N
N

N

HAL

open science

Micro-Crack Clustering, Non Local and Gradient
Damage Models
Gilles Pijaudier-Cabot

» To cite this version:

Gilles Pijaudier-Cabot. Micro-Crack Clustering, Non Local and Gradient Damage Models. Damage
and Fracture of Disordered Materials, Springer Verlag Pubs, pp.179-215, 2005, 10.1007/978-3-7091-

2504-5_5 . hal-01007520

HAL Id: hal-01007520
https://hal.science/hal-01007520

Submitted on 22 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01007520
https://hal.archives-ouvertes.fr

MICRO-CRACK CLUSTERING, NON LOCAL
AND GRADIENT DAMAGE MODELS

G. Pijaudier-Cabot
LMT-Cachan, Ecole Normale Supérieure de Cachan, Cachan, France

Abstract: The aim of this chapter is to show how the results from statistical analyvses
of damage and micro mechanics can inspire phenomenological modelling. namely
continuous damage models. Non local and gradient dependent damage models are
introduced. The analysis of stain localisation shows the importance of incorporating
an internal length in the constitutive rclations. while this internal length can be
regarded as a correlation length in statistical models. Finally. these continuum
models arc shown to be consistent with fracture mechanics analyses of structural
components.

5.1. Introduction

Continuous damage models are constitutive relations in which the mechanical effect of cracking
and void growth is introduced with internal state variables which act on the elastic stiffness of
the material (see e.g. Krajcinovic 1989 or Lemaitre and Chaboche 1989 for reviews on this
topic). In most cases, continuous damage modelling is a phenomenological approach to the
description of an elastic material containing voids or cracks. It is possible. however. to lay the
basis of such macroscopic models on analyses of lattices and/or arrays of cracks.

From these analyses. we will see that two characteristics of damage models arise. The first
one is that damage should enter in the macroscopic description as a variation of the material
stiffness. The second one is that. in the course of progressive damage. initial disorder in the
material tends to disappear and spatial correlation occurs.

In this chapter, we will start from such observations and see how they can be incorporated
in constitutive relations. We will arrive to non local and gradient damage models and
investigate, at the macroscopic level, how failure can be described as a process of localisation of
damage. This study will highlight the necessity of using non local model on physical grounds
since, without them, failure is predicted to occur without energy dissipation.

5.2. Damage in a discrete system

We are studying here a discrete system which captures the essential ingredients of the
behaviour of a disordered material. It is a regular two-dimensional lattice whose bonds are one
dimensional (see Fig. 1-2). The lattice size is L X L where L is related to the total number of
bonds 7= 2L Each bond behaves linearly up to an assigned threshold where brittle failure is
reached. The model does not aim at describing a specific material. It ought to be the simplest



model whose thermodynamic limit (lattice of infinite size) should be described by the damage
theory, as we will see further. Yet, this description includes the essential ingredients: a two
dimensional geometry, initial disorder, interactions and redistribution as the number of broken

bonds increases.
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Figure 1. (a) Lattice used for the analysis; (b) behaviour of one bond.

Instead of solving a mechanical problem, we use an electrical analogy which turns out to be
strictly equivalent to the mechanical problem. The equations of equilibrium are similar but
one dimensional instead of being two dimensional (same as in heat conduction problems). The
results can be interpreted in a mechanical fashion provided the current is replaced by the stress,
the voltage by the strain and the conductance by the Young’s modulus. The scaling properties
of the mechanical problem and those of the electrical problem are indistinguishable (de
Arcangelis and Herrmann, 1989). Figure 1-b shows the behaviour of one bond. The same
conductance (stiffness) is assigned to all the bonds. The heterogeneity of the material properties
is restricted to the variability of the maximum current at failure i (which is equivalent to the
peak stress). We have chosen here a distribution which is constant between 0 and 1, hence it is
representative of a large disorder which yields to diffuse damage which localises progressively.
The boundary conditions at the limit of the lattice are periodic so that the behaviour of an
infinite system is represented and boundary effects are avoided. A constant jump of voltage is
applied along the two boundaries which are perpendicular to the direction y . and symmetry
conditions are applied along the two other boundaries. At each stage of loading. a unit current
I (load) is applied on the lattice. The current in each bond 7 is computed (solution of a
linear algebraic system of n/2 equations according to Kirchhoff law) along with the overall



conductance of the lattice. The computational algorithm removes one bond at a time. In order
to determine the next bond to be broken at a given step, we look for the bond where the ratio
i /i is minimum. This bond will fail when the current applied to the lattice is:

I.= min(i+) )
l

Tthe voltage V/ and the overall conductance of the lattice are obtained from this critical current.

Note that there are two competing effects in Eq.(1): On one side and because the material is
disordered, bonds with a small threshold /. may fail first. On the other side, single crack
propagation in the lattice produces a concentration of current (e.g. at the crack tip) which may
cause a bond with a high threshold to fail. This equation illustrates how redistribution and
disorder may compete during the failure process. Initially all local currents are identical, and
thus the first bond to break is the weakest. If the disorder is strong enough, the enhancement of
current in the vicinity of this first broken bond is not enough to induce a failure, and the
second weakest bond may fail. This process yields a diftuse damage. However, the current
distribution becomes broader progressively and thus bonds are expected to break in series of
spatially localised clusters leading to bigger and bigger micro-cracks which are still distributed
over the entire lattice. Eventually, at some stage, the current heterogeneity due to the presence
of a large density of broken bonds will dominate over the distribution of strength and lead to a
macroscopic localisation. A more quantitative discussion along these lines will be proposed in
the sequel.
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Figure 2. Global response of the discrete system.



Each lattice possesses a unique distribution of bond thresholds. Obviously, analyses cannot
relv on a single realisation of the random process which assigns the threshold distribution.
Several computations with different random seeds must be performed and analysed in a
statistical fashion. The number of runs decreases as the size of the lattice increases in order to
maintain computer times which are reasonable. For instance the computation of each lattice of
size 64x 64 took 4 cpu hours on a medium size workstation. Figure 2 shows one of these
plots for a lattice of size (32 x32).

. The envelope of the characteristic points yields a response which is similar to that of
concrete. The various snap-backs mean that under increasing voltage (strain), several bonds
may break during an infinitesimal positive increment of voltage. Note that at any stage, the
unloading path is linear. The equivalent mechanical lattice has a global response which agrees
with continuous damage models, without damage induced inelastic strains, unless the
equivalent of internal stresses are introduced in the model as in Schmittbuhl and Roux (1994).
Figure 3 shows a 64x64 lattice at the inception of complete failure, when only one bond
remains unbroken (i.e. when the lattice is about to separate into two pieces). As the number of
broken bonds increases, their location localises over a rough line progressively - damage is
diffuse at the beginning of the failure process and localises to form a macro crack. It is
important (¢ note that this localisation concems the incremental damage. The final aspect of
the distribution of mizcro cracks will appear as diffuse since it incorporates micro cracks
generated at all stages.

i

Figure 3. Lattice just before complete failure.

The numbers of broken bonds at peak and at failure are interesting because theyv show that
damage is distributed. Would damage be localised along a single line (as for brittle materials),



the number of broken bonds at failure would be twice the system size, i.e. the number of bonds
along a straight line in the x direction, and the number of broken bonds at peak would be zero.
This result would be achieved when there is no disorder in the lattice. Table 1 shows for each

different size of lattice considered the number of runs performed, the averaged number of broken
bonds at the peak current (load) 7, and the averaged number of broken bonds at failure n,. It

should be noted that the number of broken bonds at failure is always higher than the number of
broken bonds at peak. This indicates that the failure process is rather progressive and that the
behaviour of the lattice departs from a brittle response due to spatial correlation and local
disorder.

L  Runs n, n.

8 1000 19 29
16 500 76 105

24 250 1 198
32250 255 340
64 30 947 1148

Table 1. Number of broken bonds at peak and at failure as a function of the lattice size.

First, we are interested in the evolution of damage in the lattice and its influence on the
global properties. For this, we will look at the distribution of the current in the discrete model
at several states of damage. Second, we expect to observe a correlation length which
characterises the smallest representative volume element at a given state of damage. This
correlation length appears in the spatial distribution of currents and consequently in the spatial
distribution of broken bonds. Both aspects will be examined in the next sections.

5.2.1 Global properties of the discrete model

The global properties of the discrete model at any state of damage are. in this approach,
directly connected to the local distribution of current N(j). Instead of characterising the
distribution itself, valuable information can be obtained with the analysis of the moments of
the distribution of the current. The moment of order m is defined as:

M, = J " N(i)di @

Here, we will limit the analysis to moment of order up to 4. This assumption is equivalent to
a truncature in a series development. These moments are of interest because of their physical
meaning : the moment of order zero is the number of unbroken bonds. The first order moment
is related to the average current, the second order moment is proportional to the overall
conductance G:



My = | NG = 26V =26 3)

where 7 is the local resistance of the bond (unit resistance here) and V is the global voltage
jump applied to the lattice, equal to one in our case. Note that the fourth order moment is a
measure of the dispersion of conductance.

It is natural to investigate whether the number of broken bonds is a variable which
characterises correctly the evolution of damage in the continuum sense, that is a degradation of
the global conductance or stiffness. If the number of broken bonds ¢/ L (divided by the

dimension of the lattice in order to have a quantity which is size independent) is the pertinent
damage variable, the plots of the global conductance versus the non dimensional number of
broken elements should be independent of the size of the discrete model. Delaplace et al.
(1996) have shown that this is not true. Figure 4 shows a log-log plot of the moments as a
function of the second order moment for different sizes of lattice. These plots do not depend on
the size of the system, at least before the peak is reached. Hence, damage can be defined as the
variation of the overall conductance during failure. This variable describes well the distribution
of thie current (stress) in a size independent fashion. A similar observation has been reported
by Krajcinovic and Basista (1991). As we will see further, it will be used in the derivation of
phenomenological damage models.

0.00 0.10 0.20 0.30
log,o(M,)

Figure 4. Evolution of the first four moments of the distribution of current as a function of the
overall conductance.



5.2.2 Existence of a correlation length
Assume that there is a length denoted as £ which defines the smallest size of the

representative volume of the material (RVE). By construction, this length is smaller or equal
to the size of the lattice. This quantity is a correlation length in a statistical sense. Above this
size, the material can be regarded as homogeneous, i.e. without correlation. The local response
of each bond in the discrete model is not independent for cells in the lattice bellow this size. In
such cells, the response cannot be regarded as that of an homogeneous continuum. In order to
exhibit the existence of a correlation length as the number of broken bonds increases, one can
analyse their distribution over the cell. This analysis is based on the variation of distance
between two bonds in the lattice which are consecutively broken during the loading history
according to the foregoing definitions: the distance between to neighbouring vertical bonds is 1
because there are L bonds on each column of the cell, and the distance between to
neighbouring horizontal bonds is 0.5 because there are 2 L bonds on each row of the cell.
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Figure 5. Histograms of the distribution of horizontal distance.

Figure 5 shows for systems of size 16x16 the histograms of the distribution of horizontal
distance between two consecutive broken bonds denoted as (/) at the beginning of damage
(20 broken bonds). near the peak (60 broken bonds) and near failure (100 broken bonds). In the
absence of a correlation length, these histograms should be a set of horizontal lines, which
means that the next broken bond can found anywhere in the lattice. These histograms can be
approximated at least up to the peak: the distribution of the broken links is assumed to follow



a power law function of the distance up to £ and then it is an horizontal line. The length &

corresponds then exactly to the smallest size of the RVE:
- . L ,
h(dy=d " ford <& h(d)=h" ford e 5.3 )

The value of exponent T is 0.67 for the normalised distributions shown on figure 5. The
distance £ is also the length at which the distribution changes from diffuse damage (constant
distribution) to a progressive localisation of damage. Hence, it can be considered as a measure
of the size of the zone in which damage localises. The first order moment of the distribution
h(d) can be obtained numerically. Substitution of Eq. (4) in the expression of the first order

moment yields an equation where the only remaining unknown is the correlation length.
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Figure 6. Internal. correlation length vs. number of broken bonds.

Figure 6 shows the evolution of this correlation length. It increases with increasing
damage. The existence of a correlation length suggests that the damage process should be
spatially correlated. In section 4, we will consider the deterministic case of a array of micro
cracks and show again that some spatial correlation exists in the development of damage.



5.3. Continuous Damage

As concluded in the previous section, the influence of damage on the response of the material
is a degradation of its elastic stiffness. The stress-strain relation reads:

_ pdamaged
O =Ejy "€y ®)

where o; is the stress component, g, the strain component, and Eé!:_«;naged is the stiffness

coefficient of the damaged material. We will focus attention on the simple, isotropic, scalar
damage model because it is the most widely damage model employed and also because it has
been proved to be an efficient model for the description of the tensile failure of concrete and
reinforced concrete structural components (Mazars 1984, Mazars and Pijaudier-Cabot 1989).

The stress strain relation of an isotropic damaged elastic material contains two damage
variables d and &:

(1-2vy)

3 _Ou
2E,(1-5)

(O',','

£ = e 5.+
Y O2Ey(1-d) 7 3 )

(0w, —0;] (6

Ey, Vv, are the Young’s modulus and Poisson’s ratio of the undamaged isotropic material
respectively, and §; is the kronecker symbol. The damage variables ¢ and & are equal to 0
initially (for the undamaged material). At complete failure, the elastic stiffness of the material

vanishes and the two variables are equal to 1. The subsequent assumption d =6 yields the
stress-strain relationship:

1+v, 1)
£; = Oij =

(048] %)

According to this equation, the Poisson’s ratio of the material is not affected by damage.
The elastic (i.e. free) energy per unit mass of material is:

1
py = 5(1 - d)e;Ejuey | X

where E is the stiffness tensor of the undamaged material. This energy is assumed to be the
state potential, which means that the thermodynamic forces associated to the two variables
describing the material, the strain tensor and the damage variable, derive from this potential:
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Note that Eq. (9-a) is exactly the same as Eq. (7). Y is the damage energy release rate. The
meaning of this variable is deduced from the calculation of the energy dissipation. The
dissipation rate is the difference between the total (internal) variation of mechanical energy for
any arbitrary rate of strain and the elastic (recoverable) energy rate:

(b:UUE.,-j—pl/./ (IO)
Substitution of Egs (7-9) yields the dissipation rate ¢ as a function of the damage variable:
¢o=vd (11)

Therefore, Y is the energy released per unit rate of damage. In this constitutive relation (with a
single damage variable), the second principle of thermodynamics constrains the time derivative
of damage to be zero or positive. Damage cannot decrease because the rate of dissipation cannot
decrease according to the Clausius-Duhem inequality.

The evolution of damage requires the definition of a loading function and an evolution law
which can be similar to the evolution equation in associated plasticity. The constitutive
relation is sometimes given in an integrated format. We will see in section 5 two examples of
such constitutive relations.

5.4. Micro Cracking and Continuous Damage

In most experiments, say a direct tension test or a bending test (Mazars, 1984), damage starts
as a uniform distribution of propagating micro cracks. At the inception of failure, crack
propagation is localised into a narrow zone and only a few micro cracks propagate to form the
visible macro crack at failure (Chudnovsky et al., 1989). In order to provide some justifications
for damage and non local damage models, Pijaudier-Cabot and Berthaud (1990) have
considered the two problems shown on figure 7 which represent : (1) the initial state of
damage, i.e. a regular array of cracks in an elastic matrix and (2) the situation in which one
crack has propagated while all the others crack of the array remain stable. This last situation is
meant to simulate the inception of failure with damage localisation in a simplistic (qualitative),
one-dimensional fashion.

5.4.1 Fracture Mechanics Analysis

Consider the regular crack array shown on figure 7-a. This array is subjected to a remote tensile
loading denoted as o, . The objective is to compute the stress intencity factor and energy

10



release for each crack tip and to exhibit the effect of crack interaction. For this, an approximate
method, originally proposed by Kachanov (1987) is implemented. First, we use the
superposition and replace the tensile loading o by an internal pressure — ¢, in each crack
S;. Then, this equivalent problem of N interacting cracks is replaced by N problems in which
each crack is considered alone in an infinite medium and is subjected to an unknown intemnal
pressure P(x;) given by Eq.(12):

A
R(.\‘i)=—0m+ ij,‘(«",') (]2)

j=)j=i

where p;(x;) represents the effect of the crack Sj on the crack S;.

Figure 7. Micro cracked model material: (a) uniform crack density: (b) inception of localisation.

The unknown pressure F(x;) is expanded in a series of base functions which are Legendre

polynomials:

R
Plx)= ) alli(x,) (13)

r=0

The maximum order of the expansion is denoted R and a' are the coefficients of the expansion -
where i refers to the cracks Sj and r refers to the considered order of expansion. It is also natural
to expand the interaction terms pj; of the Sj crack on the Sj crack :

11
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Pt = el x) "

r=0

In this equation, the function fjf represents the stress field on the imaginary location of the

crack Sj due to the crack Sj loaded by a pressure distribution given by L{.
The coefficients ai are the solution of the linear algebraic system which is obtained from
Eq.(13) for i=1, N using the orthogonality properties of Legendre polynomials. The stress

intensity factor is approximated using the second term of Eq.(13). In the present examples, we
took R =2 which provides a sufficient accuracy.

5.4.2 Homogenisation - Relationship with Continuous Damage

The aim is here to evaluate the macroscopic stiffness of the micro cracked medium depicted
above, in the direction which is orthogonal to the crack planes. Obviously, the micro cracked
material which is considered is not isotropic because the crack orientation is not random but
periodic. Therefore, the results established in this section are only qualitative.

The elastic energy in each cell is computed and a simple equivalence with an elastic
continuum is assumed. The elastic energy in each cell of the micro cracked body is:

o(x,y): E": o(x,y)dydx (15)

where E7' is the compliance matrix of the elastic, uncracked, material. In the equivalent
homogeneous material, the average elastic strain due to the crack opening in each cell is:

_ 19w 6
Y bl do,
The total strain in each cell is then the sum of the deformation of the material and of the
average strain due to crack opening. This deformation is totally reversible, provided the crack
lengths in each cell remain constant. It follows the equalities (see Bazant, 1987):

O,
(17)

o.. o,
E=y+—=, ===
E E  Eyl—d)

0

where E, is the directional stiffness of the material without cracks and E is the directional
stiffness of the material with cracks. This stiffness is set proportional to £, and it is a function

of the damage variable. Eqs.(15-17) provide an expression of the damage variable ¢ as a
function of the crack density B and of the interaction between cracks:

12
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H is the interaction parameter which depends on the crack configuration. For the plane-strain
mode [ problem where the crack lengths are equal in each cell, this interaction parameter is:

H:Zrz(l—vz)(ao-%l) (19)
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Figure 8. Evolution of the elastic modulus with crack density.

In this case the coefficients a’ (here ay.a,) are equal from one cell to another. They are
solution of a 2x2 linear algebraic system of equations which is solved independently from the
intensity of the remote stress o... EQ.(18) highlights the effect of the interactions between
cracks and of the crack density on the equivalent stiffness of the micro cracked medium. The
evolution of the elastic modulus E is plotted on figure 8 for different crack spacings & and /.
The theoretical prediction obtained with a Self Consistent Method (SCM) (Laws and

Brockenbrough, 1987) is also plotted. Compared to SCM, the present approach shows that
interactions produce first a shielding effect for low crack density, and an amplification effect for

13



large crack densities. This amplification results in a stiffness which is much lower than the one
calculated with SCM in the case of a square cell.

For a dilute distribution of micro cracks (small crack density), the two models are similar.
They are consistent with the lattice analysis in the regime controlled by the initial disorder.
We will see next that interaction may play a central role when the geometry of distributed
cracking changes, same as in lattice analysis when the damage process start to exhibits a non
zero correlation length.

¢

5.4.3 Crack Interaction and Non Local Damage

Consider again the elastic body with cracks shown on figure 7. When the crack density is low
(i.e. b/c =1), the interactions between collinear cracks can be neglected and we can consider
only parallel cracks which represent the first stage of damage in a tensile loading test. The
inception of localisation in that crack array is described by the case where one of the cracks has
propagated symmetrically (Fig. 7-b). We are going to compute the new value of the damage
variable corresponding to this crack configuration and to compare with the previous analysis
qualitatively. For the purpose of this demonstration, the crack propagation conditions are not
considered. We will compare two states of damage very close to each other.

Crack interaction appears naturally in the homogenisation as a non local effect. The crack
opening in one cell is affected by the state of deformation and cracking in the other cells. In the
parallel crack system shown on figure 7-b, the crack length in cell O has been perturbed of a
small quantity dc. The strain energy in a given cell k can be approximated in plane strain by:

(1=v?)e,
=O;,ﬂ( v)ck+

W,

k EO

[ 12 (20)
S Jo(x,—l/Z).ﬁ.ft(x,—l/2)a’x+ Jo(_x,l/Z).fz.ﬁ(x,l/2)d.\']

-bh/2 -hl2

In this expression, the second and third terms represent the flow of energy through the contour
of each cell k due to the interaction. These are typically non local terms which appear in all
cells, including those where the crack length does not change. According to the
homogenisation method, the influence of this perturbation will produce a variation of damage
in those cells although the crack length has not changed. Damage must not only be a function
of the crack density in each cell but also of the crack densities in neighbouring cells. Then, the
elastic energy in an equivalent homogenised material should not be a function of the overall
strain and damage variable only. It should include quantities which refer to the crack or damage
distribution. One possibility for this is to define damage, denoted now as D, in the
equivalent, homogenised, material as a weighted volume average:

D(x):Jl//(x—s)d(s)a’s @1
v

14



D is called the “non local damage variable™ and d is the “local damage variable™ by reference
to the terminology used in non local elasticity (Eringen and Edelen, 1972). The weight
function ¥ is normalised so that

J w(s)ds = 1 2
)

It follows from this definition that when the local damage is homogeneous over an infinite
body, it is equal to the non local damage. Therefore, (l(\) is equal to the value of damage
given in Eq.(18) calculated in a fictitious medium which has a constant crack density equal to
B(x) . This is the reason why d(x) is still called a damage variable. It is a local quantity
defined at each material point independently from the distribution of cracking in the structure
considered.

1.1
1 =2 ‘{TJ(
0.9" l—3 i §
J ! !
. | !
0.7 4 I !
- ! :
= 1 o
[X] | | |
-50.5 l |
= i
| |
0.3 4 ) 1
4 | I
1 §
1T T
1 1
. _ Ve — — =
—-0. T T T T T T T T T T T T T
-165 =10 =$§ 0 5 10 15
nl

Figure 9. Weight function at the inception of localisation.

With these definitions, the weight function in Eq. (21) can be calculated: the value of the
macroscopic non local damage ), in each cell k ts computed using Eqs. (16-17) in which the

non local damage is substituted to the local damage. The definition of the local damage
provides also the expression ¢, in each cell m. Its value in cell m is computed by considering
that cell m is sitting in a fictitious medium of constant crack density equal to that in cell m. In
each cell, the local and non local damage are difterent because the perturbation of the crack
length produces a modification of the crack interactions. Eq. (21) is rewritten as a discrete sum:

15
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where ¥/, is the mean value of y over the cell m when D is calculated is the cell k.

Since the values of local and non local damage are known everywhere, the weight function
may easily be deduced. Figure 9 shows this weight function for two crack spacings ! =2c¢ and
[=3c. This plot shows also that damage will grow in cells number / and -/, which are
adjacent to the cell 0 in which the crack propagates, despite the length of the cracks in these
cells remains constant.

Would the interactions remain similar during failure, the variable which describes the effect
of micro cracking on the elastic constants would be purely local. Non locality is caused by a
change of interactions during progressive failure. These results show also that the weight
function, which is the mathematical representation of the variations of crack interaction, is a
function of the micro crack length and of the state of strain (or stress). In the non local damage
models, this weight function will be assumed to remain constant. Furthermore, the weight
distribution will be assumed to be spherically symmetric. A constant weight function is an
approximation of the average variations of interactions during a specific failure mode (tension in
the present applications). According to homogenisation, different weight functions should be
employed for different failure modes at least.

5.5. Non Local Damage Models

Fracture mechanics and crack interaction considerations have shown that defining damage as a
weighted average seems more appropriate, especially with regard to the description of
localisation of cracking in an elastic material containing a distribution of micro cracks. A non
local variable enables the description of micro structural changes, (and more particularly
deterministic interactions) that a local variable cannot accommodate. This result is also
consistent with lattice analysis, as observed in section 1. Such a phenomenological model has
been investigated by Bazant and Pijaudier-Cabot (1988), along with a constitutive relation
where the variable which controls damage is averaged, instead of averaging damage itself.

Scalar non local damage models are presented in this section. Similar developments could
be performed starting from a plasticity model or with an anisotropic damage model (Valanis
1991).

5.5.1 Energy-based model

The constitutive relation is exactly the same as for the local damage model (Eq. 7). The
evolution of damage is different. The growth of damage is defined by a loading function f:

FF.D) = j'F(z)dz _D (24)
0
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where F is (in this chapter) a function of the strain tensor which is deduced from experimental
data. Instead of depending on the local energy release rate v(x), the loading function depends

on y(x), the average energy release rate due to damage at point x of the solid:
- 1
y(x)= —V—(-;J v(x—=s)v(s)dsand V,.(x) = Jw(.r —5)ds (235)
X
Y v

V is the volume of the solid, and ¥(s) is the energy release rate due to damage at point §
defined by:

1
¥(s) = Ee(s) cEg(s) (26)
w(x—ys) is the weight function :

20’

¢

W(x—s)=y,exp(- ) (27

/. is the internal length of the non local continuum and v, is a normalising factor. This factor
is such that for an infinite body V,(x)=1. The internal length of the non local continuum

depends on the size of the heterogeneities in the material. An usual approximation of this
length is [.=3d, where d, is the maximum size of the aggregate in concrete (Bazant and

Pijaudier-Cabot, 1989).
The evolution law is prescribed as in-plasticity models:
p-sX @)
with the Kuhn-Tucker conditions 6 20, f <0 and & = 0. The function g is the evolution

potential controlling the growth of damage and & is here the damage multiplier. In the
following, we have set g = v . For concrete in tension, the evolution of damage is:

. b+ 2by(¥ = X))
[+b(F =Y +b(F = Y

(29)

with the constants by = 605MPa™". by =524 10* MPa™. Y, = 60 10 MPa.
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5.5.2 Strain-Based Model

This model is the non local extension of the constitutive relation due to Mazars (1984). The
positive strains control the growth of damage which is mainly due to micro crack opening in
mode I. The following norm called equivalent strain is defined :

(30)

=]

where (E,->+ =0 if <0 and (si>+ =¢; if £20; and ¢ (i €[1,3]) are the principal strains.

The non local variable £, which represents the average of the equivalent strain over the
representative volume surrounding each point in the material, is the variable that controls the
growth of damage (Saouridis, 1988)

]
V,(x)

£(x)= jy/(x—s)é(s)ds (31)
%

V is the volume of the structure, V,(x) is the representative volume at point x, and y(x—s)
is the weight function, the same as for the previous model. The evolution of damage is
specified according to following conditions:

fle)y=e-x

and

if f(€) =0 and f(€) = 0 then D = F(E)

if f(E)<Oorif f(E)=0and f(E)<0then D=0

Equations (33) define the damage surface and the growth of damage. K is the softening
parameter and takesthe largest value of £ ever reached during the previous loading history at
a given time and at the considered point in the medium. Initially k =k, where K is the

threshold of damage. Kk, is the tensile strain at which damage is initiated, that is when the
maximum tensile stress f, is reached in a uniaxial test.
The evolution law, denoted as F(€) in Eq.(33) is a function of the strain, instead of the

strain rate. It is integrated with respect to time so that damage can be directly computed at any
state of deformation. Damage is decomposed into two parts, D, for tension and D, for

compression. D is computed from the relation (34) which combines these two types of
damage:

D=a,D,+0,.D, (34)
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Figure 10 : Response of the Strain-Based Model in Tension (a) and Compression (b).

The factors &, and «, are such that in uniaxial tension ¢, =1l.c¢, =0. and D= D,, and in
compression &, = 0,0, =1. and )= D.. The damage variables are functions of the average

equivalent strain:

Do xo(l_—A,) ~ A,_
£ exp(=B,(€ —=xy)) .
b o Ra=A) A, (53)
‘ 3 exp(—B.(E = ky))
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and constants A, B, At, Bt are model parameters. These coefficients characterise the
hardening/softening response of concrete. The factors ¢, and ¢, are expressed as non
dimensional functions of the principal strains. Note that in this model, the condition that
damage cannot decrease should be added to the loading function in Eq. (33) because the factors
o, and o, may vary in the reversible regime and could yield a decrease of damage which is
inconsistent with the second principle of thermodynamics.

Figure 10 shows the response of this model in tension and in compression. The model
parameters are:

E, =23400MPa, v, =02, k,=2.610", B=1.05 6)

A =1, B =15000, A, =12, B, =649 >
More details on this constitutive relation, its finite element implementation, and comparisons
with experimental data can be found in the works of Mazars (1984), Saouridis (1988), Mazars
and Pijaudier-Cabot (1989).

5.6. Gradient Damage Model

Non local constitutive relations can be considered as the point of departure of gradient models.
Following the approach of section 5.2, the definition of the non local effective strain in Eq.
(31) can be written as:

E=E+aV’E (37

where ¢ is a material parameter of the dimension of a length squared. Equation (37) is, in fact,
obtained from a second order Taylor development of the effective strain in the non local
expression (Eq. 31). Hence, we assume that the support of the weight function is very small
compared to the spatial variation of the effective strain over the structure analysed. This new
expression of the non local effective strain can be substituted in the equations defining the
evolution of damage in section 5.2. Numerically, this constitutive model can be very awkward
to implement in a finite element model because Eq. (37) is a differential equation which
involves the third order derivatives of the displacement functions. To obviate this problem,
Eq.(37) can be approximated by

E-0VE=E (38)

which is much easier to implement in a finite element code as it does not involve more than
the first order derivatives of the displacement (see Peerlings et al. 1995).

In the non local and gradient models discussed above, the internal length is postulated, as
the result of interactions between growing defects which are, by definition, of a non local
character. In some situations, however, it is possible to derive such a model with an internal
length from existing, but more advanced, theories of elasticity. These theories are directly
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related to the multiple field theories described by Mariano and Trovalusci (1999) and recalled
in the next chapter of this book.

Let us consider a material which contains voids with isotropic characteristics. In fact, we
consider a porous isotropic material whose porosity is growing as damage, defined as a scalar
quantity, develops. From the micromechanical point of view, damage will be characterised by
the variation of volume fraction of material denoted as v(x,7). For a strain free material, the
volume fraction is equal to I initially, and it decreases when damage grows. Failure is reached
when the volume fraction is equal to zero. Starting from a reference configuration where the
material is strain - free and the volume fraction is vz(x), the variation of the volume fraction of
material is @(x,t) =v(x,1)—vg(x). This variation of volume fraction of material can be due to

damage growth or straining.

For constant damage, the porous material is elastic and its behaviour is modelled using the
theory of elastic material with voids (Cowin and Nunziato, 1983). The governing equations
are (in the absence of body forces):

0,,;=0 (39a)
hij+g=0 (39b)

where /; is the equilibrated stress vector, g is the equilibrated body force, and 0 is the

overall stress in the porous material. Equation (39b) was first suggested in the case of granular
materials by Goodman and Cowin (1972), and arises also in the microstructural theories of
elastic materials. Variables g and /i, have been given specific interpretation: they are related to
the stresses due to centres of dilation made of three couples of opposite forces without
moments acting along three mutually orthogonal directions at material points. Such forces
correspond to the local pressures necessary to augment the size of an existing void, in a
reversible or irreversible manner and. they create a local stress distribution. These forces
produce void growth and a variation of the overall volume fraction of the body.
The elastic (free) energy reads:

1 . . oo 1 1, .
W= > G €, + ﬁé,,-eu¢+; g P, + —;é(z) (40)

where G,y are the overall stiffness coefficients of the porous material. and (c. B.&) are material

parameters. The above form of the elastic energy is the result of the assumption that the
material is isotropic with a centre of symmetry. The thermodynamic forces associated to the
variables (g“._(p,q)‘.) are defined as :

v W oW
_ P L gph =4 f 1)

where g, and th arc the values of the equilibrated body forces and equilibrated stress vector in

the reference state, respectively. Hence equilibrium in the reference (stress-free) state yields:
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hE+gp=0 (42)

The constitutive relations are:
_ 13 ¢
o, =Ae 5; + 2yeU + Bos,;.
h =g, +hE, (43)

g=-50-Pe; +gp.

where 5,~j is the Kronecker symbol.

As pointed out by Cowin and Nunziato, the stiffness coefficients and the material
parameters should depend on the reference volume fraction. In order to obtain an extension of
this model to the case of a damaged material, it is assumed that whenever damage grows, it
modifies the volume fraction of the material in the reference configuration considered by the
linear elastic theory. The variation of volume fraction is rewritten as:

de(x,t)=do"™ (x,1)+do" (x,1),

¢'"(x,t)=v(x,t)—vR(x,t), (44)
with
0" (x,t)=vR(x,1)- vo(x),

where ¢ is the reversible variation of volume fraction, v?(x,t) is the volume fraction of the
damaged material when it is free of loads, ¢" is the irreversible variation of volume fraction
due to the growth of damage measured when the material is free of loads and v0 is the initial

volume fraction of the material, when damage is equal to zero. The free energy of the material
is now rewritten with the introduction of the degradation of the stiffness. Therefore, we assume

that gp and h,.R defined in the elastic theory are related to 9" (Pijaudier-Cabot and Burlion,

1996).
A “source term” A which controls the irreversible variation of volume fraction of the

¢

material from the initial state is defined with a loading function f(¢;,Z) and an evolution
equation. It is added to the right hand-side term in Eq. (39b). Z is the hardening - softening
variable. For the sake of simplicity, we assume now that ¢"" is very small compared to ¢""
as damage grows. We will use, in the following, a linear relation between damage and the

irreversible variation of volume fraction: d =—¢". The constitutive relations which follow
from these assumptions are similar to those of the gradient damage model. The governing
equations and the stress - strain relation are now:
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0;;=0,
od ; —&d = A, (45)
0y =(1-d) 2,8, +2pe" |- B5,d.

In this final form, we may interpret the different material parameters. & is related to the
evolution law of damage, in an integrated form and the coefficient 8 controls the amount of
volumetric irreversible strain due to damage.

For the finite element implementation, consider now a finite body denoted as Q with
boundary Q. This body is initially at rest, the displacement and damage velocities being
equal to zero. The two governing equations of motion are those defined in Eqgs. (45a,b) and the
boundary and initial conditions corresponding to damage equation are those defined in the
linear elastic theory :

w;(x,1)=1u,;(x,1)on &2, and 0.1 =T on d2,,

(32, LA, = X2 and K2, N, =B ), (46)

agrad(d(x,t)).n =0 on X,

where 7 is now the unit outward normal to the boundary JQ. The meaning of the third
(natural) boundary condition in Eq. (46) remains a problem to be solved.

In the absence of body forces and irreversible strains, the two governing equations, along
with the boundary conditions, are equivalent to the following conditions: find a displacement
field i and a damage field d such that for any cinematically admissible virtual displacement
1 *and damage field d *:

Js*:adv: th*.fds,

Q 129)] 47
[{agrad(@*).grad(d)+ &a* djav = [ a* ady,
Q Q

where F are external applied forces. For the finite element implementation, the displacement
field components and damage field are discretised, same as in coupled thermo-mechanical
problems. A similar variational principle can be obtained in an incremental fashion for the
purpose of implementing the model within a Newton - Raphson procedure.
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5.7. Analysis of Strain and Damage Localisation

Throughout this section, we are going to investigate the properties of the non local damage
model when strain and damage localisation occurs. For the sake of simplicity, we will use the
energy-based damage model. The strain-based model is certainly closer to the behaviour of
concrete and rock-like materials. It is much more complex from a mathematical point of view
(because of the expression of the equivalent tensile strain which involves positive parts) and
exhibits similar properties which have been verified numerically. The bifurcation analyses
which are presented hereafter aim at understanding the properties of the non local model and
the influence of the intenal length.

5.7.1 One Dimensional Approach to Localisation

For the sake of simplicity we will consider first the one dimensional case of a bar which is in
an initial state of constant strain €. The stress-strain curve of the material is shown in Fig.
11a. It exhibits strain softening with a constant modulus E, and a secant modulus denoted as

E,. The length of the bar is L and its cross section is A.

N E

o * F y
Figure 11. Localisation in the one dimensional case

Assume that the loading is displacement controlled. If the strain € =u/ L is lower than
the strain at peak stress, the stress in the bar is ¢ = E,e. For initial states of strain beyond
this limit, the solution of the equation of equilibrium to small stress perturbation is not

unique.
Assume now that for x € [0,h], the incremental stiffness is E, and that for x € Jh,L] the

incremental stiffness is E,. It is then possible to find a possible perturbation, solution to this
problem for whrch the constitutive and compatibility equations are:
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do =Ede, forxe[0,h]
do =Ede, forxelh L]

(48)
hde, +(L—h)de, = du

If the variation of the displacement at the extremity of the bar is fixed, the corresponding
variation of tensile load is:

EE
dF = Al —— 2]
[(/;E,a-EU(L—h))] ! _ (49)

-

Hence, for any value of the unknown /1, it is possible to find a solution to this problem. The
number of solutions for this problem is infinite. It depends on the size of the zone where the.
strain is increasing incrementally, and also on its location.

Under displacement controlled conditions, the second order work corresponding to the
perturbation is:

L
AU = [ dedo dv - dFdu (50)
2 0

Upon substitution of the constitutive relations and of Eq. (49), the following form of the
second order work is:

d2U=—%AE,(dg,)2[,;£+(L—h)J 1)

i

It follows that the state of equilibrium from which the perturbation is considered is stable if

(/lEi+(L-h)j>O (2)

i

and stability is directly a function of the size of the region in which the strain increases
incrementally.

If this size is not controlled by the constitutive relations, the stable solution will be the
one that minimises the second order work, according to Gibbs definition of stability. A simple
calculation shows that the stable solution is obtained for A — L. In this case, all the bar
unloads except for one point which follows the softening curve. This is the one dimensional
localisation mode in which the admissible incremental strain is discontinuous. As a
consequence, the energy dissipation is confined to a point (region of zero volume) and the
total energy dissipated by the bar during failure is zero (the dissipation per unit volume of
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material is finite). Obviously, this result is not realistic. It is also in contradiction with crack
propagation criteria (such as Griffith criterion).

The localisation mode studied in this example is possible because of strain softening. It
cannot occur in the hardening regime because it is not possible then to find a perturbation of
the form in Eq. (48) which satisfies equilibrium (the incremental strain has to be constant over
the bar).

Let us consider now the case of a non local damage model. In order to avoid the difficulties
inherent to the boundary conditions and the local averaging procedure near the boundaries, we
look at an infinite bar which is in a homogeneous state of stress, strain, and damage initially
denoted as (0, €, D). The rate equation of equilibrium is derived from Eqs. (8,9,24,25),

assuming that the variation of stress is homogeneous over the bar:

1
V,(x)

(1= Dy)EyE , — F(F) Jw(s)(Eoeo)zé(.r+s)(ls =0 (53)

where E; is the elastic constant of the material. Note that the representative volume V,(x) is

constant for an infinite bar and that in this problem, the increments are replaced by rates,
which is the same since the constitutive relations are rate independent.

Instead of being a differential equation, the equation of equilibrium is now a second order
linear integral equation in €. Thus, the mathematical nature of the problem is slightly
changed. Nevertheless, it is possible to recover an algebraic equation by considering harmonic
solutions of the velocity field w(x). This means that possible solutions are developed in
Fourier series. This type of solution enables to separate, in the kernel of the integral, variable x
from variable s. Hence, the kernel is degenerated in order to transform the integral equation
into an algebraic equation. For details the reader should consult the book by Courant and

Hilbert (1953).

n(x) = Aexp(—i&x) 59)

where / is now the imaginary constant such that i* = —1. Substitution in the equation of
equilibrium yields:

A& exp(—iciv)[(l - Dy)Ey - FWI(E L )(Eygy )3] =0 (55)

with

2

&
5 (56)

W(&.L)=exp(-

w(&, L) is the Fourier transform of the weight function. There is a trivial solution to this
equation where & is zero and the strain remains homogeneous over the bar. However, another

solution may exist:
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2 (-0

5 = 5 n[EoséF()’-)

] if [(1- D) - Eygg F(7)| < 0 (57)

The condition of existence of such a solution coincides with the condition that the tangent
modulus of the material deformed homogeneously be negative or zero. Thus, loss of
uniqueness is possible starting at the peak stress and beyond, in the strain-softening regime.
The wave length of the periodic solution is proportional to the characteristic length of the
material and depends on the initial state of strain (or tangent modulus) of the bar. In this
simple case, it can be seen that the number of possible solutions of the rate equation of
equilibrium is restricted to the trivial (homogeneous) solution and to a periodic solution. K
the constitutive equations are local (/. = 0), there is an infinite number of solutions to this
problem, same as in the previous paragraph along with the same unrealistic feature of zero
energy dissipation at failure.

With the gradient damage model developed in section 6, the system of equations of
equilibrium reduces to:

Ey(1-dy)é, ~(Ego+P)d, =0
1. —&d=A

(58)
od

XX

wavelength (mm)

0 + : ' 4

0 1 2 3 4

strain

Figure 12. Simplified one dimensional damage model: wave length of the localised mode as a
function of the strain at the onset of bifurcation.

We are using here a evolution of damage such that in the softening regime, the material
behaves linearly with a tangent modulus denoted as 4. Harmonic solutions are found upon
softening (/< 0) only. The wave lengths ¢ of these solutions are function of the initial state

of damage and of the material parameter O :
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p=og |- ol =d) (59)
Eh

Bifurcation occurs when softening is encountered. Besides the trivial solution where the
strain and damage rates remain homogeneous, there is again a second possible solution to the
goveming equations of equilibrium when the material softens (the term under the square root
stgn in Eq. (59) must be positive).

The square root of ¢ is an internal length of the continuum which selects the wave length
of the localised solution and scales the size of the localisation band. It plays exactly the same
role as the internal length in other localisation limiters (see e.g. Sluys 1992, Pijaudier-Cabot
and Benallal 1993). Figure 12 shows the variation of the wave length as a function of the
initial strain €° about which bifurcation is considered. The material parameters are
E=1MPa, h=-0.5MPa, £ =1, B=0.1MPa, peak stress = IMPa with & =1 mm’.

5.7.2 Possible Localisation Modes in Static’s

We will consider now the case of an infinite solid on which adequate boundary conditions (rate
of loading) are applied at infinity. It is assumed that the solid is initially deformed
homogeneously and that it is subjected to a quasi-static increment of deformation. For any
variation about the initial equilibrium state, the rate equations of equilibrium are:

O(x)=(1—Dy)E: €(x)
_FGoE ()
V()

jly(s) Eo(x+s5): E: &x +5)ds (60)
V

Pttt

SRR

Figure 13. Solid with a discontinuity of the strain rate ficld through the surface y.



The subscript 0 in this equation denotes the initial state of deformation and damage from
which the perturbation are considered. Following Rudnicki and Rice analysis (1975). the
velocity field corresponding this perturbation is assumed to be Cp-continuous while the
corresponding strain rate is C_j-continuous, discontinuous across a surface denoted as I with

normal vector n (Fig. 13).
For equilibrium, the stress rate jump derived from the assumed strain distribution across I"
must be zero:

(6] =0 (61)

where [o‘] is the stress rate jump, that is the difference between the stress rate tensors across

surface I". In order to proceed with the analysis, it is necessary to know what are the loading
conditions in the two parts of the solid separated by T". A part from the trivial case in which
the two parts unload and the strain rate jump is zero, it may be assumed that one part of the
solid denoted as Q~ unloads (damage is constant according to Eq. 24) while damage keeps on

growing in the other part denoted as Q™. The average damage energy release rate at any point
of the discontinuity surface is, however, a C-continuous function :

- ] .
(x)y=—— : X CEE(x+58)ds 62
y(v) vr('\.)"[l//(V)Eo( V+5) E(X +5)ds (62)

Thus, a discontinuity of the damage growth condition is impossible on T", the only remaining
possibility for a discontinuity of the strain rate field to exist is that damage should grow in Q-

and in Q" and the damage jump across the discontinuity surface T" should be zero according to
Eqs.(25, 62). Therefore, the discontinuity of the normal stress across the interface is
proportional to the strain rate jump. It can be easily checked that this jump must be zero in
order to satisfy equilibrium (Eq. 61). Consequently. a discontinuous strain rate field cannot be
an equilibrium solution according to the non local model. A similar property is trivial for
gradient models, since the displacement field must be continuous enough so that second order
gradients of the strain exist.

5.7.3 Three Dimensional Analysis with the Non Local Model

Strain localisation cannot be defined as the onset of a discontinuity of the velocity field. It
remains however that strain softening may produce a loss of uniqueness of the solution to a
boundary conditions problem. The detection of bifurcation points cannot be carried out
analytically in the gencral context. This analysis can be performed in the case of an infinite
body only, assuming that the boundary conditions are such that the deformation and damage
variables are initially homogeneous over the solid. Hence, we will study the conditions of
uniqueness and admissibility of small perturbations which satisty the rate constitutive equation
(60) and the momentum equation:
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d%ii(x)

p® (63)

div(G(x)) = p

where p is the mass density and w is the unknown perturbation. We will consider here the
non local damage model only. Similar results can be obtained with the gradient damage

model.
With the non local model, Eq. (63) is an integro-differential equation. Solutions of this

equations are harmonic waves, propagating in direction 2, of amplitude A and phase velocity
c:

ﬁ(x) =A exp(—i€(n.x - ct)) (64)
Substitution of these solutions into the equation of motion yields the linear algebraic system:
(i.H*(&).i—pcl)A=0 (65)

where [ is the 2x2 identity matrix, H*(£) is the tangent operator governing the strain rate -

stress rate relation and:

i.H*(E)7i = (1- Dy)i.Edi

. _ - = (66)
—W(E)F(G)NE : €y.n)®(E : gy.11)

where ® denotes the tensorial product. n.H *(&).n can be regarded as a pseudo acoustic
tensor, function of the wave number & entering in () which is the Fourier transform of the

weight function:

62[2
Y (&) =exp(- =) (67)
The condition of bifurcation, i.e. the condition of admissibility and non uniqueness of
harmonic waves is (a homogeneous deformation with constant velocity is already a trivial
solution):

det[i.H * (&).i — pcl) = 0 (68)

The major difference with the same analysis performed on a local continuum is that the
pseudo-acoustic tensor is a function of the wave number. In a local damage model, the weight
function is a Dirac function. The Fourier transform of such a function is constant. Whenever
Eq.(68) is satisfied for a local continuum, there is an infinity of possible solutions
corresponding to any arbitrary wave number. On the contrary, Eq.(68) may be satisfied in a
non local continuum for a limited number of values of &.
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In order to exhibit the localisation conditions in static’s, the phase velocity in Eq.(64) is
taken equal to zero. Eq.(69) is the bifurcation condition:

det(ii.H* (£).i]=0 (69)

It has the same form as Rudnicki and Rice condition (1975). In the limit of a vanishing
internal length, Eq. (69) is exactly Rudnicki and Rice expression which corresponds to the
occurrence of a surface of discontinuity of the strain rate in the considered solid. The acoustic
ténsor nHn is singular.

The relation between the singularity of the acoustic tensor in a continuum description and
the progressive concentration of failure in discrete analysis is rather difficult to apprehend. A
first reason is that it can be quite problematic to derive a tangent operator H in discrete
analyses. Delaplace et al. (1999) have recalled that in some situations at least (e.g. for a
discrete interface), the characteristic of the system (force vs. displacement) is not derivable. A
second reason is that due to the initial disorder, bifurcation is very seldom to occur. The initial
disorder serves as a perturbation which triggers damage localisation. According to the above
analysis, the bifurcation condition is derived assuming that the system is initially in a
homogeneous state of deformation. Would jbifurcation be permitted in discrete analyses,
responses of systems without localisation offracturing events should be observed. It is from
such results that an equivalent tangent operator of the underlying continuum approximation of
discrete system should be computed, before strain localisation, same as in Rudnicki and Rice
analysis. This type of result has never been obtained to our knowledge. Hence, the determinant
of the acoustic tensor, computed from an averaged response of several discrete analyses where a
progressive concentration of damage occurs, should not vanish. At best, it should decrease
without becoming singular. This type of result has been observed by Krajcinovic and
Vujosevic (1998).

5.8. Finite Element Example

The non local model is relatively easy to implement since the equilibrium equations are
standard. The integral relation due to the non local term is discretised according to the finite
element mesh used for the analysis and an usual quadrature rule is employed for its evaluation.
Notice that the weight function does not vary during the loading process and is independent of
the boundary conditions. Therefore, the numerical evaluation of the non local terms is
simplified: prior to initiate the calculations, the average weights are computed at each
integration point and stored once and for all. In finite element calculations, the weight function
is chopped off: the weights that are less than 0.001 are set to zero. The actual volume of
integration does not span over the entire volume of the solid and the calculation of the integrals
requires less computer time and memory as the number of neighbouring integration points is
reduced.

Figure 14 shows a schematic problem statement (see e.g. Pijaudier-Cabot and Bazant
(1987) for details). A constant velocity is applied at the extremities of the bar such that a
constant strain wave of amplitude 0.7¢* (where £* is the strain measured at the peak stress)
is propagated. These waves meet at t*=1Is in the middle of the bar where localisation occurs.
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U(-L,t) = -vt U(L,t) = vt
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Ey=1Pa, p=1lkg/m’
b =2Pa’', b,=0, Yy=05Pa

Figure 14. Dynamic bar problem.

Figure 15 shows the results of computations carried out with a local model (internal length
set to zero) and several meshes with constant length elements. The damage profiles are plotted
on this figure at time 1.5t*.

Damage localises into the two elements at the middle of the bar. The size of the damaged
zone is controlled by the size of the finite elements: the smaller the element size, the smaller
the damage zone will be. At the limit of a vanishing element size, which should correspond to
the solution for a continuum, damage localises over a segment of zero length. Since the energy
dissipation per unit volume of material is finite, the total energy dissipation for the entire bar,
defined as the integration over time and over the bar of the dissipation rate, tends to zero.
Failure occurs without energy dissipation, which is not physically realistic.
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Figure 15. Local damage model - damage profiles for meshes with constant length element.
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Figure 16 shows the same calculations performed with the non local model. Upon mesh
refinement, the profiles of damage remain constant. The size of the damaged zone is
proportional to the internal length ofthe continuum and failure occurs with a finite. non zero
energy dissipation because damage localises over a portion of the bar of finite, non zero length.
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Figure 16. Non local damage model - damage profiles for meshes with constant length element.

5.9. Relation with Fracture Mechanics

Fracture mechanics and its link with damage mechanics may possibly help at understanding
the eftect of non locality of damage and the influence of the internal length on macroscopic
fracture properties. Our objectives in this section is to discuss a very simplified link between
the two theories which exhibit the influence of the internal length of the material and may
possibly be used for approximating this length experimentally.

Consider an infinite body subjected to uniaxial tension in direction 2. 3, with 03- =0 for

i#2 and j # 2. Damage is denoted as D), and the strains are denoted as 52. When small

deviations from this equilibrium state are analysed, harmonic displacement fields are solutions
of the partial differential equations of equilibrium given in section 7.

We assume now that damage localisation is such that the band is perpendicular to the
tensile load (Fig. 17). The wave length of the harmonic solution is entirely determined from
the evolution law of damage and the internal length of the continuum because the orientation of
the band is fixed. The calculation of the approximated fracture energy is based on the
assumption that at the onset of strain localisation, i.e. at the onset of localised cracKing, the
distributions of strain and damage jump suddenly from a homogencous distribution to a
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harmonic solution with the smallest possible wave length. This is based on stability
considerations which require that the width of the localisation zone should be as small as
possible and on the assumption that intermediate states where maximum damage is neither
equal to zero nor to 1 have a relatively small influence on the energy dissipation.

t ot t ot

2

initial

failure

Localization Zone
Figure 17. Geometry of the localisation band assumed for the calculation of the fracture energy.

In an infinite body, localisation occurs suddenly and maximum damage jumps very rapidly
to one. Therefore, this assumption does not seems to be too far away from the exact process of
localisation in which the region where damage evolves shrinks with increasing damage as the
loading progresses. Furthermore, this approximation has been already tested successfully in
finite element analyses of pre-damaged structures in order to derive an equivalence between a
cracked and a damaged (in the continuum sense) structural component (Bodé€ et al. 1997). This
equivalence was derived with the strain based damage model developed in section S.

With the minimum wave length (maximum value of £ in Eq. (64)), the distribution of
damage perpendicularly to the crack direction (the coordinate is denoted as x,) is:

J w(s)n(x, +s)ds
D("‘l) = -w+m
[wesmesyas 70

—oa

3 T
o M(z) = c08(€0e2) ifze[ , J
W"h ’ 25“12))( Zémnx

n(z) =0 elswhere

The energy consumption due to crack propagation is the integral of the energy dissipation at
each material point of coordinate x, in the fracture process zone which encountered damage up

to D(x,). For propagation of a crack over a length &a, the formula reads
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G, oa = J W(D(x,))dx,ba (71

where W(D) is the energy dissipation due to damage up to the value D

D(xy) | eulrs)
WDt = | ~Eehup= | S EELF(Fen (72)
0o - 0

Therefore, the fracture energy is:

+oo€:3(.\3) l
G, = J j 7—E£§1F()_')d€32({.\'3 (73)
o O

Note that the width of the fracture process zone is implicitly fixed by equation (70). The
fracture energy for an infinitely large specimen is related to the model parameters in the
constitutive relations including the intemal length. For a local model, the wave length in
Eq.(70) would be zero and the calculation would yield a zero fracture energy too. This is not
consistent with fracture mechanics where a finite amount of energy is required in order for a
crack to propagate. The non local model provides a consistent result via the introduction of an
internal length which scales the localisation band (wave length of the localised mode).

5.10. Conclusions

Continuous damage mechanics is a theory which aims at describing the mechanical eftect of
cracking and void growth in an elastic material. Analyses on lattices show that in
phenomenological models, the variation of the material stiffness is the appropriate damage
variable. It shows also that in the course of failure spatial correlation develops which can be
transposed in a non local format in macroscopic models. The description is essentially
phenomenological although it may be also motivated by several micro mechanics analyses.

Non locality introduces an internal length which scales the localisation process. In static’s,
the internal length controls the minimum wave length of the localisation modes. For a rate
independent continuum, this property is central and insures a proper convergence of the finite
element calculations toward a unique solution or a finite number of solutions analogous to
buckling modes. Finally, the internal length makes it possible to relate damage models to
fracture mechanics. The fracture energy is function of this internal length. This last parameter
could therefore be determined experimentally from fracture tests, using inverse analysis
techniques.
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