
HAL Id: hal-01007480
https://hal.science/hal-01007480

Submitted on 8 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bridges between Damage and Fracture Mechanics
Jacky Mazars, Gilles Pijaudier-Cabot

To cite this version:
Jacky Mazars, Gilles Pijaudier-Cabot. Bridges between Damage and Fracture Mechanics. Handbook
of Materials behaviour models, Academic press, pp.542-548, 2005, �10.1016/B978-012443341-0/50060-
0�. �hal-01007480�

https://hal.science/hal-01007480
https://hal.archives-ouvertes.fr


Bridges between Damage 
and Fracture Mechanics 
jACKY MAZARS1 and GILLES PIJAUDIER-CABOT2 
1L3S-Institut National Polytechnique de Grenoble, 38041 Grenoble Cedex 9, France 
2Laboratoire de Genie Civil de Nantes Saint-Nazaire, Ecole Centrale de Nantes, BP 92101, 
44321 Nantes Cedex 03, France 

7.2.1 VALIDITY 

The purpose of this section is to provide a view on the possible connections 
between damage and fracture mechanics in the particular case of quasi-brittle 
materials (concrete, rocks, ceramics) for which linear approaches are realistic. 
The objective of this exercise is to offer the possibility to pass from one theory 
to the other during a same calculation or to obtain, from one theory, 
information on how to use the other. 
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7.2.2 BACKGROUND 

A unified way to present damage and fracture mechanics is through 
thermodynamics. It deals with energetic considerations, from which it is 
easy to relate local damage variables and global fracture variables. These 
considerations start with the assumption of a specific form of the free 
(reversible) energy stored in the material during straining. Let us emphasise 
that this section deals with the simplest possible forms of such energy. The 
state equations are deduced from the free energy defined as 

'I'= U- TS (1) 

(U, internal energy; T, temperature; S, entropy). 
For the elementary volume at a given state of damage D, the free energy 

density is 

(2) 

For the overall body, damaged or partially cracked, the total free energy is 
written as 

l 
U = -Kq2 

2 (3) 

A�kl is the local stiffness matrix at a given stage of damage, and eu is the local 
strain component. A load denoted as Q is applied to the structure, q is the 
corresponding displacement, and K is the global stiffness. Assuming linear 
elasticity and isotropic damage, the relationship between A�kl and the initial 
stiffness of the undamaged material is 

A�kl = A;Jki(l- D) (4) 
A;Jkl is the stiffness matrix for the virgin material, with constant components 
depending upon the Young's modulus and the Poisson's ratio for an isotropic 
material which is linear elastic. At uniform and constant temperature the 
state laws provide the stress-strain relations and the definition of the energy 
release rates. 

• For the damaged material, Y is the damage energy release rate: 

a'I' a'I' 1 
a;J = 

ae;J 
= A;Jki(l- D)ek!, Y = 

aD 
= - l AiJkleiJekl (5) 

• For the cracked structure (A is the actual area of the crack), G is the 
fracture energy release rate: 

Q = ��q = Kq, G -
a'I' - � q2 aK 

u - aA- 2 aA (6) 
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The first and second principles of thermodynamics are completely satisfied if 
the Clausius-Duhem inequality is also verified. For the two considered cases, 
we obtain 

(7) 

Since (-Y) is a quadratic function and K decreases when A increases 
(see Eq. 6), these equations imply that D � 0 and A � 0, showing 
that irreversibilities correspond to micro- or macrocracking 
propagation. 

7.2.3 EQUIVALENCES 

Considering the similarity of the two approaches, it seems natural to go from 
one concept to the other [5]. One possible method is to transform a given 
damage zone into an equivalent crack. This equivalence is thermodynamically 
acceptable if the consumption of energy is the same during the two processes. 
Considering the case of LEFM, the critical condition of crack propagation is 
-G = Gc (Gc is the critical energy release rate). Then, the equivalent 
progression dA of a crack equivalent to a state of damage in the same structure 
is the solution of 

GcdA = 1-Y dD(x)d.x (8) 

Conversely, it is possible to derive the fracture energy Gc from the distribution 
of damage around a macrocrack which propagated in the considered structure 
(Fig. 7.2.1). For this, one needs to know the distribution of damage around 
the macrocrack, which is approximated as follows. Consider an infinite body 
subjected to uniaxial tension in direction 1, 0'�1 with 0'�1 = 0 for i =/= 1 and 
j =/= l. We assume at this stage a distribution of damage denoted as D0 and the 
corresponding strain field denoted as B�. When small deviations from this 
equilibrium state are analyzed, the displacement field is the solution of the 
partial differential equations div ( d'ij) = 0. The evolution law of damage is 
nonlocal. It is generically denoted as D = f('E) where 'E is the nonlocal strain 
defined in Chapter 6 of this volume [ 6]. The equilibrium equations have a 
nontrivial (e.g. , nonhomogeneous) harmonic solution with a wavelength 
which is not indeterminate. In fact, the wavelength 2njw is proportional to 
the internal iength of the nonlocal continuum (for more details, see Reference 
[2]). The wavelength is also a function of the evolution law of damage. The 
calculation of the approximated fracture energy performed with the smallest 
value of the wavelength calculated for a uniaxial tensile test and corresponds 
to mode I crack opening. 
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FIGURE 7.2.1 Geometry of the localization band assumed for the calculation of the 
fracture energy. 

With the minimum wavelength, the distribution of damage perpendicu­
larly to the crack direction is (the coordinate perpendicular to the crack path 
is denoted as y): 

( ) _ J�;: a(s)q(y + s)ds 
D y -

+oo with 
j_00 a(s)17(s)ds 

[ -
7t 1t ] '7(Z) = cos(almaxZ) if Z E -

2
--

, 
-
2
--

Wmax Wmax 
'l(Z) = 0 elsewhere 

(9) 
The energy consumption due to crack propagation is the integral of the energy 
dissipation at each material point in the fracture process zone, which 
encountered damage: 

f+oo 1tu(y) 1 af 
G, = -

2
Ee�r;:;-- deudy 

-oo o ueu 

7.2.4 HOW TO USE THESE BRIDGES 

7 .2.4 .1 BEHAVIOR OF A STRUCTURE UsiNG A CoMBINED 

APPROACH OF DAMAGE AND fRACTURE MECHANICS 

(10} 

The structure considered is a compact tension specimen (Fig. 7.2.2a) tested 
by Mazars (3,4). During the tests many observations and measures were made 
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FIGURE 7.2.2 Compact tension specimen. a. Geometry. b. Evolution of the stiffness with the 
crack, (t) theoretical, (e) experimental. c. Global behavior. The calculation is performed using 

the damage-fracture combined approach. 
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showing that the global behavior includes three stages: 

• OA, linear elastic; 
• AB, damage with microcracks, but without macrocrack; 
• BC, combination of both microcracking and macrocrack. 

To simulate this behavior, we propose two kinds of calculation: 

• from 0 to B with a nonlocal damage model; 
• from B to C with linear elastic fracture mechanic. 

The bridge from the first calculation to the other directly uses the equivalent 
crack concept previously presented; this necessitates predetermining the 
evolution K = K(A), A being the actual equivalent area of the crack equal to 
a.t (a and t, respectively, being length of the crack and thickness of the plate). 
See Figure 7.2.2b. 

T he following parameters have been used: 

• nonlocal damage calculation: E = 34,500 MPa, Ko = 1.23E- 04, 
A1 = 0.8, B1 = 20,000, le = 30 mm (Ko being initial damage threshold, 
and At> Bt. and le being non local damage parameters, see Reference [ 6]; 

• critical fracture energy at point B: QB = 18.9 kN, qB = 0.2E- 03 m, 
KB = 9.5E + 04 kN/m; ( -dK/d.A)B = 51E + 05 kN/m3, Ge = 1/2q�, 
(-dK/d.A)B = 102N/m 

• LEFM calculation: from Eq. 6 and as -G = Ge at propagation, one can 
deduce q = (2Ge)/(-dK/d.A), from which comes Q = Kq. 

From Figure 7.2.2b it can be pointed out: 

• that the equivalent crack length at point B is a = 13 cm; 
• that the experimental curve which gives the evolution of the ratio Qlq 

(#K) versus the crack length measured directly on the surface of the 
specimen is very different from the theoretical one. It confirms that the 
real crack appears close to the maximum load and that the evolution on 
the surface is faster than inside the specimen. 

We may notice that the global behavior deduced from the Ge value is close to 
the experimental one and the value determined from the analytical calculation 
§7.2.3 is GJ = 115 N/m, which is close to the 102 N/m obtained for Gc-

7.2.4.2 RESIDUAL STRENGTH OF INITIALLY 

CRACKED STRUCTURES 

Given a crack observed in a structure, it is possible to transform the crack into 
an equivalent damage zone. Equation 9 provides the distribution of damage 
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except at the crack tip. The radial distribution of damage at the crack tip is 
assumed to follow the same mathematical expression (in which the distance r 

to the crack tip replaces the coordinate y. This distribution of initial damage 
can be projected on a finite element mesh, and the response of the initially 
cracked structure can be computed. Bode et al. [2] tested such a procedure 
and found that it provided reasonable accuracy (10 to 30% error on 
blind predictions). 

7.2.4.3 IDENTIFICATION OF THE INTERNAL LENGTH 

Size effect tests directly provide the fracture energy of the material (see 
Reference [1]). Hence Eq. 10 y ields a relationship between the evolution law 
of damage and the wavelength of the distribution of damage, or the internal 
length of the nonlocal model equivalently. Assuming that the evolution law of 
damageD= J(e) is completely known, the single unknown in Eq. 10 becomes 
the internal length. In practice, the evolution of damage is not necessarily 
entirely known. The model parameters in the nonlocal constitutive relations 
are obtained by fitting the computations of the size effect tests with the 
experiments. Equation 10, with the knowledge of the fracture energy Gc, is an 
additional piece of information which is helpful for reaching a good fit of the 
size effects tests more easily. 
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