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Abstract

Purpose – The purpose of this paper is to solve non-linear parametric thermal models defined in
degenerated geometries, such as plate and shell geometries.

Design/methodology/approach – The work presented in this paper is based in a combination
of the proper generalized decomposition (PGD) that proceeds to a separated representation of the
involved fields and advanced non-linear solvers. A particular emphasis is put on the asymptotic
numerical method.

Findings – The authors demonstrate that this approach is valid for computing the solution of
challenging thermal models and parametric models.

Originality/value – This is the first time that PGD is combined with advanced non-linear solvers in
the context of non-linear transient parametric thermal models.

Keywords Numerical methods, Mathematical modelling, Model reduction,
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1. Introduction
Today many problems in science and engineering remain intractable, in spite of the
impressive progresses attained in mechanical modelling, numerical analysis,
discretization techniques and computer science during the last decade, because their
numerical complexity is simply unimaginable.

We can distinguish different challenging scenarios for efficient numerical
simulations, all them needing urgently new proposals:

. The first one concerns models defined in high-dimensional spaces, usually
encountered in quantum chemistry and kinetic theory descriptions of complex
fluids. Models defined in high-dimensional spaces suffer the so-called curse of
dimensionality, because the number of the degrees of freedom involved in a mesh
beased discretization increases exponentially with the model dimension.

. A second category of problems involves multi-scale problems not necessarily
defined in high-dimensional spaces, but whose spectrum of characteristic times
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or lengths is so wide that standard incremental discretization techniques cannot
be applied. In such time-multi-scale problems, for instance, the time step is
extremely small as a consequence of numerical stability requirements. Thus,
simulations over the much larger time interval of interest, which typically
requires the solution of a large linear algebraic system at each time step, simply
become impossible. Multiscale models involving a wide range of characteristic
times abound in many fields. Reaction-diffusion models of the degradation of
plastic materials, for example, describe chemical reactions occurring within
microseconds coupled to diffusion of chemical substances taking place over
years. In processes involving microwaves, ultrasounds [. . .] or materials
exhibiting different relaxation times, the difficulty related to time integration is
crucial. The same scenario is found in solid mechanics where the constitutive
equations are strongly non-linear and coupled, involving many scales and
different characteristic times.

. Other challenging problems are defined in degenerated geometrical domains.
By this we mean that at least one of the characteristic dimensions of the domain
is smaller by several orders of magnitude than the others. This is the case of bar,
plate or shell-like domains typical of structures ormaterials processing applications.
In simple situations, such problems are readily transformed into reduced, 1D or 2D
approximate theories (e.g. the classical elastic plate theory). When geometrical
or material non-linearities are present, however, it is usually impossible to
derive lower-dimensional models of sufficient validity. Standard mesh-based
discretization methods then quickly become impractical, in view of the compulsory
discretization of the small length scales that yield extremely fine meshes.

. Many problems in process control, parametric modelling, inverse identification,
and process or shape optimization, usually require, when approached with
standard techniques, the direct computation of a very large number of solutions
of the concerned model for particular values of the problem parameters. Consider
for example the optimization of a process where optimal parameter values must
be determined for process operating conditions (e.g. speed, position and
temperature of heaters) and material properties (e.g. thermal and rheological
properties of the materials). Clearly, it would be useful to be able to simulate this
process at once for all values of these parameters within a prescribed interval,
and then perform data mining within this rather general solution to identify
optimal values.

. Traditionally, simulation-based engineering sciences (SBES) relied on the use of
static data inputs to perform the simulations. These data could be parameters of
the model(s) or boundary conditions. The word static is intended to mean here
that these data could not be modified during the simulation. A new paradigm in
the field of applied sciences and engineering has emerged in the last decade.
Dynamic data-driven application systems (DDDAS) constitute nowadays one of
the most challenging applications of SBES. By DDDAS we mean a set of
techniques that allow the linkage of simulation tools with measurement devices
for real-time control of simulations. DDDAS entails the ability to dynamically
incorporate additional data into an executing application, and in reverse,
the ability of an application to dynamically steer the measurement process.
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In this context, real-time simulators are needed in many applications. One of the
most challenging situations is that of haptic surgery simulators, where forces
acting on the surgical tool must be translated to the peripheral device at a rate of
500 Hz. Control, malfunctioning identification and reconfiguration of
malfunctioning systems also need to run in real time. All these problems can
be seen as typical examples of DDDAS.

. Augmented reality is another area in which efficient (fast and accurate)
simulation is urgently needed. The idea is supplying in real-time appropriate
information to the reality perceived by the user. Augmented reality could be an
excellent tool in many branches of science and engineering.

. Light computing platforms are appealing alternatives to heavy computing
platforms that in general are expensive and whose use requires technical
knowledge. One can imagine that the off-line parametric solution of many models
will make possible the on-line manipulation of those general solutions by using
very light computing platforms, as for example smartphones or tablets.

. All the previous scenarios becomes more complex when the models that they
involve are non-linear, as is it usually the case in science and engineering.

While the previous list is by no means exhaustive, it includes a set of problems with
apparent no relationship among them that can be, however, treated in an unified
manner. Their common ingredient is our lack of capabilities (or knowledge) to solve
them numerically in a direct, traditional way. In order to obtain a solution, some kind
of model order reduction is thus compulsory.

Many years ago, in the 1980s, Pierre Ladeveze proposed a separated representation
of the space and time coordinates:

uðx; tÞ <
Xi¼N

i¼1

XiðxÞ ·TiðtÞ ð1Þ

for performing efficient solutions of complex non-linear thermo-mechanical models.
The radial approximation (1) was one of the main blocks of the powerful
non-incremental and non-linear LArge Time INcrement (LATIN) solver. The corpus
of literature devoted to this technique is vast, as proved in the book by Ladeveze (1999)
on the topic, but remained in the form of space-time separations for many years.

A more general separated representation (in this case in the conformation space
of complex fluids descriptions) was more recently employed by Ammar et al. (2006,
2007) for approximating the solution of multi-dimensional partial differential
equations. Nouy (2009) considered also such separated representations for solving
stochastic equations where the deterministic coordinates and the stochastic ones were
separated, very much like in the radial, space-time approximation. Proper generalized
decomposition (PGD) is the common name recently coined for techniques using
such separated representations. The nature of the problem, the involved coordinates
and the constructor of such approximations can be very different.

The general form of the separated representation involved in the PGD reads:

uðx1; . . . ; xDÞ <
Xi¼N

i¼1

F1
i ðx1Þ. . .FD

i ðxDÞ ð2Þ
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where xi denote a scalar or vector coordinate defined in a domain Vi of moderate
dimension Vi , Rd , with d # 3, in general.

The PGD approximation is thus a sum of N functional products involving each
a number D of functions F j

i ðxjÞ that are unknown a priori. It is constructed by
successive enrichment, whereby each functional product is determined in sequence.
At a particular enrichment step n þ 1, the functions F j

i ðxjÞ are known for i # n from
the previous steps, and one must compute the new product involving the D unknown
functions F j

nþ1ðxjÞ. This is achieved by invoking the weak form of the problem under

consideration. The resulting discrete system is non-linear, which implies that iterations
are needed at each enrichment step. A low-dimensional problem can thus be defined
in Vj for each of the D functions F j

nþ1ðxjÞ.
If M nodes are used to discretize each coordinate, the total number of PGD

unknowns is N £ M £ D instead of the MD degrees of freedom involved in standard
mesh-based discretizations. Moreover, all numerical experiments carried out to date
with the PGD show that the number of terms N required to obtain an accurate solution
is not a function of the problem dimension D, but it rather depends on the regularity
of the searched solution and the separated representation constructor. The PGD thus
avoids the exponential complexity with respect to the problem dimension.

This paper focuses on the solution of non-linear parametric models defined in shell
geometries. Previous works focussed on:

. The solution of non-linear models. Complex thermo-mechanical models were
efficiently solved within the LATIN framework (Ladeveze et al., 2009, 2010;
Neron and Ladeveze, 2010). More standard linearization strategies were also
analyzed in Ammar et al. (2010) and Pruliere et al. (2010a) and applied for solving
non-linear thermo-mechanical models in Pruliere et al. (2010b).

. The solution of parametric models. They were addressed in our former works
within the PGD framework by including those parameters as extra-coordinates
(Pruliere et al., 2010a; Lamari et al., 2010; Ghnatios et al., 2011, 2012). See for
a complete and recent review (Chinesta et al., 2011) and the references therein.

. When these models are moreover defined in degenerated domains (plates or
shells) additional difficulties arise related to the necessity of fully 3D solutions in
domains involving different characteristic lengths. Efficient separation of the
physical space was considered in Chinesta et al. (2008) that were generalized in
Bognet et al. (2012) for treating complex plate geometries.

Despite these noticeable progresses, the efficient solution of non-linear parametric
models remains today an open problem where different approaches are being explored.
An interesting parametric LATIN approach has been recently proposed by Neron and
coworkers (Heyberger et al., 2012). Approaches based intensively developed by Maday
and coworkers andPatera and coworkers, on the use of reducedbases (Prud’homme et al.,
2002) seem an appealing framework for addressing these challenging models.

This paper explores the possibility of combining separated representations in the
physical and parametric spaces with asymptotic expansions for addressing coupled
non-linear models in shell domains.

The paper is organized as follows. In the next section the PGD is applied for
building-up the solution of the parametric heat transfer problem, which allows to
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define a framework circumventing the issues related to incremental and parametric
models as discussed in Section 3. Section 4 proposes a framework for addressing
non-linearities and non-linear couplings by making use of asymptotic developments.
Sections 5 integrates all the ingredients introduced in the previous sections for solving
some numerical examples.

2. PGD of a generic linear parametric model
In this section, we illustrate the PGD on a simple parametric heat transfer problem. More
details on the recent developments andapplicationsof themethod canbe found inChinesta
et al. (2011), while additional details on its convergence and accuracy can be found in
Ammar et al. (2010). Let us consider the following parametric heat transfer equation:

›u

›t
2 kDu2 f ¼ 0: ð3Þ

with homogeneous initial and boundary conditions. The enforcement of
non-homogeneous initial and boundary conditions was deeply treated in Gonzalez et al.
(2010) and Chinesta et al. (2010a).

Here ðx; t; kÞ [ V £ I £ I, and the source term f is assumed constant.
The conductivity k is viewed as a new coordinate defined in the interval I. Thus,
instead of solving the thermal model for different discrete values of the conductivity
parameter, we wish to solve at once a more general problem, the price to pay being an
increase of the problem dimensionality. However, as the complexity of the PGD scales
only linearly (and not exponentially) with the space dimension, consideration of the
conductivity as a new coordinate still allows one to efficiently obtain an accurate
solution.

The weak form related to equation (3) reads:Z
V£I£I

u* ·
›u

›t
2 kDu2 f

� �
dx dt dk ¼ 0; ð4Þ

for all test functions u* selected in an appropriate functional space.
The PGD solution is sought in the form:

uðx; t; kÞ <
XN
i¼1

XiðxÞ ·TiðtÞ ·KiðkÞ: ð5Þ

At enrichment step n of the PGD algorithm, the following approximation is already
known:

unðx; t; kÞ ¼
Xn
i¼1

XiðxÞ ·TiðtÞ ·KiðkÞ: ð6Þ

We wish to compute the next functional product Xnþ1ðxÞ ·Tnþ1ðtÞ ·Knþ1ðkÞ, which
we write as R(x) · S(t) ·W(k) for notational simplicity.

Thus, the solution at enrichment step n þ 1 reads:

unþ1 ¼ un þ RðxÞ · SðtÞ ·W ðkÞ: ð7Þ
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We propose the simplest choice for the test functions u* used in equation (4):

u* ¼ R* ðxÞ · SðtÞ ·W ðkÞ þ RðxÞ · S* ðtÞ ·W ðkÞ þ RðxÞ · SðtÞ ·W* ðkÞ: ð8Þ
With the trial and test functions given by equations (7) and (8), respectively, equation (4)
is a non-linear problem thatmust be solved bymeans of a suitable iterative scheme. In our
earlier papers (Ammar et al., 2006, 2007), we usedNewton’smethod. Simpler linearization
strategies can also be applied, however. The simplest one is an alternating direction,
fixed-point algorithm, which was found remarkably robust in the present context.
Each iteration consists of three steps that are repeated until reaching convergence, that is,
until reaching the fixed point. The first step assumes S(t) and W(k) known from the
previous iteration and compute an update for R(x) (in this case the test function reduces
to R*(x) ·S(t) ·W(k)). From the just-updated R(x) and the previously-used W(k), we can

update S(t) (with u* ¼ R(x) ·S*(t) ·W(k)). Finally, from the just computed R(x) and S(t),

we update W(k) (with u* ¼ R(x) ·S(t) ·W*(k)). This iterative procedure continues until
reaching convergence. The converged functions R(x), S(t) and W(k) yield the new
functional product of the current enrichment step: Xnþ1(x) ¼ R(x), Tnþ1(t) ¼ S(t) and
Knþ1(k) ¼ W(k). Other procedures based on the residual minimization were considered
for solving non-symmetric problems (Chinesta et al., 2010b).

We have seen that at each enrichment step the construction of the new functional
product in equation (5) requires non-linear iterations. If mi denotes the number
of iterations needed at enrichment step i, the total number of iterations involved in the
construction of the PGD approximation is m ¼ Pi¼N

i¼1 mi . In the above example,
the entire procedure thus involves the solution of m 3D problems for the functions
Xi(x), m 1D problems for the functions Ti(t) and m algebraic systems for the functions
Ki(k). In general, m rarely exceeds ten. The number N of functional products needed
to approximate the solution with enough accuracy depends on the solution regularity.
All numerical experiments carried to date reveal that N ranges between a few tens and
one hundred. Thus, we can conclude that the complexity of the PGD procedure to
compute the approximation (5) is of some tens of 3D steady-state problems (the cost
related to the 1D and algebraic problems being negligible with respect to the 3D
problems). In a classical approach, one must solve for each particular value of the
parameter k a 3D problem at each time step. In usual applications, this often implies
the computation of several millions of 3D solutions. Clearly, the CPU time savings by
applying the PGD can be of several orders of magnitude.

3. Pushing forward simulation limits with the PGD
Before considering in some detail a number of applications of the PGD, let us briefly
revisit some of the issues discussed in the introductory section:

(1) Efficient solvers for transient problems can be defined by applying a space-time
separation:

uðx; tÞ <
XN
i¼1

XiðxÞ ·TiðtÞ: ð9Þ

The constructor of that separated representation was illustrated in the previous
section (it suffices to ignore the existence of the parametric extra-coordinate).
We cited previously the pioneering works of Ladeveze’s team in the field
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of structural mechanics. Space-time separated representations were also
considered in the context of the multi-scale coupling of diffusion and kinetic
models endowed with very different characteristic times (Chinesta et al., 2010a)
as well as in the context of time multi-scale models (Ammar et al., 2012).

(2) The fully 3D solution of models defined in degenerate domains is also an
appealing field of application of the PGD. Consider the unknown field u(x)
defined in a domain J. Two approaches come to mind:
. Complete decomposition:

uðx; tÞ <
XN
i¼1

XiðxÞ ·Yið yÞ · ZiðzÞ: ð10Þ

This strategy is particularly suitable for separable domains,
i.e. J ¼ Vx £ Vy £ Vz (Chinesta et al., 2008; Lamari et al., 2010). For
general domains, embedding J into a larger separable domain
Vx £ Vy £ Vz can also be done, as described in Gonzalez et al. (2010).

. Plate-type or profile-type decomposition:

uðx; tÞ <
XN
i¼1

Xiðx; yÞ · Z iðzÞ: ð11Þ

This strategy is particularly suitable when J ¼ V £I, with V , R2 and
I , R. In plate-type domains I denotes the plate thickness dimension
whereas in extruded profiles it denotes the extrusion direction being V the
transversal section.

(3) Finally, for applications requiring many solutions of a particular model, it
suffices to introduce all sources of variability as extra-coordinates. The solution
of the resulting parametric multi-dimensional model is then sought in the
separated form:

uðx; t; p1; . . .pQÞ <
XN
i¼1

XiðxÞ ·TiðtÞ ·P1
i ð p1Þ. . .PQ

i ð pQÞ; ð12Þ

where the pi’s denote the different problem parameters such as material
parameters, boundary conditions, applied loads, initial conditions, and
geometrical parameters (see Chinesta et al. (2010b, 2011) and the references
therein).

Let us illustrate the above discussion by considering the simple example of a heat
transfer problem in an extruded shell domain. Even in the case of a simple physics,
some problems are simply intractable due to the extremely large amount of degrees of
freedom that they involve. When the physical domain is such that it is possible to
separate some space coordinates from each other, the PGD offers tremendous
computational gains. Figure 1 shows a tunnel-like domain on which we solve the
following transient heat transfer problem:
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›u

›t
2 kDu ¼ 0; ð13Þ

with homogeneous initial conditions, homogeneous boundary conditions on the
exterior surfaces and a non-zero heat flux on the interior surface of the tunnel. The
problem geometry is taken from the previous work of Schrefler et al. (2011) in which
they studied the coupling of the fluid flow related to a fire inside the tunnel with the
structural response of the concrete. The specific heat flux on the interior surface of the
tunnel is modeled from the solution of the coupled solution presented in Schrefler et al.
(2011) and corresponds to a one hour 20MW fire. Solving the 3D transient thermal
problem, even linear and uncoupled, in such shell geometry with a classical finite
elements method is a challenge since the problem requires a very fine discretization
along the tunnel thickness.

We overcome this problem by seeking a PGD solution in the following separated
form:

uðx; z; tÞ <
XN
i¼1

Xiðx; yÞ · Z iðzÞ ·TiðtÞ; ð14Þ

with ðx; z; tÞ [ V £I £ I and V , R2 and I , R, I , R. The symbol I denotes
the tunnel length, V the tunnel cross section while I is the time interval. In the (x, y)
plane we use a biquadratic finite element mesh with 640 elements (2,665 nodes), while
the z-direction is discretized using 800 linear elements. The equivalent 3D finite
element mesh would therefore comprise over two millions nodes.

As explained before, the solution of this 4D problem will require the solution of
several 2D and 1D elliptic boundary value problems (BVP) inV andI, respectively, as
well as the solution of several ODEs in I. The 2D and1DBVPs are solved using standard
(bi-)quadratic finite elements and the ODEs are solved using an implicit Euler scheme.
Due to the non-symmetric nature of the problem because the first order time derivative,
a variant of the PGD algorithm known as residual minimization (Chinesta et al., 2010b)
has been used in this case.

The PGD converges after computing only 14 terms of the finite sum decomposition
of u(x, z, t). The required CPU time is about three minutes on a simple laptop. Figure 2
shows the reconstructed temperature field at a certain time instant. The equivalent

Figure 1.
Problem geometry (left) and detail of the 2D finite element mesh of the profile cross section (right)

x

y

z

11 m 80 m
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fire heat flux

external rock temperature
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solution with classical finite elements would have required the solution of a problem
with around two million nodes and 3,600 time steps (using an implicit time integration
strategy).

We can conclude that the solution of conservation equations involving
discretizations of the whole physical domain does not introduce major difficulties
even in the case of degenerated domains, in which at least one of the characteristic
dimensions in much lower than the other ones. The main issue in solving such models
concerns the treatment of strong non-linearities and multi-physic couplings. In the
sections that follow we are exploring the possibility of treating such non-linearities
within the asymptotic numerical method (ANM) framework.

4. Accounting for non-linearities
The treatment of non-linear models by using some standard linearization strategies
was addressed in some of our former works (Ammar et al., 2010; Pruliere et al.,
2010a). We start by considering such procedures in order to point out their
inherent limitations before considering an alternative approach based on the use of
the ANM.

We consider the same model that we considered in our former works:

›u
›t 2 kDu ¼ u 2 þ f ðx; tÞ in V £ ð0;Tmax�
uðx; tÞ ¼ 0 on ›V £ ð0;Tmax�
uðx; 0Þ ¼ 0 in V

8>>>><
>>>>:

ð15Þ

where V , Rd; d $ 1, Tmax . 0 and k . 0 is the diffusion coefficient. To build-up the
approximated solution of equation (15) by using a separated representation, we
considered two approaches: (i) an incremental linearization and (ii) a Newton
linearization, both described in sections below.

Figure 2.
Reconstructed

temperature field
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4.1 Incremental linearization
We write the solution of problem (15) in the separated form:

uðx; tÞ <
XN
i¼1

XiðxÞ ·TiðtÞ

We suppose that at iteration n, with n , N, the n first modes (Xi,Ti), i ¼ 1,. . .n, are
already known and that at present iteration we search the new enrichment functional
product R(x) · S(t) such that the updated approximation writes:

unþ1ðx; tÞ ¼ unðx; tÞ þ RðxÞ · SðtÞ ¼
Xn
i¼1

XiðxÞ ·TiðtÞ þ RðxÞ · SðtÞ ð16Þ

The weak form of problem (15) writes:

Z Tmax

0

Z
V

u*
›u

›t
2 kDu2 u 2 2 f ðx; tÞ

� �
dx dt ¼ 0; ;u* ð17Þ

The alternating directions scheme proceed by calculating R(x) from the temporal
function S(t) just computed, and then, updating R(x) from the just computed S(t) as
we described in the previous section. The iteration procedure should continue until
reaching convergence. Here, the novelty is the treatment of the non-linear term u 2.
The simplest possibility consists in computing this term at the previous iteration,
that is, assuming at the present iteration the following approximation of the
non-linear term:

u 2 <
Xn
i¼1

XiðxÞ ·TiðtÞ
!2

ð18Þ

4.2 Newton linearization
From the solution at iteration n, u n:

unðx; tÞ ¼
Xn
i¼1

XiðxÞ ·TiðtÞ ð19Þ

the solution at the next iteration can be written as unþ1 ¼ un þ ~u where ~u is the
solution of the linearized problem:

›~u

›t
2 kD~u2 2un ~u ¼ 2RðunÞ ð20Þ

where the residual RðunÞ reads:

RðunÞ ; ›un

›t
2 kDun 2 ðunÞ2 2 f ðx; tÞ

� �
ð21Þ
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The associated weak formulation writes:Z Tmax

0

Z
V

~u*
›~u

›t
2 aD~u2 2un ~u

� �
dx dt

¼
Z Tmax

0

Z
V

~u* 2
›un

›t
þ kDun þ ðunÞ2 þ f ðx; tÞÞ

� �
dx dt; ;~u*

ð22Þ

Now, we assume u(x, t) ¼ R(x) · S(t) and ~u* ¼ S ·R* þ R · S* . To compute both
functions R(x) and S(t) we apply again the alternating directions method deeply
described in the previous sections.

4.3 Discussion
Both procedures converge but no significant differences in the number of required
iterations were noticed. The convergence rate and the computing time were similar.

In the case of linear models and symmetric differential operators, if we solve the
problem and then apply the POD (for a given precision) we obtain an optimal separated
representation:

uPOD;N ðx; tÞ ¼
XN
i¼1

XPOD
i ðxÞ ·TPOD

i ðtÞ ð23Þ

When the numerical solution is computed using the PGD, the solution obtained using
N sums uPGD;N is very close to uPOD;N . However, in the case of non-linear models
the situation is radically different. Even when the exact solution can be represented by
a single functional product, i.e.:

uexðx; tÞ ¼ X exðxÞ ·T exðtÞ ð24Þ
the non-linear solver produces a solution composed of many sums:

uðx; tÞ <
XN
i¼1

XiðxÞ ·TiðtÞ ð25Þ

with N . 1. The main reason is that the number of sums is in this case subsidiary of
the convergence rate of the non-linear solver.

In Pruliere et al. (2010a) we analyzed other linearization schemes. When we
considered the improved fixed point, in which the non-linear term is approximated at
iteration q of the enrichment step n, according to:

u 2 < ðun þ R ðq21ÞðxÞ · S ðq21ÞðtÞÞ2 ð26Þ
then we proved, in the case described above whose exact solution consists of a single
product, that the solver converges after computing the first functional couple. In that
sense the solver is optimal but the computing time is similar to the one required by
using the standard fixed point or the Newton strategy previously described.

The main difficulty related to the use of standard linearizations lies in the necessity
of evaluating the non-linear term. Because the necessity of arriving to a separated
representation of such term, one possibility consists in performing a polynomial
expansion and then compute the different powers of the solution at the previous step.
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However, it is easy to understand that the power p of un involves too many terms when
p or n increase as can be noticed from:

ðunÞ p ¼
Xi¼n

i¼1

F1
i ðx1Þ £ · · · £ FD

i ðxDÞ
!p

ð27Þ

The issue related to the high powers could be alleviated by introducing new variables
v i such that v ð2Þ ¼ u · u, v ð3Þ ¼ u 3 ¼ v ð2Þ · u, . . . that allows never compute more than
powers of degree 2.

However, in general the differential operators related to the searched functional
product involve the more and more terms. Thus, when D, p or N increases the solution
procedure described in the previous sections become rapidly inefficient. The next
section explores the use of an alternative approach, the ANM that allows guarantee a
constant number of terms to represent the differential operator.

4.4 The ANM
In this section we propose an alternative approach, within the ANM framework
(Cochelin et al., 1994a, b), able to include the parametric dimensions as extra-coordinates
without modifying the differential operator representation.

We consider again the model defined by:

›u

›t
2 kDu ¼ u 2 þ f ðx; tÞ ð28Þ

The non-linear term can be affected by a “loading” parameter l:

›u

›t
2 kDu ¼ l · u 2 þ f ðx; tÞ ð29Þ

We denote by u0 the solution related to l ¼ l0 ¼ 0 that can be computed easily
because it corresponds to the solution of the linear problem. The searched solution
is the one related to l ¼ 1.

Now, we define an asymptotic expansion of the unknown field u as well as of the
loading parameter l by considering powers of the expansion parameter a:

u ¼ u0 þ a · u1 þ a2 · u2 þ · · ·

l ¼ l0 þ a · l1 þ a 2 · l2 þ · · ·

(
ð30Þ

The non-linear term can be written as:

u 2 ¼ ðu 2Þ0 þ a · ðu 2Þ1 þ a 2 · ðu 2Þ2 þ · · ·þ ap · ðu 2Þp þ · · · ð31Þ
where ðu 2Þp reads:

ðu 2Þp ¼
Xi¼p

i¼0

ui · up2i ¼ 2 · u0 · up þ
Xi¼p21

i¼1

ui · up2i ð32Þ

Introducing equations (30) and (32) into equation (29) and identifying the different
powers of a, it results:
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. Power p ¼ 0. Solution u0 is assumed known because it corresponds to the
solution of the linear problem resulting from l ¼ l0 ¼ 0.

. Power p ¼ 1. We should solve:

›u1
›t

2 kDu1 ¼ l0 · ðu 2Þ1 þ l1 · ðu 2Þ0 ð33Þ

and because l0 ¼ 0, the evolution equation for u1 reduces to:

›u1
›t

2 kDu1 ¼ l1 · ðu 2Þ0 ð34Þ

We can notice that the previous equation contains two unknowns, u1 and l1. The
solution procedure needs an extra-equation. The following equation is
considered (Cochelin et al., 1994b):

ðu2 u0; u1Þ þ ðl2 l0; l1Þ ¼ a ð35Þ
where ð; Þ denotes the scalar product either in L 2 or in R depending on its
arguments. The first order of equation (35) reads:

ðu1; u1Þ þ ðl1Þ2 ¼ 1 ð36Þ
Because the linearity of equation (34) if û1 is the solution of:

›û1
›t

2 kDû1 ¼ ðu 2Þ0 ð37Þ

the searched solution u1 results:

u1 ¼ l1 · û1 ð38Þ
By introducing equation (38) into equation (35) it results:

ðl1Þ2 · ½ðû1; û1Þ þ 1� ¼ 1 ð39Þ
that allows computing the value of l1 and then u1 from equation (38).

. Power p, with p . 1. We should solve:

›up
›t

2 kDup ¼ lp · ðu 2Þ0 þ
Xi¼p21

i¼1

li · ðu 2Þp2i ð40Þ

where the fact that l0 ¼ 0 was taken into account.
In this expression we can notice that the differential operator is always the

same and that in the right hand member the term
Pi¼p21

i¼1 li · ðu 2Þp2i has been
already computed.

Equation (35) at order p reads:

ðup; u1Þ þ ðlp; l1Þ ¼ 0 ð41Þ

13



Because the linearity of equation (40) if ~up is the solution of:

›~up
›t

2 kD~up ¼
Xi¼p21

i¼1

li · ðu 2Þp2i ð42Þ

and ûp the solution of:
›~up
›t

2 kDûp ¼ ðu 2Þ0 ð43Þ
that as we can notice corresponds to û1, the searched solution up reads:

up ¼ ~up þ lp · û1 ð44Þ
By introducing equation (44) into equation (41) it results:

ð~up; û1Þ þ lp · ½ðû1; û1Þ þ 1� ¼ 0 ð45Þ
that allows computing the value of lp and then up from equation (44).

5. Numerical results
In this section, we illustrate the previous developments on a few selected examples. For
the sake of simplicity, we restrict ourselves to the solution of transient and steady-state
heat transfer problems with a quadratic non-linear term, similarly to the previous
sections. In particular, we show how the PGD can be used as a very efficient PDE solver
that can be integrated into the ANM allowing the computation of multi-dimensional,
non-incremental, parametric, non-linear solutions.

5.1 PGD-based ANM
Since we have seen that the PGD offers a powerful alternative to classical finite
elements when one can take advantage of variable separation, we next investigate the
use of the PGD as an alternative of finite elements in the solution of a non-linear heat
transfer problem within the ANM framework. For this purpose we consider:

2kDu2 f þ u 2 ¼ 0: ð46Þ
Here uðx; yÞ [ Vx £Vy, with Vx ¼ Vy ¼ ½0; 2�, the source term being constant, f ¼ 1
and the conductivity k is also constant and equal to 1. We consider the following
non-homogeneous Dirichlet conditions along the boundary G of V: uðx; yÞ ¼ 2 for
ðx; yÞ [ G. For this choice of boundary conditions, it is obvious that the non-linear
term will greatly influence the solution. Indeed, accounting or not for the non-linearity
could change the concavity of the solution.

The PGD solution is sought in the following separated form:

uðx; yÞ <
XN
i¼1

XiðxÞ ·Yið yÞ; ð47Þ

where we use a Galerkin finite elements method with continuous piecewise linear
interpolation to solve the 1D BVP problems that appear in the PGD algorithm. In order
to apply the ANM, we introduce the loading parameter a and modify the original
problem in the following way:

14



2kDu2 f þ lu 2 ¼ 0: ð48Þ
Now, the procedure described in Section 4.4 is applied. In Figure 3 we show the value
solution in the centre of the domain uð1; 1Þ for different values of the loading parameter
l and for different orders of expansion. The same problem solved with 2D finite
elements on an equivalent mesh instead of the PGD predicts curves that exactly
superimpose on the curves shown in Figure 3. We see that when the loading parameter
is zero, the solution is greater than 2 while it becomes less than 2 for increasing values
of l. Note that the solution of the original non-linear problem corresponds to l ¼ 1.
Furthermore, we see that the expansion up to order 4 is sufficient for capturing the
non-linearity of the problem. The number of terms in the separated representation of
the different solutions computed in the construction of the asymptotic expansion is
reported in Table I.

In this specific example the use of PGD-based ANM has not any advantage since the
problem is very simple. There is no real benefit in seeking a separated representation of
the solutions of the various linear problems that have to be solved to compute the
solution at the different orders within the ANM framework. Indeed as all the linear
problems appearing in the ANM at its different orders involve the same differential
operator, the computational cost of using 2D finite elements is dominated by the initial
construction and factorization of the matrix representing the discretized operator. The
successive solutions are then inexpensive. With the PGD, one cannot take advantage of
this property because the coefficient related to the differential operators are changing
at each iteration. However, it is clear that for larger problems, such as the previous
tunnel example the PGD would offer a powerful alternative to finite elements within
the ANM context.

Figure 3.
Convergence of the ANM
at the centre of the domain

for different orders of
expansion of the loading

parameter l
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5.2 Parametric non-linear solution
We now turn to the case of parametric models, for which the PGD is well suited. We
solve the same non-linear problem but consider this time the diffusivity k as an
additional coordinate:

2kDu2 1þ u 2 ¼ 0: ð49Þ

Here uðx; y; kÞ [ Vx £Vy £ I, withVx ¼ Vy ¼ ½0; 2� and k [ I ¼ ½1; 5�. We consider
the same Dirichlet condition as previously and the same expansion for the loading
parameter. Applying the ANM directly to such model is only possible due to the PGD
ability to treat multi-dimensional parametric models. The convergence of the method is
shown in Figure 4 where we obviously see a better convergence in the case of higher
values for k for which the non-linear term is of lesser importance. The number of terms
in the separated representation of the different solutions computed in the construction
of the asymptotic expansion is reported in Table II.

5.3 Space-time PGD-based ANM
Finally we turn to the case of a transient non-linear problem which will be solved in a
non-incremental way by combining both the ANM and the PGD. We consider the
following 1D PDEwhich is a particular case of the case treated in the previous sections:

Figure 4.
Convergence of the ANM at the centre of the domain for different orders of expansion of the 
loading parameter l and different values of k
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›u

›t
2 k

›2u

›x 2
u2 1þ u 2 ¼ 0: ð50Þ

Here uðx; tÞ [ Vx £ I, with Vx ¼ ½0; 2� and t [ I ¼ ½0; 1�, and we take the following
boundary and initial conditions:

uðt; 0Þ ¼ uðt; 2Þ ¼ 2; ;t [ ½0; 1�;
uðx; 0Þ ¼ 2; ;x [ ½0; 2�:

In Figure 5, we show the convergence of the ANM for the point uð1; 1Þ. We see that the
space-time solution converges already for a moderate expansion order. The number of
terms in the separated representation of the different solutions computed in the
construction of the asymptotic expansion is reported in Table III.

6. Conclusions
By means of selected illustrations, we have demonstrated that the PGD-based ANM
is particularly suitable for addressing coupled non-linear parametric models. It allows
treating non-linear models with a unique representation of the differential operators
involved at each order of the asymptotic development. Then, at each order, the
resulting equation is solved by invoking the PGD method that allows separating
the physical space for accounting for degenerated domains, including parameters as
extra-coordinates for addressing non-linear parametric models and finally solving
transient models using a non-incremental procedure.

Figure 5.
Convergence of the ANM
for the point uð1; 1Þ for

different orders of
expansion of the loading

parameter l
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Table III.
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Similarly to the LATIN method, we directly compute the non-linear space-time
solution, but the approach proposed here could be readily extended to the case of
parametric non-linear solutions.

Many questions remain open, but the first numerical experiments here reported
allow to be confident on the potentialities of the proposed strategy.
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