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Abstract 

The problem of determining the response of a soil medium under the action of moving 
loads has received considerable attention in the past. Work in this area has been motivated by the 
need to determine the vibratory motion on the ground surface and at depth caused by moving 
vehicles. Moreover, high-speed trains are becoming increasingly popular and freight trains 
increasingly heavier. Combined with this fact and the observation that Rayleigh wave speeds are 
slower in soft soils, we see that the study of moving loads is important for environmental and 
geotechnical engineers. 

A lot of models are possible for the simulation of propagation phenomena. First, we can 
consider the case of a two-dimensional problem involving a moving harmonic strip load. The 
results derived by Fourier transform are valid for any frequency and load speed. For moving 
loads, to choose a suitable damping model, an original modified hysteretic damping is employed. 
Also, it is possible to investigate the transmission of vibrations due to a moving harmonic train 
of rectangular loads rigidly attached to an elastic multilayered ground. In this case, the previous 
damping model is used, combined with a dynamic stiffness matrix approach. In the spatial 
wavenumber domain, the dominant features encountered in a spectral decomposition 
corresponding to compression, shear and Rayleigh waves are illustrated. Also, results of the 
model at certain critical load speeds can be presented in dimensionless parameters. 

For 3D problems, a three-dimensional semi-analytic model of ground vibration due to a 
moving harmonic rectangular load can be developed. The model consists of a half-space, an 
elastic layer over a rigid foundation, or a multilayered soil, excited by an uniform harmonic 
surface load moving with constant velocity. The displacements are obtained in a wave number 
domain after a double Fourier transform for the equations of motion. Actual displacements are 
then calculated using a FFT algorithm. Numerical results can be presented in the wave number 
and actual domains, showing the existence of different regimes (sub-Rayleigh and super-
Rayleigh) depending on the load speed. Besides, for multilayered soils, we have to construct a 
global stiffness matrix using the same assembly process as in finite element analysis. 
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A more complete study needs to take into account the railway track. In this case, a railway 
track model lying on a layered ground and submitted to a moving train can be developed and the 
resolution  method uses the formalism of Fourier transform for a semi-analytical resolution in the 
wave number domain. It includes all elements of the track (rails, pads, sleepers and ballast) and 
allows a parametric analysis of its different elements and evaluation of vertical displacements 
according to the speed, the weight and the composition of the trains. The handwriting of the 
stiffness matrix for a layered ground with the help of a fitted phase angle of Helmotz functions 
provides a fast numerical approach of the problem. Then Mach cones for the super-Rayleigh 
regime can be obtained near the track involving very high displacements on waves front. In the 
continuation of these numerical results, in situ measurements can be performed with a view to 
the validation of the model. These studies allow the construction of an available data basis for a 
possible development of models. 

1. INTRODUCTION

The motivation for this presentation is to develop analytical, semi-analytical and numerical 
approaches to solve problems, involving ground vibrations due to moving loads in order to 
understand phenomena of wave propagation induced by rail and road traffic. In fact, during the 
last thirty years, damage due to ground vibrations caused by rail and road traffic has increased 
considerably, leading to environmental consequences (vibrations, noise, discomfort and 
environmental deterioration ...). It is thus important to study these phenomena theoretically in 
order to envisage ways of reducing their impact on the built environment. This is particularly 
true with regard to rail and road traffic which is becoming heavier and faster. For example, in the 
North West of France, more particularly in the region of the Somme Bay where grounds are 
constituded mainly by peat and soft clay, observations have revealed the presence of important 
displacements at the soil surface near railway tracks [1]. Also noticed in Sweden for grounds 
constituted by soft clay [2], these displacements involve with upsetting amplitudes in the track 
during heavy and high speed train passages. 

To remember briefly some previous studies, we can notice the two-dimensional problem of 
the steady-state motion of a static line load in an unbounded body which was first considered by 
Eason et al [3]. Eason [4] also studied the two-dimensional steady-state problem for an uniform 
half-space, using Fourier transform methods. Cole and Huth [5] considered the same problem for 
a constant normal line load and obtained analytical forms for the solutions of displacements, in 
the subsonic, transonic and supersonic cases, using Helmholtz decomposition. These various 
cases are defined as : 

• subsonic if the load speed is lower than the shear wave speed c2,
• transonic if the load speed is included between the shear wave speed and the

compressive wave speed c1,
• supersonic if the load speed is higher than the compressive wave speed.

Also, sometimes it is interesting to appeal to an other classification, such as : 

• sub-Rayleigh if the load speed is lower than the Rayleigh wave speed cR,
• super-Rayleigh if the load speed is higher than the Rayleigh wave speed.

These typical speeds are defined as : 
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• for the compressive wave :
ρ

μ+λ= 2
c2
1 (1) 

• for the shear wave :
ρ
μ=c

2
2 (2) 

• for the Rayleigh wave (Viktorov formula) :
ν+

ν+≅
1

12.187.0
c
c

2

R (3) 

where λ et μ are Lamé constants, ρ is the density and ν is the Poisson’s ratio. 

Georgiadis and Barber [6] corrected the Cole and Huth solution for the transonic regime. 
Fryba [7] also investigated the possibility of shocks in the ground due to a line load moving at 
constant speed at or beyond the Rayleigh wave speed. The method is based on a coupling using a 
change of variables (linked to the moving load) and a triple Fourier transform. This approach 
was also used by other authors, for example : Niwa and Kobayashi [8], Alabi [9], Jones et al 
[10]. Similarly, Keer [11] extended the study of the subsonic case to a moving harmonic line 
load with some numerical solutions. More recently, Gunaratne and Sanders [12] also studied the 
response of a layered elastic medium to a moving strip using a layer stiffness approach and 
viscous damping. Also, Lefeuve-Mesgouez et al [13] have obtained numerical results for the 
vertical displacements in the case of a vertical harmonic strip load moving with speed beyond the 
Rayleigh wave speed of the ground. The transmission of vibrations over the surface of the 
ground, due a high-speed moving, vertical harmonic strip load, is also investigated by the same 
authors [15], in the case of a two-dimensional problem with the ground modelled as an elastic 
half-space. Numerical results for the displacements on the surface are obtained for loads moving 
with speeds up to and beyond the Rayleigh wave speed of the half-space. De Barros and Luco 
[14] investigated the response of a layered viscoelastic half-space to a moving constant line load, 
and studied the stresses and strains. The transient motion for a line load which is suddenly 
applied on the ground and then moves with constant speed has been studied by Payton [16]. 

Eason et al [3] also studied the three-dimensional problem of a point load moving in an 
unbounded solid. Eason [4] and Lansing [17] investigated the three-dimensional problem for an 
uniform half-space. Alabi [18], [19] represented a train by a set of vertical moving point loads, 
and also studied the case of an oblique load for speeds up to half the Rayleigh wave speed. The 
three dimensional problem of a point load moving at constant speed on the ground demonstrating 
the possibility of shock formation in the ground has been studied by a lot of authors, for example 
Fryba [7], De Barros and Luco [20], Krylov [21], ... . Ground vibration in the vicinity of a 
moving harmonic rectangular load on a half-space can be also deduced (Jones et al [10]). For the 
same loading, displacements can be found in the case of a multilayered soil or of an elastic layer 
over a rigid foundation (Lefeuve-Mesgouez et al [22]. For the same characteristics of ground, it 
is also possible to obtain the surface vibration due to a sequence of high speed moving harmonic 
rectangular loads (Lefeuve-Mesgouez et al [23]). 

This brief presentation don’t give a complete state of art about the general problem 
concerning with the ground response for moving loads. Nevertheless, this point of view brings 
useful informations allowing a correct approach for the next situations : 

• two or three dimensional analysis ;
• models of ground : half-space, elastic or viscoelastic layer over a rigid foundation,

multilayered soil ;
• models of loadings : line load, strip load or rectangular load, sequence of loads.
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In the objective to present the more important conclusions deduced from these papers, in 
the next section we will investigate theoretically some problems for the ground vibration in the 
vicinity of a high-speed moving harmonic load. 

2. GROUND RESPONSE FOR  HIGH-SPEED MOVING LOADS

For this presentation, we consider only the case of a strip load (two-dimensional problem) 
and a rectangular load (three-dimensional problem) moving with a constant speed. 

2.1. Two-dimensional problem – Case of a strip load 

2.1.1. Strip load moving on an elastic half-space 

The model considered is shown in Figure 1. The strip load has a width of 2b and is 
aligned with respect to the x2-axis. It rests on an homogeneous, isotropic, half-space, with 
material properties E (Young’s modulus), ρ (density), ν (Poisson’s ratio). We consider the soil 
exhibiting hysteretic damping (coefficient η) which yields complex body wave speeds as 
follows : 

)i1(2
c

2
1 η+

ρ
μ+λ= (4) 

)i1(c
2
2 η+

ρ
μ= (5) 

 But for load speeds above the Rayleigh wave speed, yielding a quasi-causal solution, 
we need to modify the definition of the loss factor to : 

[ ])c(sgni12
c

2
1 β−ωη+

ρ
μ+λ= (6) 

[ ])c(sgni1c
2
2 β−ωη+

ρ
μ= (7) 

where ω is the load pulsation, c the load speed and β the Fourier parameter relative to the 
moving space variable x. 

An harmonic vertical load acts uniformly over the strip. 

Fig. 1 – Geometry of model 
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 By introducing a Helmholtz decomposition in the Navier’s elastodynamic equations 
and the stress-strain relatinship, we obtain the following wave equations for the two-dimensional 
model : 
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with :  
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 where Φ and Ψ are the Helmholtz potentials, the co-ordinates (x1, x3) are the fixed frame of 
reference, u1 and u3 are the horizontal and vertical displacements respectively. In terms of the 
scalar potentials, the boundary conditions for this problem are as follows : 

• at x3 = 0

<−−=
∂∂
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bctxife
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Φ∂μ=σ  (12) 

• at x3 = , there are no reflections, which means that all wave motions are in
the positive x3 – direction. 

 We introduce a frame of reference moving with the load (Eq. 13), in order to eliminate 
the time variable. We then define a Fourier transform on the space variable relative to the motion 
(Eq. 14) : 

x = x1 – ct  y = x2  z = x3 (13) 

+∞
∞−

β=β dxe)z,x(h)z,(h xi (14) 

 The Fourier transform is applied for Eqs (8), (9), (11) and (12). Taking into account that 
reflexions from z =  are disallowed, the Helmholtz potentials and then the longitudinal and 
vertical displacements can be obtained in the transform domain. The actual displacements in the 
(x,y) domain are deduced by means of the inverse Fourier transform. To perform this inverse 
Fourier transform, we use the well-known Fast Fourier Transform (F.F.T.) algorithm [24]. The 
displacements on the surface of the ground are then given by the following integral expressions : 
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• for the longitudinal displacement :

( ) tixi
21

2
2

2 ede2
)(F
bsin

b2
iPU ωβ∞+

∞−
βαα−α+β

β
β

πμ
−=  (15) 

• for the vertical displacement :

tixi
2

2
2

1 ede1
k

k
)(Fb

bsin
2

PW ωβ∞+
∞−

β−β
β

α
β

β
πμ

−= (16) 

with 
2

2
i

22
i k

1k β−−β=α ,   i = 1,2 (17) 

i
i c

k,
c

k ω=ω= (18) 

( ) 2
21

222
2 4),(F βαα−β+α=γβ (19) 

 We note that if c = 0 m/s, Eqs (15) and (16) reduce to the known expressions for a 
stationary harmonic vibrating strip load given for example by Le Houédec [25], and equation 
(19) reduces to the well known Rayleigh function ; thus F  is the Rayleigh function adapted to a 
moving load. 

 For the numerical results, the data concerning with the soil characteristics are given in 
Table 1. Particularly, the soil A is chosen from a British Rail site at which the constants have 
been measured. For this soil, the values of the Rayleigh, shear and compression wave speeds are 
cR = 242 m/s, c2 = 263 m/s and 459 m/s respectively. The next results describe the behaviour of 
the vertical response for different load speeds. 

Soil A Soil B Soil C Soil D
E(Pa)
ρ(kg.m-3) 
ν 
η 
cR(m/s) 
c2(m/s) 
c1(m/s) 

2.69 × 108

1550 
0.257 
0.1 
242 
263 
459 

5.38 × 108

3100 
0.257 

0.1 
242 
263 
459 

10.76 × 108

2000 
0.257 

0.1 
426 
463 
809 

2.0 × 108

1250 
0.257 

0.1 
232 
252 
441 

Table 1 – Material properties 

 Concerning with the soil A, five different frequencies are chosen for the moving load : 
8 Hz, 16 Hz, 32 Hz, 48 Hz and 64 Hz respectively. For the first results showing the effect of load 
speed on the vertical motion of half-space, this one is non-dimensionalized by strip length. 
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Figs 2, 3 and 4 give the results for c = 0 m/s (stationary load), c = 200 m/s (subsonic case) and 
c = 400 m/s (transonic and super-Rayleigh case). 

Fig. 2 – Non-dimensional vertical motion for c = 0 m/s : solid line f = 8 Hz, 
dash – dot f = 16 Hz,   dashed f = 32 Hz, light-dot f = 48 Hz, heavy – dot f = 64 Hz. 

 In Fig. 2, the curves are perfectly symmetric and we note that the amplitude of the 
vertical displacement increases as the excitation frequency decreases. 

Fig. 3 – Non-dimensional vertical motion for c = 200 m/s : solid line f = 8 Hz, 
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dash – dot f = 16 Hz,   dashed f = 32 Hz, light-dot f = 48 Hz, heavy – dot f = 64 Hz. 

 In Fig. 3, except for the frequency 8 Hz, the responses are clearly modified and 
represent a wavefront with almost no displacement in front of the load, since the load speed is 
beyond the Rayleigh wave speed. 

Fig. 4 – Non-dimensional vertical motion for c = 400 m/s : solid line f = 8 Hz, 
dash – dot f = 16 Hz,   dashed f = 32 Hz, light-dot f = 48 Hz, heavy – dot f = 64 Hz. 

 In Fig. 4, all curves are fully modified, particularly behind the load. In front of the load, 
the responses vanish practically. Besides, increasing the load speed further (for example c = 500 
m/s), we can observe that the maximum displacement is almost equivalent for all frequencies. 
Fig. 4 shows also the appearance of oscillations behind the load and the apparent wavelength of 
these oscillations depends on both frequency and speed of the load. The following parametric 
study investigates the factors which describe this phenomenon. For this, we define the Mach 
number MR as the ratio between the load speed and the Rayleigh wave speed : 

R
R c

cM = (20) 

With the data given in Table 1 and for a frequency equal to 64 Hz, Fig. 5 shows that the 
maximum amplitude, non-dimensionalized against appropriate Rayleigh wavelength λR, varies 
with different soil parameters. However, the apparent « wavelength » of oscillation is the same 
for all soil types, which will only be true for displacements over a half-space due to the dominant 
nature of the Rayleigh wave, Ewing et al [26]. 
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Fig. 5 – Non-dimensional vertical motion for four soil material parameters at load speed 
c = 2 cR : solid line soil A, dash-dot soil B, dashed soil C, light-dot soil D. 

In Fig. 6, for high Mach numbers, MR > 1, the non-dimensional vertical displacements 

are plotted against ( )1M
x

2
RR −λ

; which shows that the « wavelength » of the vibrations of 

displacements behind the load is directly proportional to this factor similar to results obtained in 
acoustics, Morse and Ingard [27]. 

Fig. 6 – Non-dimensional vertical motion at frequency f = 64 Hz for four load speeds : 
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 solid line 
2
c3c R=     , dash-dot c = 2 cR, dashed

2
c5c R= , light-dot c = 3 cR.

 The only material parameter which affects the apparent « oscillation » of the resultant 
wave is the Mach number MR. Thus, if we denote by λ* the « period » of non-dimensional 
oscillations and by λ̂  the wavelength of the actual vertical displacements, we observe : 

( )1M
2
1ˆ

* 2
R

R
−=

λ
λ=λ ,   and hence ( )

12R

2
R

2 2
c

ccˆ
β−β

π=
ω

−π=λ (21) 

with 
R

1 cc +
ω=β  and 

R
2 cc +

ω=β (22) 

So, it is seen that the wavelength of the resultant wave is a combination of the two Rayleigh 
wavelengths. Finally, the wavelength of displacements, λ̂ , depends on three factors : the 
Rayleigh wave speed cR, the load speed c and its frequency ω ; λ* depends on one factor, the 

Mach number MR. This justifies the interest of the factor ( )1M
1

2
RR −λ

in the supersonic region. 

2.1.2. Strip load moving on an elastic layer overlaying a rigid foundation 

Now, an other model is considered : the strip load rests on an homogeneous, isotropic, 
viscoelastic layer, with material properties E (Young’s modulus), ρ (density), v (Poisson’s ratio) 
and « modified » hysteretic damping as presented earlier ; this layer is overlaying a rigid 
foundation. The two-dimensional model is presented in Fig. 7. 

Fig. 7 – Geometry of the two-dimensional  model. 

In this case, the transformed potentials are written as follows : 

zz 11 e)(Ce)(A αα− β+β=Φ (23) 

zz 22 e)(De)(B αα− β+β=Ψ (24) 

where the functions  )(A β  ,  )(B β  , )(C β   and )(D β  are determined taking into account the 
new boundary conditions : 
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- at the surface of ground, we obtain the same conditions as previously, 
- the displacements are equal to zero at the interface with the rigid foundation. 

 Combining the dynamic stiffness matrix analysis with the earlier approach (change of 
variable and Fourier transform), we obtain the following system : 

[T]{ } { }τ=u (25) 

with { } { }t)h(u),h(wi),0(u),0(wiu = (26) 

and { } { }t
zxzzzxzz )h(),h(i),0(),0(i σσσ−σ−=τ (27) 

and [T] is the symmetric 4 × 4 stiffness matrix whose terms are depending on λ and μ (Lamé 
constants), β, αi (Eq. 17), k and ki (Eq. 18) and h (layer depth). Because of computational 
difficulties due to the exponential terms in the matrix [T], it is necessary to divide the layer into 
several sub-layers.  Morever, these sub-layers can have different material properties adapting for 
each sub-layer the matrix [T], and then assembling all the different matrices as in finite element 
analysis. The simplest case is of just two sub-layers with 2d = h :  

σ
σ

σ−
σ−

=

××××
××××
××××××
××××××

××××
××××

)d2(
)d2(i

0
0

)0(i
)0(i

0
0

)d(u
)d(wi
)0(u
)0(wi

00
00

00
00

zx

zz

zx

zz

(28) 

 For c = 0 m/s, equation (28) reduces to the expressions given by Jones and Petyt [28] 
for a stationary vibrating strip load. 

 The influence of the layer’s depth was studied by several authors, for example Waas 
[29] or Laghrouche [30]. For MR = 0 and for vertical vibrations, the critical depths are given by : 

....3,2,1n,
f4

c)1n2(h i
n,i =−= (29) 

where i = 1, 2 or R according to the wave type, and f is the load frequency. We can non-

dimensionalize the results by noting 
R

h*h
λ

= , and in this case, *
n,ih  is depending on only 

(Poisson’s ratio). For the soil A, the first adimensional critical depth is obtained for *
1h = 0.474, 

very closed to 0.5. This result is verified in Fig. 8 where we notice that the vertical displacements 
are really higher for h* = 0.5, than for other values of h*. 
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Fig. 8 – Critical depth of the elastic layer (MR = 0). 

 When the load speed increases, the responses of the soil surface are modified, as shown 
in Fig. 9. For the sub-Rayleigh case (MR = 0.5 < 1), the higher displacement is always obtained 
for h* = 0.5 behind the load, but now the curves are not any more symmetric and in front of the 
load conclusions are not distinct. For the super-Rayleigh case (MR = 2 > 1), in front of the load 
displacements are practically cancelled, and behind the load we notice the classical oscillations 
with on average a more important amplitude for h* = 0.5. 

Fig. 9 – Critical depth of the elastic layer (MR ≠ 0). 

 For h* = 0.5, Fig. 10 shows a comparison of the vertical surface displacements for three 
values of MR : MR = 0 (stationary case), MR = 0.5 (sub-Rayleigh case) and MR = 2 (super-
Rayleigh case). For the stationary case, we obtain more important adimensional displacements 
that for moving loads : 8.8 × 10-9 for M = 0,  5.0 × 10-9 for MR = 0.5 and 2.5 × 10-9 for MR = 2. 
These values are obtained directly under the load, but beyond some wavelengths behind the load, 
we notice on the contrary opposite conclusions. 
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Fig. 10 – Comparison of displacements for various values of MR. 

2.1.3 – Strip load moving on an elastic layer overlaying a half-space  

For this study, we use the two-dimensional  model presented in Fig. 11. 

Fig. 11 – 2D model for an elastic layer overlaying a half-space. 

 In this case, equations are deduced taking into account the two previous approaches. 
First, we use a similar matrix system, as given in (28), where displacements at the interface with 
the half-space are now unknown : 

σ
σ

σ−
σ−

=

××××
××××
××××××
××××××

××××
××××

)d2(
)d2(i

0
0

)0(
)0(i

)d2(u
)d2(wi

)d(u
)d(wi
)0(u
)0(wi

00
00

00
00

zx

zz

zx

zz

(30) 
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 Besides, at the interface between the layer bottom and the half-space, we write the 
equality for stresses and for displacements. After the results obtained for a half-space, we can 
relate the displacements on the half-space surface according to the stresses, by means of a matrix 
equation : 

=
σ

σ

)0(u
)0(wi]R[

)0(

)0(i
1

1

1
zx

1
zz (31) 

where [R] is a 2 × 2 stiffness matrix whose terms are depending on same data as [T]. 

 Briefly, to simplify Eq. (30) in the objective to obtain six equations with six unknowns, 
we perform the two next operations : 

- first, we substract the matrix [R] from the last matrix group 2 × 2 of the global 
stiffness matrix [T], allowing to eliminate the two last terms of the stress vector ; 

- secondly, we introduce the boundary conditions for the moving load. 

 For the numerical results, we consider the case of a soft layer overlaying a more rigid 
half-space (Table 2). 

Soft layer « Rigid » half-space
Young’s modulus (MPa) 269 1076
Density (kg.m-3) 1550 2000
Poisson ratio 0.257 0.257
Loss factor 0.1 0.1
Compression wave speed (m/s) 459 809
Shear wave speed (m/s) 263 463
Rayleigh wave speed (m/s) 242 426

Table 2 – Characteristics of the layer and the half-space. 

 For these data, in Fig.12, we obtain similar results as for Figs 8 and 9, except in the case 
of MR = 0.5 where the maximum displacement is not obtained for h* = 0.5 but for h* = 0.25. So, 
for a moving load, the reference linked to the critical depth disappears, even for the subsonic 
regime. 
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Fig. 12 – Adimensional displacements for an elastic layer overlaying a half-space. 

2.2. Three-dimensional problem - Case of a rectangular load 

2.2.1. Rectangular load moving on an elastic half-space 

The model considered is shown in Fig. 13. 

Fig. 13 – Geometry of the model. 
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 In this case, all data and assumptions written in the paragraph 2.1.1 are available. We 
only introduce : 

- the dilatation  
3

3

2

2

1

1
x
u

x
u

x
u

∂
∂

+
∂
∂

+
∂
∂

=Θ (32) 

- the double Fourier transform on the space variables x and y : 

dydxe)z,y,x(f
2
1)z,,(f )yx(i γ+β−∞+

∞−
∞+
∞−π

=γβ  (33) 

with the above definition, the changes of variables and functions and introducing : 

2
2
i

222
i

c1k
ω
β−−γ+β=α ,   i = 1,2 (34) 

with 
i

i c
k ω= , we finally obtain :

0
dz
d 2

12

2
=θα− (35) 

 Taking into account the condition to cancel the existence of waves propagating in the 
negative z-direction, the elastodynamic equation of half-space leads to the following system : 

α−
γ
β

μ
μ+λ−=α− α−

1

z2
22

2
i
i

Ae
w
v
u

dz
d 1 (36) 

 The solution of Eq.(36) can be obtained by a combination of the solution of the 
homogeneous form of (36) and a particular integral in this equation : 

+
α

γ−
β−

ω
β−

= α−
α−

D
C
B

ei
i

c1k

Ae

w
v
u

z

1
2

2
1

z
2

1
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 If P is the total force acting on the rectangle and is uniformly distributed over it, the 
Fourier transform gives : 

βγ
γβ

π
−=σ

=

asinbsin
ba2

P
0zzz

(38) 
0

0zzx =σ
=

Then, we can deduce expressions for A, B, C, D : 
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with  ),(F γβ  the Rayleigh function for a moving load in the 3D case : 
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Transformed displacements are given by : 
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At the surface of the ground, the vertical displacement is written as follows : 

( ) γβ
γβπμ
ωβ−ασ= γ+β∞+

∞−
∞+
∞−

dde
),(F2
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that is to say in the case of a rectangular load : 
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 For a speed egal to zero, we can find results obtained by Jones and Petyt [31], and for a 
stationary harmonic load we obtain the same results as Thomson and Kobori [32]. 

   For the numerical results, we use the characteristics data given for the soil A (Table 1). 
In the transform domain, for non-zero damping, the real part of the transformed displacements 
over the surface of the ground is plotted in Fig. 14, showing a sub-Rayleigh case and a super-
Rayleigh case. According to the hypothesis, we obtain the visualisation of an ellipse or an 
hyperbola. The comparison between the theoretical equation of the conic and the numerical 

17



results shows a good agreement. In this figure, only the contribution of the Rayleigh wave can be 
seen because it is dominant at the surface. 

Fig. 14 – Contour levels of the real part of the transformed 
vertical displacements for MR = 0.5 and MR = 2 . 

 To obtain the actual domain results, we use a F.F.T. with a grid of 2048 × 2048 points 
with a range of – 16 < β,γ < 16 to avoid distorsion of the results. To analyse these ones, distances 
are non dimensionalised by Rayleigh wavelength λR and Mach number relative to the Rayleigh 
wave MR is introduced. Fig. 15 presents the displacements along the line y = 0 for different load 
speeds. 

Fig. 15 – Amplitude of vertical displacements along the line y = 0 for different load speeds. 
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 When MR increases, the maximum of non dimensionalized displacements amplitude 
increases a little, from 1.63 × 10-9 for MR = 0 to 1.74 × 10-9 for MR = 1, but then it decreases 
continuously to 1.36 × 10-9 for MR = 2. Morever, for low values of MR, the maximum is situated 
at the middle of the rectangle, whereas for greater Mach numbers, the maximum moves to the 
back edge of the rectangle. 

 When MR is low, the distribution of displacements is focused around the load in the 
near field, whereas with increasing MR, the distribution spreads behind the load and on the sides 
(Fig. 16). For MR > 1, the displacements are contained within the two Mach lines, and are almost 
equal to zero in front of the load due to a Rayleigh wave speed lower than the load speed. 

Fig. 16 – Contour levels of the real part of vertical displacements for MR = 0.5 and MR = 2. 

2.2.2. Rectangular load moving on an elastic layer over a rigid foundation 

The ground is modelled as an elastic layer of depth h overlaying a rigid foundation. 

Now, the boundary conditions are changed : 

• for z = 0
=σ=σ

<<ω−=σ

0yzxz

ay,bxtie
ab4
P

zz

• for z = h :   u1 = u2 = u3 = 0

 We use the same method to solve the problem i.e. changes of variables and functions, 
and double Fourier transform on the space variables x and y. Now, waves can propagate in the 
negative z-direction due to reflections at the boundary with the bedrock, and the resolution of 
(36) gives in this case : 
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where A, B, C, D, E, F, G, H are depending on β and γ. The constants G and H are calculated 
with the aid of the dilatation expression which gives : 
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−=
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α
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)FE(iH

)DC(iG

2

2 (47) 

and then the transformed displacements can be written with matrix expression as follows : 

{ } [ ] { }tF,E,D,C,B,ATU = (48)

with     { } { }t)h(wi),h(v),h(u),0(wi),0(v),0(uU =  (49)

 Fourier transforming the stress-strain relations, the stresses in the wave number domain 
can be written in terms of the constants A, B, C, D, E and F : 

{ } [ ] { }tF,E,D,C,B,AS=Σ (50) 

with { } { })h(i),h(),h(),0(i),0(),0( zzyzxzzzyzxz σσσσ−σ−σ−=Σ  (51) 

Combining (48) and (50), we obtain the following system : 

[ ] [ ] { } { }Σ=− uTS 1 (52) 

With the different choices made for the expressions of the vectors of displacements and strains, 
the final matrix  [ ] [ ] 1TS −  is symmetric.

 For the numerical results, Figs 17 and 18 show the amplitude of vertical displacements 
along the line y = 0 for different layer’s depths. Fig. 17 is obtained in the sub-Rayleigh case 
(MR = 0.5) and Fig. 18 in the super-Rayleigh case (MR = 2). 
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Fig. 17 – Vertical displacements for MR = 0.5. 

Fig. 18 – Vertical displacements for MR = 2. 

  In the first case, as for the 2D study (Figs 8 and 9), for a critical depth closed to 0.5, 
the displacements are clearly higher, but mainly behing the load. Besides, except for h* = 0.1, 
under the load (x = 0), all maximum displacements are practically equal. Also, all curves are 
almost symmetric. 

 In the second case, we can see as usually the existence of disturbance and higher 
displacements behing the load. Then the condition h* = 0.5 don’t give the higher responses and 
consequently for the super-Rayleigh case it is difficult to take into account the critical depth. 
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2.2.3. Multilayered soils 

 Now, the ground has several horizontal layers overlaying an elastic half-space. To 
obtain a solution of such a problem, we just have to combine the results of the two previous 
paragraphs (as for the 2D approach). We construct a global stiffness matrix using the same 
assembly process as in finite element analysis, (continuity of displacements and strains at each 
interface). Finally, using the continuity of displacements and strains at the interface between the 
last layer and the half-space, we obtain the following matrix system : 

σ−
σ−
σ−

=

0
0
0

.............
0
0
0

.............
)0(i
)0(
)0(

)h(wi2
)h(v2
)h(u2
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)h(u2

.............
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)0(v
)0(u
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zz
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xz

n

n

n
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k
(53) 

yielding the transformed displacements at each interface. For the numerical analysis, for example 
two layers over an elastic foundation, the results can be deduced after a very long calculation, 
but are above all too complicated to explain the influence of characteristics concerning with the 
layers (material properties, depth, ...) and the load (frequency, speed particularly). 

3. APPLICATION TO RAILWAY TRAFFIC

 Previous studies are concerned with the dynamic behaviour of soil media for a 
moving harmonic loading. For the ground, a lot of models can be used : two- or three- 
dimensional, half -space or multilayered soils. For a real excitation relative to the railway traffic, 
it is necessary to choose a more suitable model than a simple harmonic load. 

3.1. Description of the track 

 Several track models have been already described in the literature. Some track 
models are based on Green’s functions (Krylov [33]), others on a description in finite elements 
(Bode and Savidis [34]). Others models using the formalism of Fourier transform consider the 
discrete nature of the track due to sleepers spacing (Metrikine and Popp [35]) or assume the 
homogeneity and the continuity of the track lying on the ground (Sheng et al. [36]).  

 Our numerical model is built with a semi-analytical method for rail, pads and 
sleepers. In a range of low frequencies (below 80 Hz), the track can be seen as a simple mass - 
spring system. So the continuous track model used is shown in Figure 19. For the rail, the Euler 
beam theory is used. In front of the foreseen wavelengths, the sleepers are described as a 

22



continuous mass system. Pads and ballast have a visco-elastic damping with an arbitrary 
frequency dependence. Consequently, in this mass-spring system, waves generated in the rail 
transmit energy to the ground through the sleepers. Note that the reaction of the ground to 
sleepers is a dependent function of the frequency and interact with the track.  

x=x1-ct

c

FS

O

)t,x(ENGσ)t,x(WAGσ

FB(x,t)

Rail (EI,mR)
Pads (kP,ηP)

Sleepers (mS)
Ballast (EB,νB,ρB,ηB)

Layered ground
(En,νn,ρn,ηn,hn)

x3=z

WR

WS

Fig. 19 - Track-Soil interaction model 

 In a two-dimensional or three-dimensional model the ballast can be described as the 
first layer of the soil. Also railpads and ballast can prove non linear properties in some ranges of 
frequencies. Several models ([37],[38]) tend to approach these effects. 
To describe the rail [39], a mathematical model based on the Euler beam gives the following 
equation : 
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∂
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Besides, equation for sleepers is written : 

+
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where wR(x1,t), wS(x1,t) are respectively the vertical displacements of the rail beam and the 
sleeper mass. FS(x1,t) is the force per unit length of track between the sleeper and the ballast. 

3.2. Two - dimensional problem (multilayered soil) 

In this case, vertical and longitudinal transformed stresses are given by : 
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where φ and ψ are Helmoltz’s potentials. 

 The resolution method is described in figure 20 where the fitted phase angle is 
defined relating to Helmoltz’s potentials such as : 

+=ψ
+=φ
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z)hz(

z)hz(

22

11

DeBe
CeAe  (57) 

where 
i

02
i c

cβ−Ω
−β=α , i = 1,2. 

c1(E,ρ,ν) is the speed of compression waves (P-waves) and c2(E,ρ,ν) is the speed of shear waves 
(S-waves).  

Wave motion
Behaviour law
Boundary conditions
Track equations

« fitted phase

angle »

Change of functions w* = w eiΩ0t

Change of variables : x = x1 - ct

Fourier Transform
 x β

Transformed

displacements

Numerical inverse
Fourier transform FFTI)

Real

Displacements

Analytical Spatial

Fig. 20 - Resolution method 

The application of this phase translation allows a good conditioning of the stiffness 
matrix of ground, then subsection of layers into sub – layers isn’t necessary. A change of 
variables (translation in the mobile reference linked to the load) and functions (evaluation of the 
steady state solution) as well as the spatial Fourier transform allows the calculation of vertical 
displacement in the  wave number domain.  

Thus, for the ground, we can write a relationship between the displacement and stress 
for each layer interface (including the ballast) : 
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where [TBAL] is the stiffness matrix of the ballast, [Tn] is the stiffness matrix taking into account 
the n layers of ground and [R] is the stiffness matrix of the halfspace. The stiffness matrix [T] is 
given by the product of the inverse of the displacement matrix [Q] by the stress matrix [S]. 

Thus, vertical displacements on the surface of the ballast and the ground can be 
written, respectively : 

)(F]T[)(w S
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=  and 

)(F]T[)(w S
1

31hz β=β ∗−∗
=  (59) 

Assuming that the model for sleepers is continuous in front of the wavelength then 
we can obtain : 
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of which is deduced the displacement on the soil surface (below the ballast) : 
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)(w hz β∗
=  represents the vertical displacements in the wave number domain below the ballast 

(ground surface). 

An analytic solution exists when the soil is considered as infinite in the positive z-
direction. In this case, the Rayleigh’s function leading to an infinite vertical displacement is 
determined by the cancellation of the denominator. It corresponds exactly to the speed of 
Rayleigh waves in the medium. In the case of a layered soil, displacements in the real numbers 
domain are calculated numerically by means of an inverse Fourier transform. 

The vertical force exerted on the rail by a moving train is a complicated function of 
time. The spectrum of this function is wide but a significant part of the energy is concentrated 
between 0 and 20 Hz. Besides, two components characterize the source of vibrations on the 
ground surface : a static component coming from the weight of axles of the train acting directly 
on the track and a dynamic component due to flaws of the track and wheels. For a simple 
wavelength of the rail, the train vibrates at the frequency 2πc/λ0 and each wheel exerts a vertical 
force ti

0
0eP Ω . The rail is then constrained to its surface by a harmonic and moving function 

representing the train stress. 

This function depends on the weight of each axle load, the excitation frequency Ω0 and 
the length parameters coming from bogies and axles. The railway train (engine and carriages) 
and its stress function are plotted in Figure 21. In the wave number, main peaks translate a 
frequency passage of a bogie or wheel. Finally this formulation is introduced in the model (at rail 
surface). 
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According to the Figure 21, the Cauchy stress due to the engine in the wave number 
domain can be written : 
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and the Cauchy stress due to carriages : 
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such as 

( ) ( ) ( )βσ+βσ=βσ WAGENGAINTR .  (64) 

( )βσ AINTR  then represent the transformed stress exerted on the rail by the entire train. 

For the numerical results, data for the ground are given in Table 3. 

h (m) E (N/m²) ν ρ (kg/m3) η cP (m/s) cS (m/s) 
Ballast 0,8 300×106 0.3 1800 0.1 547 292 
Layer 7 269×106 0.257 1550 0.1 459 263 

Substratum ∞ 2040×106 0.179 2450 0.1 950 594 

Table 3 - Parameters for numerical investigation 

In these conditions, the critical speed is close to 100 metres per second. Rails 
Young’s modulus is equal to 2,11.1011 N/m², the moment of inertia to 3055 cm4 and the mass per 
unit of track length to 120 kg/m. The stiffness of the pads between the rail and sleepers is equal 
to 3,5.108 N/m with a damping coefficient equal to 0,15. The mass of wooden sleepers per unit 
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of track length is equal to 490 kg/m. The ballast is a stiff layer compared to the soft peat with a 
Young’s modulus equal to 400.106 N.m-2, a Poisson ratio equal to 0.3 and a density equal to 
1800 kg/m3. Damping is assumed to be hysteretic with a factor equal to 0.1. 

Figure 22 shows a comparison between the displacements in the real domain for each 
speed regime : static, sub-Rayleigh and super-Rayleigh passing through the critical speed. The 
excitation frequency is chosen equal to 10 Hz according to real train spectra. The Sub-Rayleigh 
speed is equal to 0.5×cR and the super-Rayleigh speed to 1.5×cR where cR is the speed of the 
Rayleigh wave. All results are divided by the Rayleigh wavelength λR for non-dimensional 
study. For non moving load, displacements are distributed symmetrically in the front and behind 
the load. Increase of speed involves increasing of vertical displacements amplitude and then the 
increase of the wavelength and oscillation behind the load. Increase of vibration can be noted for 
super-Rayleigh regime.  

Besides, in super-Rayleigh regime, when the train speed on track exceeds the 
Rayleigh wave speed at the soil surface, Mach cones appear on the soil for each bogie load. So, 
Mach cones due to P and S-waves can be found below the surface and Mach cone due to R-
waves at the soil surface. 
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Fig. 22 - Maximum vertical displacements  
at the soil surface near the track for current train  

(c = 0 : dashed line, c=0.5×cR : dash-dotted line, c=1.5×cR : solid line). 

 Also, the mutual interaction between the engine, the carriage and the track was 
studied Hung and Yang [40], Wu and Shih [41] for example. 

3.3. Three-dimensional problem 

Then, the ground is modelled by either a half-space or a multilayered soil including 
or not the ballast. For the resolution and calculation of surface displacements, we combine the 
previous approaches taking into account the train, track and ground models, and the classical 
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methods (change of variables, Fourier transform, choice of « fitted phase argument », numerical 
inverse Fourier transform). Here, we limit the presentation to some numerical results. For 
example, Fig. 23 gives the vertical surface displacements obtained for an unit load (frequency 
equal to 40 Hz) moving on a track connected with a ground constituted by an elastic sandy layer 
and a half-space. 

Fig. 23 – Vertical surface displacements for a layered soil 
(static, sub-Rayleigh and super-Rayleigh regimes respectively). 

Similarly, Fig. 24 shows the vertical surface displacements deduced for a Corail 
train. In this case, the frequency is equal to 10 Hz, the ballast is modelled as the first layer of 
soil, and the ground is constituted by a peaty material. 

Fig. 24 – Vertical surface displacements for a Corail train 
(on the left : sub-Rayleigh regime, on the right : super-Rayleigh regime). 

We confirm the previous results obtained at the ground surface for various speeds. 
Particularly, increase of speed implies more important vertical displacements and oscillations 
behind the train. Besides, we can see the Mach cones for each bogie group. 

CONCLUSIONS 
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• 9th International Conference on Civil and Structural Engineering Computing,
Egmond ann Zee (Netherlands), 2-4 September 2003. 

* Special lecture (invited paper) : D. LE HOUÉDEC, B. PICOUX
« Soil-structure interaction for moving loads : application to railway traffic » 

* Communication orale : B. PICOUX, D. LE HOUÉDEC
« Numerical and experimental comparison of D-model for the study of railway vibrations » 

* Organisation de la session spéciale « Dynamics of structures for moving loads »
(une douzaine de présentations). 
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