
HAL Id: hal-01007519
https://hal.science/hal-01007519

Submitted on 27 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Physical and Polynomial Response Surfaces
Frederic Duprat, Franck Schoefs, Bruno Sudret

To cite this version:
Frederic Duprat, Franck Schoefs, Bruno Sudret. Physical and Polynomial Response Surfaces. Con-
struction Reliability: Safety, Variability and Sustainability, pp.123-146, 2012, 9781848212305. �hal-
01007519�

https://hal.science/hal-01007519
https://hal.archives-ouvertes.fr


Physical and 

Polynomial Response Surfaces 

7.1. Introduction 

Generally, structural reliability analysis is based on the supply of mechanical and 
probabilistic models and a limit state function. In this chapter, we first define a 
mechanical model that describes structural behavior. In a general sense, the 
mathematical transfer function  allows us to evaluate the influence of loading 
with the knowledge of input parameters (or stimuli) that describe the structure and 
its environment. These parameters constitute the vector . The model response is 
denoted here as .  

Next, we define a probabilistic model for the input parameters that are 
considered to be poorly known or uncertain, even from a statistical analysis of data 
samples when they are available, or by expert judgment and a database [JCS 02]. 
This probabilistic model is characterized by the joint density of the input random 
variable , denoted . 

Thirdly, and finally, we define a limit state function that mathematically 
translates the failure criterion against which the structure must be justified. This 
function is written with the general form  and is based on the effect of 
loading to which we fix limits, gathered in a vector . 
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By denoting fX,X' the joint density of vectors X and X', the objective of the 
analysis is to evaluate the structural reliability through one estimate such as the 
probability of failure  defined by:  

[7.1]

Several methods exist for solving the problem [DIT 96], [LEM 09]. Among 
them, in this chapter, only a Monte Carlo simulation and FORM method are 
presented and used. 

7.2. Background to the response surface method 

Many scientific fields and trends of thought have contributed to the elaboration 
of the so-called Response Surface Methodology (RSM). The beginnings of the 
response surface approach appeared a few years before Box & Wilson’s 
developments [BOX 50]. Various scientific fields were involved: 

– animal and vegetal biology, and the building of growth curves [REE 29],
[WIN 32], [WIS 39]; 

– human sciences and the analysis of the response of a population to stimuli
[BLI 35a], [BLI 35b], [GAD 33]; these works were based on those of the 
psychiatrist Fechner in 1860; 

– agronomy and the study of soil fertilization [CRO 41], [MIT 30], [STE 51].

These approaches were based mainly on the basic assumption (mathematically 
justified by the Weierstrass’s theorem) that, under some conditions of regularity, a 
response can be represented by polynomials. Thus, within this context, in 1951 the 
chemists Box and Wilson developed the concept of a response surface, relying both 
on analytical regression techniques and the building of experiences. In particular, 
they had already carefully described the need to pay attention to the choice of 
stimuli variables, and to the allocation of their relative weight. The empirical models 
they developed have been enriched by the definition of observation periods 
[BOX 55] and by error computation [BOX 57]. With the increase of the number of 
potential models, selection criteria were provided [BOX 59a] such as the generalized 
variance minimization of variable estimation [BOX 59b]. The period 1950–1970 
was a fruitful one with the appearance of three major scientific developments with 
probabilistic insights: 

– research into optimal functional representation through stochastic
approximation in the presence of outliers; an expansion to multivariate problems 
was proposed [KIE 52], [ROB 51]; 
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– the comparison of growth curves in biometry [ELS 62], [RAO 58], where
response functions come from projections on a family of orthogonal polynomials. 
Their coefficients are then used for forecast studies; 

– the theory of optimal models under constraint in the case of linear models
[KIE 60]. The optimization of a response function was linked to the minimization of 
the generalized variance of parameters. 

This last trend of thought offers a well-structured theoretical contribution that 
was soon used as a reference by others. Numerous works about optimization 
appeared after it [ANS 63], [NEL 65], [POW 65]. The end of this period saw the 
emergence of non linear models. The most significant works were certainly carried 
out on inverse polynomials [NEL 66] and the statistical estimation of parameters 
from experimental processes [ATK 68]. Nevertheless, the increase in use of 
nonlinear models was really significant, due to the increase in computational 
capacity of computers. The criteria for model validation appear to be very specific to 
each application field; review papers in biometry [MEA 75] and in the nuclear field 
[HEL 93] can be cited as examples. 

7.3. Concept of a response surface 

7.3.1. Basic definitions 

The term “response surface” denotes the wish to develop a formal representation 
based on geometrical ideas; it is surface building in the probabilistic space of the 
response of a physical process to stimuli. The property being studied, or response Y, 
is the result of a transfer function that characterizes the sensitivity of a system to 
input parameters. This response then varies with the variation of input parameters 
known as stimuli. These are modeled by random fields or variables, denoted Xi, 
i=1,..,n, and then characterized by a set of available statistical information, denoted 
θj, j=1,.., p, (independent or correlated probability density functions, normalized 
moments, etc.). These random variables (or fields) are called basic random variables 
(or fields). This transfer is represented in Figure 7.1. 

Figure 7.1. Response of a transfer function to stimuli, 
modeled by random fields or variables  
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The modeling of random fields is sometimes needed for the representation of 
spatio–temporal variations of uncertain input parameters. Modeling with random 
variables, which is simpler, is nevertheless sufficient for specific problems. For 
simplicity in the following sections, we use random variables to represent input 
parameters. 

Generally, knowledge of a transfer function as an explicit form of basic random 
variables is not available. We therefore look for an approximation, called a response 
function, M, which is often selected from amongst a family of usual functions, linear 
or not, characterized by random or deterministic parameters χk, k=1,..,l. These 
parameters are deduced from the fitting of the response to the experimental data. 
The geometrical representation, with a curve, a surface, or a hypersurface, is called a 
response surface. The introduction of geometrical tools such as contour lines onto 
this response surface can then be used as frontiers of the safety domain. To build a 
response surface, we must provide: 

– X ={X1…, Xn}, a ranked set of representative random variables;

– θ={θ1…,θp}, a set of statistical information about X (independent or correlated
probability density functions, normalized moments, etc.); 

– M(X/θ), an approximation of the response Y, formulated as an explicit function
of X knowing θ, and obtained by the fitting of the set of parameters χ; 

– |.|, a metric in the probabilistic space of basic random variables and responses.

The quality of fit of the approximation M to the response Y is then measured. 

The response function can then be formally written as in Figure 7.2. 

Figure 7.2. Formal writing of a response function 

7.3.2. Various formulations 

The choice of the type of formulation for the response function is made on the 
basis of specific criteria coming from the selected scientific methodology for 
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studying the phenomenon. The first questions are the conceivable level of 
complexity, the availability of a complementary experimental approach and the 
actual state of knowledge. Two methods are possible but the building of a response 
surface is more and more frequently based on a mixed solution: 

– the matching of an approximated model of the transfer by using usual 
mathematical functions (especially polynomials) and a selected database. [SCH 96] 
presents and compares the usual models used; 

– the use of underlying deterministic physical laws in which random variables 
are introduced to account for intrinsic variations (height and period of a wave, speed 
of the wind for instance) or for uncertainties on modeling parameters [LAB 96]. 
Two issues then govern the building of the response surface, the physical meaning 
of the deterministic models and the selection of the random variables, i.e. those that 
govern the variations of the studied quantities. 

Finally, the difficulty of statistically characterizing the basic variables adds to the 
difficulty of selecting the analytical formulation of the transfer. In the case of 
response surfaces that describe limit states, this question conditions the reliability 
measure. For instance, in the field of unidirectional laminated composite materials 
loaded in the direction or orthogonal to the direction of fibers, we consider generally 
that a limit state can be deduced from three criteria: stresses, external loading and 
the geometrical size of the material. Various assumptions on the number of random 
variables and the typology of their distribution can lead to variations of more than 
30% of the value of corresponding safety factors [NAK 95]. 

7.3.3. Building criteria 

Building criteria are specific to each application field. Thus, in the following 
discussion, criteria are ranked according to their importance for problems relative to 
the safety of buildings and structures. These criteria nevertheless raise questions that 
can be extended to other fields. Further, it would be wrong to consider that a unique 
solution exists. The final choice is the result of an optimization under constraints 
that we have proposed. 

We aim especially to take benefit of the increased power and computational 
capacities of computers which offer the ability to refine the mathematical 
representation and control the intrinsic uncertainties due to model fitting. However, 
one must always keep in mind the requirement of the physical meaning. Thus, the 
major elements in our approach are: 

– the physical meaning of the representation; 

– the effects of the choice of probabilistic modeling; 

5



– the measure of the quality of the fit;

– a reduction of the level of complexity, consistent with acceptable
computational costs. 

7.3.3.1. Physical meaning of the representation 

An understanding of the physical mechanism that underlies the physical 
phenomenon is fundamental when choosing the set of input variables and the 
approximation function. This criterion can lead to the necessity to base the 
formulation of the function on deterministic relationships. Intrinsic randomness is 
then introduced through random variables and we account for the model uncertainty 
through random parameters. The use of deterministic relationships and a careful 
selection of basic variables, if an analytical relationship is available, are shown to be 
more realistic than the use of fitted models with the usual mathematical 
formulations.  

7.3.3.2. Effects of the choice of probabilistic modeling 

The probability law of the system response depends on the probabilistic 
characterization of the input parameters (probability distribution, scatter, skewness, 
kurtosis, etc.). In a simple case where the transfer function M is a linear function of 
normally distributed random variables, the response is normally distributed too. In 
the general case, random variables are non-normally distributed and the transfer 
function is more or less nonlinear.  

To control the effect of this degree of nonlinearity of the transfer function, 
several works suggest approaching this function with a polynomial approximation 
(generally linear, quadratics or cubic). A linear approximation is usually not 
sufficient [BOU 95]; cubic or fifth order approximations allow us to assess in some 
cases the moments of third and forth order in a satisfactory way. Polynomial 
approximations can be of high order and costly in terms of identification of their 
parameters. 

Actually, to guarantee the transfer of distribution laws, it is necessary to control 
the good fit of the Jacobian matrix [D(X)/D(Y)] [LAB 95], [SCH 08]. We then 
consider a response surface with a single variable of the form Y = M(X) with M, a 
bijective monotonic function which can be derived, and X a basic variable. Knowing 
the probability density fX of X, we can compute fY, the probability density of Y. G is 
the cumulative function associated with the probability density function g, and we 
know that: 

GY (y) =  and fY (y) =  )( yYP < )yY(P
dy

d
<
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fY (y) = P[X < M -1(y)] and finally  fY (y) = fX [M -1(y)]

where |.| denotes the absolute magnitude. 

In the more general case of a multivariate problem for which X and Y are 
vectors, probability density functions of random input and output are linked by the 
relationship: 

fY (y) = fX (x) [M -1(y)]

Thus, to obtain a good approximation of PY, a good fit of function M should be 
reached as well as a fitting of the partial derivatives. The linear, quadratic or cubic 
polynomial functions described before have, respectively, constant, linear and 
quadratic derivatives. The difference between these three functions is generally 
significant near the bounds of the studied domain (realizations of basic variables), 
and the perturbations on distribution tails can be significant and thus modify the 
results of reliability computation. Thus, the choice of low order polynomial, very 
convenient from a computational point of view, can lead to false probability 
functions for the response even they seem to correctly represent the trend. Such a 
choice is very sensitive to the effects of the choice of probabilistic modeling of input 
parameters. 

7.3.3.3. Measurement of the quality of fit 

We aim here to define a metric (a measuring tool) that gives a rational tool to 
quantify the quality of fit. Usual metrics, known as second order metrics, allow us to 
obtain the variables that are dominant in the response because we can quantify their 
influence on the variance of the response. They are thus not very effective when 
singular events external to the distribution functions of the input variables occur, and 
they only give an indication of the measure of uncertainty [BIE 83], [IMA 87]. To 
solve these shortcomings, metrics based on inter-quantile discrepancies [KHA 89] or 
on the measurement of the system entropy [PAR 94] are available. 

Another approach consists of the use of regression metrics. Let us denote the 
response function for which we want to fit the parameters as f, and the error as ε. Let 
us consider, for example, a regression model such as: 

Y = M (X/θ) + ε 

(y)]-[M
'

1 1

M

)Y(D

)X(D

7



When the error ε is supposed to be normally distributed with 0 mean and a 
diagonal covariance matrix, then the fitting of f with least square and maximum 
likelihood methods are identical. The L2 metric (integration of the square of the 
residual u) is then the most efficient. The L1 metric (integration of the norm of the 
residual) is more efficient for an exponential distribution of the error, which is then 
more scattered.  

It has been shown in the previous section that the fitting of a Jacobian matrix of 
partial derivatives is very interesting. Thus, it also seems very interesting to choose a 
metric already available in variational theory: 

 

with .. . L2
, L2 norm in the Sobolev space H1 : 

H1 = {  (second order integrable) for α = 0, 1 and i = 1…,n} 

The underlying idea of this choice of metric is thus to prefer the better control of 
the distributions tails through successive transfers, in comparison to the control of 
the central part, by the fitting of the first moments. Every building of a response 
surface should be suggested with a metric that conditions the sense of the 
approximation and allows us to explain some limits in the representation.  

7.3.3.4. Reduction of complexity level and tractability for computations 

To gain accuracy, models of a high order could be interesting. This increase in 
the computational procedures (optimization algorithms for the fitting under 
constraint) must, however, be justified: this increase in the complexity level leads to 
an increase of the computational costs that should be kept as reasonable as possible. 

For more details, this question is illustrated in [SCH 07] through several studies 
concerning wave–structure interaction, which look at the effects of the order of the 
Stokes kinematics model, of accounting for the inertia term in load computing, and 
the number of elements needed for the integration of distributed loading on the 
beam.  
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7.4. Usual reliability methods 

7.4.1. Reliability issues and Monte Carlo simulation 

Structural reliability aims to assess the failure probability of a mechanical system 
in a probabilistic framework according to a failure scenario. Structural reliability 
methods allow not only the probability of failure to be computed for a single 
component of a system, or for a system as a whole then involving several interacting 
components, but also the sensitivity of this probability against each random variable 
of the problem to be determined [DIT 96], [LEM 09].  

A failure criterion can be expressed thanks to a performance function
 conventionally described by parameters in such a way that 

 defines the failure domain and defines the 

safety domain. The frontier  is the limit state surface. The 

probability of failure is: 

[7.2]

where  is the probability density function of . 

When the performance function is analytically expressed, for instance when a 
response surface is implicated in the expression of g, then the integral over the 
implicitly defined integration domain is numerically feasible from Monte Carlo 
simulation: simulations of the input vector  are supplied, and for each of 
them g is evaluated. If  is the number of simulations for which g is negative, the 
probability of failure  is approximated by the ratio . The method is 

fairly simple but computationally very costly: about samples are 
required if a 5% accuracy is expected when is about . In usual practical 
applications, k lies from 2 to 6, which compromises the use of the method, except if 
a consistent response surface is available. Among methods which have been 
developed to circumvent this drawback, the First Order Reliability Method (FORM) 
is one of the most employed. 

7.4.2. FORM 

FORM provides an approximate value of the failure probability by recasting the 
problem in a reduced centered Gaussian space, where all random variables  are 
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Gaussian with zero mean and unit standard deviation. An iso-probabilistic 
transformation T is needed for this goal . For independent random 
variables with marginal cumulative probability function , this 

transformation simply reads where  is the cumulative reduced 

centered Gaussian probability function. For correlated random variables, Nataf or 
Rosenblatt transformations can be resorted to [LEM 09], (Chapter 4). Equation [7.2] 
then becomes: 

[7.3]

where  is the performance function in the reduced space and 
is the reduced centered multinormal probability density function of dimension , 

defined by . 

A maximum value of is encountered at the origin of the reduced space, and 

 exponentially decreases with respect to the distance from the origin, all the 

more since the number of variables is high. In the failure domain, the points 
contributing most to the integral [7.3] are therefore those which are closest to the 
origin. The second stage of FORM is to determine the so-called design point  
which is the point of closest to the origin, and so the most probable failure point. 
This point is the solution of the optimization problem: 

[7.4]

A suitable optimization under constraint algorithm can solve [7.4]. The 
reliability index  is then defined as the algebraic distance from the origin to the 

limit state surface : . Once  is determined, the limit state 

surface  is approximated by a hyper-plan tangential at . The integral [7.3] is 
then reduced to . The linearized limit state is expressed by 

 . The unit vector of direction, cosine , which is perpendicular 

to the hyper-plan, allows the sensitivity factors to be computed by  for each 
independent random variable Xi. 
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FORM is fruitful because it leads to a fairly good approximate value of  with a 
reasonable computational cost. The approximation is better when β is large, and is 
often relevant and satisfactory provided that the design point  is consistent (i.e. 
with no local minima). Moreover, sensitivity measures and importance factors are 
given which are matters of interest for the designer.  

Readers are invited to refer to [LEM 09] to investigate SORM (Second Order 
Reliability Method), based on a quadratic approximation of the limit state function. 
SORM is a priori more costly than FORM, but also more accurate. 

7.5. Polynomial response surfaces 

Amongst other possible forms of response surfaces (RS), polynomial response 
surfaces have been widely used for reliability problems in mechanics. In the 
following section, only simple polynomial response surfaces are addressed, in 
contrast to those based on polynomial chaos in Chapter 8. 

7.5.1. Basic formulation 

If X={Xi,i=1,…,M} is the random variables vector, the quadratic response 
surface ( )Xĝ  of the true limit state function g(X) is expressed by: 

( ) j
M

i
i

M

ij
iji

M

i
iii

M

i
i XXaXaXaaĝ +++=

= ≠=== 1 1

2

11
0X  [7.5] 

where a={a0,ai,aii,aij}T is the vector of unknown coefficients. These coefficients are 
obtained by least square method from the Numerical Experimental Design (NED) 
{x(k), k=1,…,N}, where the number of sampling points N is at least equal to the 
dimension of a: 

( )( )( )
=

−=
N

k

k
k

a
ĝyminarg

1

2
xa  [7.6] 

where ( )( )k
k gy x=  is the value of the true limit state function at point x(k). From

( ) { }{ } ( ) aXBX TT
0

21 == jiiiijiii a,a,a,aXX,X,X,ĝ , a is computed by [FAV 89] 

as: 

( ) yCCCa T1−
= T  [7.7] 
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where C is the matrix whose rows are the vectors ( )( )TkxB  and y is the vector of
components yk. 

The basic formulation is simple. Nevertheless, some difficulties and 
controversial discussions arise when we consider the following points: 

– working space. In order to assure the consistency of the NED, in such a way
that the mechanical model behaves well, a physical space is preferable. Nonetheless, 
building the NED in a standardized space is easier. Indeed such a space is non-
dimensional and allows the distance between sampling points to be efficiently 
controlled, which is useful to avoid the ill-conditioning of C. Moreover, it is a 
natural space for determining the reliability index; 

– number of sampling points. When increasing the number of sampling points
the least squares regression is improved (F-statistics and variance of the unknown 
coefficients a) but not necessarily the quality of the approximation (adjusted R2 or 
crossed Q2 correlation coefficients), which is better if the number of sampling points 
is just equal to the number of unknown coefficients. Outside of the NED, the 
relevance of the RS (Response Surface) is improved when the number of sampling 
points is higher, but if reducing the computational cost is an aim (compared to the 
cost obtained when the true failure function is used), then the number of sampling 
points should be minimized; 

– topology of the NED. When the NED is compact, the quality of the
approximation is improved but the domain of suitability is reduced. The location of 
the sampling points should depend on the behavior (the sensitivity) of the true limit 
state function; 

– validity of the RS. Depending on what is being sought (reliability index and/or
assessment of the failure probability) the validity of the RS should be estimated 
locally or globally; 

– adaptability of the RS. It is often necessary to rebuild the NED because the
domain of final utilization of the RS (the region of the most probable failure point) 
is far from the mean point (in case of low failure probability), which usually plays 
the role of initial central point of the sampling grid. A sequential procedure is 
therefore needed to rebuild the NED with respect to criteria for the consistency of 
the RS and in conjunction with probabilistic results or procedures; 

– the order of the polynomial should be less than or equal to the unknown degree
of nonlinearity of the true failure function, in order to facilitate the solving of the 
linear system; 

– the presence of mixed terms in the expression of the RS contributes to
capturing the effect of interaction between variables. 
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7.5.2. Working space 

In the framework of structural reliability two working spaces are possible: the 
physical space X (dimensional random variables with any distribution and possible 
correlation) and the standardized space U (reduced centered Gaussian and 
uncorrelated random variables). Both spaces are simultaneously required to compute 
the unknown coefficients only if the RS is built in a standardized space (i.e. if the 
mechanical model is indeed defined in a physical space). The transformation from 
X-space to U-space is nonlinear, and modifies the topology of the NED and the 
failure surface as well [DEV 97] (see Figure 7.3 in the case of a factorial design). 
Numerous authors have hence chosen to operate in a physical space [BUC 90], 
[GAV 08], [KAY 04], [KIM 97], [MUZ 93], [RAJ 93]. If the searching procedure 
for the reliability index is associated with the sequential procedure for building the 
NED, it is, however, clearly preferable to operate in a standardized space [DEV 97], 
[DUP 06], [ENE 94], [GAY 03], [GUP 04], [NGU 09].  

Figure 7.3. Effect of the space shift 

7.5.3. Response surface expression 

Whatever the working space chosen, the objective is to provide a satisfactory 
estimate of the reliability and, if possible, with a lower computational cost than that 
resulting from the use of the true limit state function. To do this, if second order 
estimates of the reliability are sought, linear and quadratic polynomial RS are good 
candidates. Respectively, the expressions of the RS are: 
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Nevertheless if Monte Carlo simulations are expected to be used to assess the 
failure probability in a more or less large zone around the most probable failure 
point, or if the degree of nonlinearity of the failure function is from evidence higher 
than 2, increasing the order of the polynomial could be required [GAV 08], 
[GUP 04]. One method proposed to select the best-fitted order of polynomial 
involves the use of Chebyshev polynomials, a statistical analysis of the Chebyshev 
polynomial coefficients, and a statistical analysis of high-order RS [GAV 08]. The 
increase in accuracy brought by high-order RS is, however, counteracted by the 
added computational cost of the selecting procedure. 

7.5.4. Building the numerical experimental design 

7.5.4.1. Number and layout of the sampling points 

The minimum number of points is the number of unknown coefficients, namely 
N = (M+1) for a linear RS, N = (2M+1) for a quadratic RS without mixed terms and 
N = (M+1)(M+2)/2 for a quadratic RS with mixed terms. With such a minimum 
number of points, only an interpolation is provided and the statistical significance of 
the coefficients is very poor. On the other hand, the use of the RS beyond the 
frontier of the NED is not expected to be consistent. Even if saving runs of the true 
failure function is one of the objectives, it is not desirable to limit the number of 
points to the minimum, due to the resulting poor quality and suitability of the RS. 

A uniform layout of the sampling points around a central point is commonly 
adopted at the initial stage of building (central, central composite or factorial 
design). The number of sampling points of the NED depicted in Figure 7.3 is equal 
to (2M+1+2M) or (3M) depending on whether one or more points are located out of 
the axes. Along the axis i the distance between points is stated as a function of the 
standard deviation of the variable: 

( )
iii,C

k
i hXx σ±= [7.9]

where x(k) is the kth point of the NED and XC is the central point. Similarly, in a 
standardized space: 

( )
ii,C

k
i hUu ±= [7.10]

Except in the case of adaptive procedures, the factor hi is constant (hi=h).  

Too large or too small values of h compromise the quality of the RS and lead to 
erroneous results. An example is given in [GUA 01] where 21 random variables are 
involved (for the reliability of a portal frame) and a quadratic RS without mixed 
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terms is employed: the failure probability shifts from 10-4 to 0.94 when h varies 
globally from 0.1 to 5. When h varies locally from 1.8 to 2.2, the failure probability 
and the reliability index, respectively, shift from 9.3×10-5 to 0.37 and from 0.06 
to 4.47.  

In order to avoid the ill-conditioning of the system C [1.7] the value of h must be 
large enough. Values of h lying in the range 1 to 3 are often suggested [BUC 90], 
[DEV 97], [DUP 06], [ENE 94], [KAY 04], [KIM 97], [MUZ 93], [NGU 09], 
[WON 05]. Minimum values of h have been also proposed in the range 0.2 to 0.5 
[DUP 06], [ENE 94].  

7.5.4.2. Adaptive procedures 

The main goal of adaptive procedures is to combine a satisfactory approximation 
of the true failure function, at least in the neighborhood of the most probable failure 
point, with a limited computational cost. The following items are part of the 
adaptation: 

– shape of the RS. A first linear ( ( )XIĝ ) or quadratic without mixed terms
( ( )XIIĝ  with aij=0) RS is attractive due to the small number of unknown
coefficients and the computational cost needed to determine the most probable 
failure point. A refinement can be then undertaken with a quadratic with mixed 
terms RS [GAY 03], [NGU 09]; 

– initial NED. If the role played by the random variables is known a priori (for
instance from the engineer’s knowledge), a first central point XC1 can be located at 

iiii,C hX σ−μ=1  if Xi contributes to the non-failure and at iiii,C hX σ+μ=1 if Xi 
contributes to the failure. When no information is available on the role of variables, 
a pre-selecting procedure can also be employed with a few runs of the true limit 
state function [GAY 03]; 

– second central point. This can be located with respect to the first most probable
failure point thanks to an interpolation [BUC 90] or found at the same location 
provided that the latter is situated inside the first NED [DEV 97], [ENE 94]; 

– mesh of the sampling grid. The size of the mesh is generally reduced as
iterations proceed, in order to concentrate the NED in the region of the most 
probable failure point [DEV 97], [ENE 94], [GAY 03], [KAY 04], [MUZ 93]. Some 
considerations can be added in order to refine the mesh according to the number of 
random variables [KIM 97], the sensitivity of the RS towards the variables 
[DUP 06], [NGU 09], or specific statistics (confidence interval on the coordinates of 
the most probable failure point) [GAY 03]; 

– weighting of the sampling points. The unknown coefficients are computed,
introducing a weighting diagonal matrix in equation [7.7]. The weighting factors 
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depend on the closeness of points to the failure surface [KAY 04] or to the last most 
probable failure point [NGU 09]; 

– update of the NED. In order to limit the computational cost, it is of interest to
keep in the NED all the points where the value of the true limit state function has 
already been computed. However, some of them, that could harm the quality of the 
RS, must be excluded according to suitable criteria [DEV 97], [DUP 06], [ENE 94], 
[GAY 03], [NGU 09].  

7.5.4.3. Quality of the approximation 

In order to verify the quality of the response surface, a classic measure of the 
correlation between the approximate and the exact value of the limit state function is 
the adjusted correlation factor: 
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where ymean is the mean value of the limit state function over the NED. If R2 is less 
than 0.9, the quality of the response surface has to be improved. The cross 
correlation factor Q2 is also employed (see Chapter 8). 

7.5.5. Example of an adaptive RS method 

7.5.5.1. General description [NGU 09] 

7.5.5.1.1. First iteration 

The NED is centered at UC and comprises UC and one point along each axis 
located at: 
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where u(k) is the kth point of the NED and h0 lies basically between 1 and 3. For the 
first iteration, the RS is linear in the standardized space ( ) ( )UU Iĝĝ = , the central
point is the origin of the space UC1=U0 and a fictitious gradient of ( )1Cĝ U  is
considered, based on engineering knowledge in such a way that hi=±1. 
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According to [KAY 04], the weighting diagonal matrix W is introduced in 
equation [7.7] which becomes: 

( ) yWCWCCa T1−
= T  [7.13]

where the weighting factors are expressed by 

( )( )
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g
yg
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In [7.14], ymin is the minimum value of the true limit state function over the NED. 
Once the unknown coefficients a of ( )Uĝ  are computed by [7.13] the first most
probable failure point U*(1) is determined by FORM. 

7.5.5.1.2. Second iteration 

For the second and further iterations, the RS has a quadratic form ( ) ( )UU IIĝĝ =
with (M+1)(M+2)/2 being unknown coefficients. As suggested in [BUC 90], the 
central point of the second NED is stated by: 

( )( ) ( )
( ) ( )( )1
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UUUUU
−
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which is closer to the true failure surface than U*(1) (g(U*(1)) 0 most of the time). 

All the points of the first NED are maintained in the second and 
( )( ) ( )( )1221 +−++ M/MM  complementary points are added, in a half-star shape

design around UC2. Among the complementary points, M points are located 
according to [7.12] which implies that points are situated towards the failure region 
with respect to the central point and at a distance from the latter proportional to the 
local sensitivity of the RS. The ( )( ) ( )( )12221 +−++ M/MM  remaining
complementary points are again generated from the M previous ones, each of them 
playing the role of a new local central point. When applying equation [7.12], the 
axes are considered in descending order with respect to the components of the 
gradient vector ( )2Cĝ U∇ . The point U*(1) is kept in the second NED under the
condition: 

( )
0

1
2 h*

C ≤− UU [7.16]
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The weighting factors are now computed by: 
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in which the last term allows the closeness to the previous most probable failure 
point to be accounted for. If the condition [7.16] is not fulfilled, U*(1)=UC2 in [7.17]. 
Once the unknown coefficients of ( )Uĝ  are computed by equation [7.13], the 
second most probable failure point U*(2) is determined by FORM. 

7.5.5.1.3. Further iterations (iter>2) 

The NED is enriched with the point U*(iter-1). The weighting factors and the 
coefficients of ( )Uĝ  are updated by equations [7.17] and [7.13] respectively. A new 
most failure point is determined. The convergence of the procedure is achieved 
when: 

( ) ( )
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1

1

UU
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7.5.5.2. Examples 

Two examples are reported here in order to show the interest but also the limit of 
the polynomial response surface method. The method described above is referred to 
as RSDW (Response Surface with Double Weighting). 

7.5.5.2.1. Example 1 

A simple explicit limit state function is considered in a standardized space: 

( ) ( )( ) ( ) 20053026240 12 −+−++= U.exp.U.expg U  [7.19] 

The results are reported in Table 7.1 where Nr denotes the number of runs of the 
true limit state function. It can be seen that the values of the reliability index are 
very close to each other for all the methods under consideration. In the same way, 
the values of ( ) ( )0UU g/g *  are close to zero and express a good closeness of the 

most probable point with regard to the failure surface. The cumulative formation of 
the RS is depicted in Figure 7.4. The effect on the quality and efficiency of the 
initial grid size h0 can be seen in Tables 7.2 and 7.3. It is worth noting that the use of 
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a weighting system allows this effect to be mitigated and a satisfactory closeness to 
the true failure surface to be obtained 

Method β U*1 U*2 ( ) ( )0UU g/g * Nr 

Adaptive MC[KAY 04] 2.710 0.969 -2.531 3.36×10-5 - 

RS [KIM 97] 2.691 - - - - 

RS [KAY 04] 2.686 0.820 -2.558 5.84×10-3 8

RS [DUP 06] 2.710 0.951 -2.538 9.10×10-4 21

RSDW (R2 = 0.997) 2.707 0.860 -2.567 8.48×10-4 12

Table 7.1. Comparison between several RS methods (Example 1) 

Figure 7.4. Cumulative formation of the response surface (Example 1) 

h0 1 2 3 4

β 2.707 2.724 2.713 2.714 

( ) ( )0UU g/g *  8.48×10-4 4.06×10-4 8.02×10-4 6.88×10-4 

R2 0.997 0.999 0.999 0.930 

Nr 12 10 11 13

Table 7.2. Influence of h0 with a weighting system (Wk 1) (Example 1) 

-4 -3 -2 -1 0 1 2 3 4
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h0 1 2 3 4

β 2.707 2.715 2.715 2.726

( ) ( )0UU g/g *  1.15×10-3 1.45×10-3 1.12×10-3 3.16×10-3 

R2 0.997 0.999 0.999 0.885

Nr 14 11 11 15

Table 7.3. Influence of h0 without weighting system (Wk=1) (Example 1) 

umax (cm) 4 5 6

β 
RSDW 2.19 2.86 3.28

FORM 2.20 2.86 3.40

( ) ( )0UU g/g *
RSDW 5.39×10-3 2.80×10-3 1.06×10-3 

FORM 6.03×10-6 6.25×10-4 1.72×10-5 

Nr 
RSDW 256 258 255

FORM 80 75 104 

R2 0.993 0.994 0.993

Table 7.4. Comparison between RS and direct FORM (Example 2) 

7.5.5.2.2. Example 2 

An implicit limit state function is considered which involves the top 
displacement of a multi-storey and multi-span steel frame. This example is also 
presented in Chapter 8 (section 8.4.2) where the distributions of 21 correlated 
variables can be found. The results are reported in Table 7.4, where umax denotes the 
threshold value of the displacement. As far as the convergence and closeness to the 
failure surface are concerned, it can be noted that RSDW is satisfactory. From a 
comparison with direct FORM (direct coupling between the Rackwitz–Fiessler 
algorithm and the true limit state function) it can be said that, on one hand the RS 
method supplies consistent values of the reliability index but, on the other hand, the 
computational cost is significantly higher. For such an example, RSDW is therefore 
less efficient than direct FORM. 
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7.6. Conclusion 

The response surface method was first developed for any system whose response 
to stimuli could not be satisfactorily captured by explanatory models, and was 
employed for biological systems. When applying the response surface method to 
mechanical systems, the main goal is to reduce the computational cost resulting, for 
example, from the use of finite element explanatory models. Some specific 
developments of the response surface method have been carried out in the context of 
probabilistic reliability analysis. The examples reported in this chapter show that 
these developments are not fully efficient in terms of computational cost if the 
number of variables exceeds twenty. Nonetheless, the quality of the adaptive 
response surface presented above is sufficiently good for the probabilistic results to 
be very close to those obtained by the use of the true limit state function. Moreover, 
having an explicit approximate failure function in the region where the most failure 
point is located facilitates probabilistic post-processing, including assessment of the 
failure probability, sensitivity analysis, etc. 
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