








F1

F2

F3

F4

O




[
Ã0i B̃1 j O −I O

]





∀i ∈ {1. . .2M} and∀ j ∈ {1. . .2P}

(29)

WhereÃ0i = ÃNi + B̃K0. Let us introduce the following notation:

S= KC̃−K0 (30)

See Proof in the appendix.

4 Numerical results

In order to verify the theoretical result, a transistor-based simulation has been done
using Agilent’s ADS© software and models of MOSFET transistors in 0.35µm
silicon technology. The oscillators are conceived using a double differential pair
structure. In order to determine the value of the dynamical controller, the non linear
oscillators were modeled using the van der Pol model. This model is composed by
an ideal resonant circuit coupled with a nonlinear element having the following
conductance:g(v) = −α +βv2; α , β ∈ R

∗
+.

The parametersα = 0.379 andβ = 0.281 were identified using a simple least
square algorithm and the current-voltage characteristic provided by the differen-
tial pair of transistors. The values for the components of the resonant circuit (L0 =
6,33nH andC0 = 1pF) are chosen to assuref0 = 2GHzoutput frequency.

4.1 The van der Pol model of a transistor based-oscillator

In order to model the non-linear behavior of the oscillators,the van der Pol model
was used. There are two possible ways to write its state-space representation. The
usual manner is to consider as state-space variables, the output tension and its
derivative. In this article, the considered variables are the output tensionv0 and

14



the inductance currentiL:





diL
dt

=
1
L0

vo

dv0

dt
= −

1
C0

iL +
α
C0

vo−
β
C0

vo
3 +

1
C0

i in j

(31)

This system can be rewritten in a state-space form who is equivalent to the repre-
sentation given in (6):





ẋ = A(θ1)x+g(x, t,θ1)+Bu

y = Cx
(32)

where:

x =


 iL

v0


 A(θ1) =




0
1
L0

−
1

C0
0




u =
i in j

C0
g(x, t,θ1) =




0
−α
C0

x2 +
β
C0

x2
3




B =


 0

1


 C =

[
0 1

]

(33)

with the uncertain parameters:θ1 = [α ,L0,C0].

It is considered the structure in fig. 6 made by two such oscillators and with the
dynamical controller calculated with (28). Between the parameters of the master
and the slave oscillators, it is considered that there is thesame differenceδ:





LS = LM (1+δ)

CS = CM (1+δ)

αS = αM (1+δ)

βS = βM (1+δ)

(34)

This difference is translated into the difference between theAM andAS matrices as

15



in (11). With the assumptions in (34),B1(θ2) can be written as follows:

B1(θ2) =




0 −
δ

LM (1+δ)
δ

CM (1+δ)
0


 (35)

4.2 Nonlinear bound determination

In order to determine the bounds of the nonlinearities difference, the scalar function
f : D1 7→ D2; f (x) = −αx+ βx3 is considered. The bounds can be considered as
the slopes of the tangents at the graphical representation of f (x) in the pointsx= xm

andx = 0 as in Fig. 9.

−α (x2−x1) ≤ ( f (x2)− f (x1)) ≤ (−α +3βxm
2)(x2−x1)

∀x1,x2 ∈ D1

(36)

Fig. 8. The choice of the bound of the nonlinear function

If it is considered the case of the two nonlinear oscillatorsand the domainD1 =
[−1.35V,1.35V], the bound of the nonlinearities difference (14) can be written as
follows: 



0

−
1

C0

(
α +3β−0.22)



≤ N(xM,xS, t,θ) ≤




0

α
C0


 (37)
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Fig. 9. The choice of the bound of the nonlinear function

In the worst case, the superior limit is taken and the matrixAN(θ) becomes:

AN(θ) =




0 −
1
L0

1
C0

α
C0


 (38)

It was considered that all the parameters ofAN(θ) have±5% variation around
the nominal value. This variation can be seen as the variation depending on the
temperature of the oscillators that are built on the same integrated circuit substrate.
This is mathematically translated by the variation of the state matrixAN(θ1) inside
the polytopeAN. Using the Matlab’s ”LMI Toolbox” in order to solve the sytem
of inequalities (28) applied to the 8 vertices of the polytope AN , the following
state-feedback controller was found:

K =


 2.66588·1011 22.3994

7.51499·109 −1.1885


 (39)

This controller has the structure given in (24) and the first order is chosen in re-
spect of implementation constraints. It assures the synchronization of oscillators
havingδ) = ±5% difference between parameters. This difference is represented
by variation of the perturbation matrixB1(θ2) inside the polytopeB1.

The difference betweenLM, CM andLS, CS parameters, translates a possible differ-
ence between the free-running frequencies of the two oscillators:

f0S∈
[

f0M (1−|δ|)2 f0M (1+ |δ|)2
]

(40)
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In our case the guaranteed synchronization interval is:

f0S∈ [0.9 f0M 1.1 f0M] (41)

The difference betweenαM, βM andαS, βS translates a possible difference between
the transistor operating points of the two non linear oscillators.

Fig. 10 presents the eigenvalues of the closed loop system (25) whenAN(θ1) takes
random values in the polytopeAN. andB1(θ2) in the polytopeB1 It can be seen
that all the eigenvalues are in the left half-plan.
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Fig. 10. The poles and the zeros of the closed loop system

The state controllerK0 that has been found and who permits the initialization of
(28) LMI is:

K0 =




2.33·1011 6.25·1010 −5.26 −0.54

6.76·1011 1.17·1011 −8.09 −0.24

−1.22·1010 −1.89·109 0.10 −2.60


 (42)

This controller was applied to a pair of two non-linear oscillators having coupled
as in (6). Their free running frequencies aref0M = 2GHzand f0S = 2.2GHz.

In fig. 12 there are presented the two output voltages for master and slave oscillators
and is divided into three sequences:

I. a first sequence in which, because the controllerΣc is not activated, the two
oscillators oscillates from their free-running frequencies: fM = 2.2GHzand fS=
1.8GHz, the limits of the guaranteed region of synchronization (41).

II. at t = 55ns, the controllerΣc is activated. It can be seen that, after approxima-
tively two periods, the two oscillators are synchronized atthe master oscillator
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Fig. 11. Output tensions of the two oscillators

frequency:fM = fS= 2.2GHz. The obtained delay is closed to the imposed value
(τ = T/4= 1.25·10−10s). This delay will correspond to a orientation of the main
lobe inΘ = 120◦.

III. at t = 60ns, in order to verify the robustness of the dynamical controller, the
free running frequency of the master oscillator was changedto fM = 2GHz. It
can be seen that the slave oscillator, after the transient regime, locks on the new
reference:fM = fS = 2GHz.

Fig. 12. The error between the two signals provided by the oscillators

In fig. 11 the error between the two output signals is presented. It can be seen
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that the error tends toward zero after a short period of time after the controller’s
activation and the modification of master oscillator’s frequency.

5 Conclusion

This paper presents a robustH∞ synthesis used to determine a dynamical con-
troller who synchronize two non linear oscillators coupledby a delay line. The
polytopic form of the system includes the variation of the physical parameters due
to the temperature variation, to the uncertainties of the model and the oscillators
differences. The proposed technique was successfully applied to a system of two
coupled non linear oscillators. It has been extended successfully to a chain of eight
unidirectionally coupled oscillators. Additional research will be made to constrain
the dynamical controller to realize the desired delay in order to eliminate the delay
element.

6 Appendix : Proof of theorem

PROOF. In order to prove this theorem, two particular forms of matrix separation
lemma will be introduced. These lemmas permits to eliminateproducts of vari-
ables by increasing the order of the final system. Their demonstrations are given in
(Iwasaki et al., 1998).

Lemma 2 The two following affirmations are equivalent:

1. LetΦ, a and b, three matrices such that:

Φ+Sym
{

abT}
< 0

2. Let Φ, a and b, three matrices such as the next LMI has a solution withG as
variable:






 Φ O

O O


+Sym






 a

O




[
O I

]


+Sym






 O

I


G

[
bT −I

]


 < 0

Φ < 0

Lemma 3 The two following affirmations are equivalent:
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1. Let Φ, a and b, three matrices such that the next LMI has a solution with f1 and
f2 as variables:


 Φ a

aT
O


+Sym






 f1

f2




[
bT −I

]


 < 0

2. LetΦ, a and b, three matrices such that:

Φ+Sym
{

abT}
< 0

It is supposed that the inequality (28) is verified. Using theinverse form ofLemma
2 for the triplet(φ2,a2,b2) with:

a2 =




F1B̃

F2B̃

F3B̃

F4B̃




and b2
T =

[
S O O O

]
(43)

the following equivalent inequality is obtained:



O O Ccl
T Pi

O −γI O O

Ccl O −γI O

Pi O O O




+Sym








F1

F2

F3

F4




[
ÃNi + B̃2KC̃ B̃1 j O −I

]





< O

∀i ∈ {1. . .2M} and∀ j ∈ {1. . .2P}

(44)

Remark 2 The expressionΦ2 < O is a equivalent form of the (27) inequality. This
inequality is verified because it was supposed that it exists astabilizing state feed-
back controller K0 (seeAssumption1).

If we apply to the inequality in (44) the direct form ofLemma 3 using
(
Φ1,a1,b1

T)

as variables, the equivalent form of (25) is obtained. The values forΦ1, a1 andb1
T

are:

Φ1 =




O O Ccl
T

O −γI O

Ccl O −γI


 a1 =




Pi

O

O


 b1

T =
[

ÃNi + B̃2KC̃ B̃1 j O

]
(45)
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The inequality in (25) proves the asymptotic stability of the system (27) in the
vertex points of the polytopesAN andB1. Or, each matrixAN(θ1) andB1(θ2) in
the polytopes can be written as a convex combination of the limit points so the
system (25) is asymptotically stable for all values inside those polytopes.

Using (27) a dynamical controller defined by (28) (and who canbe seen as a filter
having the transfer function like in (46)) can be calculated.

H(s) = CC (sI−AC)−1BC +DC (46)

This dynamical controller guaranties the robust synchronization of the system pre-
sented in Fig.(6).
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7 Reviewers comments

Reviewer 3: Fig.6 clearly shows that the error state equation(18) rather than the
original (13) is used in the design of anH∞ controller. The idea behind this is the
nonlinearity within the system can be removed for the control system design. The
authors claims the reason that this can be done is(̇V)(e)σe <= (̇V)(e)Σe due to (14).
However this is not trivial and a proof is necessary.

Moreover, eqn 14 is very confusing. First, it needs to make clear what the inequality
means in (14) because the involved quantities are vectors. Second, this inequality
indicates the difference of the nonlinear parts between master and slave systems
tends to zero when the two systems reach synchronization. Isit a realistic assump-
tion?
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