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1. Introduction

The elastic analysis of three dimensional cracks in plates has
been extensively considered in the fracture mechanics literature.
Early analytical approaches for 3D crack problems were provided
by the pioneering works of Hartranft and Sih (1969), Hartranft
and Sih (1970), Sih (1971), Benthem (1977) and Bažant and
Estenssoro (1979) and other more recent, such as Zhu (1990) and
Leung and Su (1996), etc. As the computational capabilities
evolved during the last decades, the analytical studies were soon
complemented by an increasing number of numerical works using
the finite element method (FEM) (e.g. Newman and Raju, 1983;
Nakamura and Parks, 1988; Leung and Su, 1995; Leung and Su,
1996; Kwon and Sun, 2000, etc.). All these studies show that a tri-
axial stress state arises in the vicinity of the crack front within the
body, even for an in-plane loaded cracked plate. As in other stress
concentration problems of elasticity, the triaxial stress state is ulti-
mately due to different Poisson contractions that exist within the
solid, and therefore the Poisson’s ratio m plays an essential role in
the analysis of 3D crack problems.

The existence of the so-called vertex or corner singularity at the
intersection of the crack front with the traction-free lateral sur-
faces is another inherent feature of the 3D crack problem. This phe-
nomenon is accompanied by the loss of stress triaxiality as the
traction-free lateral surfaces are approached (loss of constraint).
1

The extent of the influence of the corner singularity and loss of
constraint regions have a strong influence on the crack propagation
profile and fracture toughness (Bažant and Estenssoro, 1979; Pook,
1994; Pook, 2000; Heyder et al., 2005) and leads to the distinction
between the surface and inner regions (Broek, 1986; Anderson,
2005), usually assimilated in a non-rigorous way as two-dimen-
sional plane stress and plane strain states. The extent of these re-
gions depends largely on the a=B ratio (being a the crack length
and B the plate thickness). Therefore, the plate thickness B also
plays an important role in the analysis of 3D cracked plates.

To the authors’ knowledge, no closed-form solution for a 3D
crack in a finite thickness plate has been reported to date and many
FE studies can be currently found pursuing a better understanding
of the 3D crack elastic fields (e.g. Leung and Su (1995), Leung and
Su (1996), Kwon and Sun (2000) and Giner et al. (2010)). In this
work, we present a new numerical approach to solve cracked
plates in an efficient way by obtaining a single solution in which
the Poisson’s ratio m and the plate thickness B are non-fixed param-
eters. To this end, the numerically approximated solution for the
displacement field is of the form uðx; y; z; m;BÞ. Using the proposed
method, it is possible to obtain a numerical solution for a cracked
plate problem with a single analysis that can be particularized for
any m and B by simple post-processing, thus providing an efficient
tool for the numerical analysis of these problems. The method
makes use of the Proper Generalized Decomposition (PGD), pro-
posed by Chinesta and co-workers (Ammar et al., 2006; Ammar
et al., 2007; Bognet et al., 2012) that has recently been applied to
many fields of physics and engineering. In this method, the sought



displacement field uðx; y; z; m;BÞ is written as a series expansion of
function products. The formulation proposed here uses a 2D dis-
cretization for a given plane times a 1D discretization in the nor-
mal direction. In addition, independent functions of m and B are
included in the tentative solution to be converged. An iterative pro-
cess is then carried out by which the necessary terms of the series
expansion are added in order to attain the required accuracy. As a
result a 3D problem including two additional coordinates is solved
at roughly the cost of a series expansion of 2D analyses. The PGD
solution is computationally less expensive than a full 3D standard
FE analysis for typical discretizations used in practice to capture
singularities in 3D crack problems. From the numerical point of
view, this is the first time that the PGD is successfully applied to
problems with singularities (both the classical in-plane Williams
singularity and the corner singularity).

The essentials of the PGD and the formulation for its application
to a fracture problem are given in Section 2. A numerical verifica-
tion of the results of the method as compared to standard finite
element solutions and other reference solutions is provided in Sec-
tion 3 through the analysis of cracked plate configurations. The re-
sults show the usefulness and efficiency of the method, enabling to
capture the corner singularity behavior in very good agreement
with the results predicted by Benthem (1977) and the numerical
solutions provided by Dimitrov et al. (2001). Previously, the analy-
sis of this corner singularity with the standard finite element
method has posed difficulties in some works reported in the liter-
ature due to its elusive character unless a high degree of refine-
ment is considered. The interested reader can refer to the
excellent historical review presented in Kwon and Sun (2000)
and the comprehensive work by Schnack et al. (2011). Finally,
the method is applied to a quarter-elliptical corner crack in a plate
and some results regarding the convergence of the method are
presented.

2. Fundamentals of the PGD

2.1. Overview of the method

Proper Generalized Decompositions (PGDs) were proposed re-
cently to alleviate the solution of complex models encountered
in science and engineering. The PGD is based on the use of sepa-
rated representations and, in fact, different kind of separated rep-
resentations can be envisaged. Ladevèze (1999) proposed in the
eighties separating space and time in the solution of non-linear
transient thermo-mechanical models within the framework of
the LATIN paradigm. Thus, if uðx; tÞ represents such a solution, it
was searched under the separated form:

uðx; tÞ �
Xn

i¼1

XiðxÞ � TiðtÞ ð1Þ

This separated representation was extensively considered in Lade-
vèze’s works, see Ladevèze et al. (2009) and Ladevèze et al. (2010)
and the references therein.

We can notice that instead of solving a space problem at each
time step, as classically carried out when using standard incremen-
tal time integrations, a reduced number of space problems, scaling
with n, must be solved for computing the space functions XiðxÞ and
the same number of one-dimensional problems for computing the
time functions TiðtÞ. Because the computing effort for solving the
one-dimensional problems is negligible when compared to the
one required for solving a space problem, the computing time sav-
ings are impressive when the time step becomes very small.

About twenty years later, the space–time separated representa-
tion was generalized for solving efficiently multidimensional mod-
els that arise from the fine description of materials within a kinetic
2

theory approach (Ammar et al., 2006; Ammar et al., 2007). Later, it
was applied for alleviating the computational complexity when
addressing 3D models defined in degenerated domains, in which
at least one of its characteristic dimensions is much smaller that
the other ones. This is typically the case when calculating 3D solu-
tions of problems defined in plate or shell geometries. In elasticity,
when plate and shell theories apply, they allow to reduce the
dimensionality from 3D to 2D. However, in some cases fully 3D
solutions are preferred due to the existence of either 3D effects
close to the plate edges or situations where the Saint–Venant prin-
ciple fails and consequently 3D effects are present everywhere in
the plate. Moreover, in the case of inelastic behavior, the 3D solu-
tion is in most of cases mandatory.

In that context, Bognet et al. (2012) proposed an in-plane-out-
of-plane separated representation for computing full 3D solutions
while keeping a computational cost close to that of 2D solutions.
The proposed separated representation of a generic field is then

uðx; y; zÞ �
Xn

i¼1

XiðxÞ � ZiðzÞ ð2Þ

where x ¼ ðx; yÞ 2 X � R2 and z 2 ½0;B�, being B the plate thickness.
We note that such a decomposition requires the solution of a number
of 2D problems, number that scales with n, for computing functions
XiðxÞ, and the same number of 1D problems involving functions ZiðzÞ.
Thus, even when considering very fine descriptions of functions ZiðzÞ,
the impact in the total computing time remains moderate, in com-
parison with a fully 3D solution performed using standard discretiza-
tion techniques. The computational savings are evidenced in Fig. 1,
where the computation time of different analyses for a plate problem
using the PGD method with a 2D + 1D discretizations is compared to
the time of standard 3D FE analyses using 3D solid elements. When
the number of degrees of freedom (DOF) in the thickness direction is
greater than 10–15, the computational cost of the PGD is less than
the standard 3D FEM cost. The difference between both methods in-
creases very rapidly as the number of DOFs of the in-plane and thick-
ness discretizations increases.

Therefore, the use of the PGD method for the analysis of plates
can be recommended when performing detailed analysis of
through-thickness variations, such as interlaminar stresses in com-
posite laminates or the study of the out-of-plane variations in
cracked plates, as in the present work. Moreover, the PGD can
incorporate the parametric study of some material and geometric
parameters in a single analysis, treating them as additional coordi-
nates. This will result in additional cost reductions not considered
in Fig. 1.

In this work, this approach is extended to cracked plates and, in
addition, the separated representation is generalized for including
material parameters and geometric dimensions, which are treated
as extra-coordinates. The resulting problem becomes multidimen-
sional but thanks to the separated representation the curse of
dimensionality can be circumvented, and the general parametric
solution is computed only once and in a very efficient way.

Since the 3D nature of the elastic fields in a plate problem with
a straight-through crack is essentially dependent on the Poisson’s
ratio m and the plate thickness B, the proposed PGD approximation
to the solution is solved introducing m and B as extra-coordinates.
The components of the displacement field uj are searched under
the following separated approximation, in a fashion similar to that
presented in Chinesta et al. (2011a):

ujðx; y; z; m;BÞ �
Xn

i¼1

ui
j;xyðx; yÞ � ui

j;zðzÞ � ui
j;mðmÞ � ui

j;BðBÞ ð3Þ

where the second subscript refers to each of the separated func-
tions. It is convenient to express this approximation in vector form
as follows:
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Fig. 1. Comparison of computational costs for different discretizations when solving a plate problem using the PGD approach and the standard 3D FEM.
uðx; y; z; m; BÞ ¼
u1ðx; y; z; m; BÞ
u2ðx; y; z; m; BÞ
u3ðx; y; z; m; BÞ

8><
>:

9>=
>;

�
Xn

i¼1

ui
xyðx; yÞ � ui

zðzÞ � ui
mðmÞ � ui

BðBÞ ð4Þ

where the symbol ‘‘�’’ is used to denote the so-called entry-wise,
Hadamard or Schur multiplication for vectors (component-by-com-
ponent multiplication). The approximated solution (4) enables the
computation for different values of m and B in just a single analysis.
In other problems of engineering, this capability has been success-
fully applied for on-line analysis, optimization or inverse analysis
even on deployed platforms as proven in Bognet et al. (2012) and
Ghnatios et al. (2012).
2.2. Formulation of the PGD as applied to cracked plates

In what follows, we present the essentials of the PGD formula-
tion as applied to solve the cracked plate problem. For additional
details concerning the separated representation constructor the
interested reader can refer to Chinesta et al. (2010) and Chinesta
et al. (2011b) and the references therein. We start from the weak
form of a linear elastic problem in continuum solid mechanics:
Z

X
eðduÞTDeðuÞdX ¼

Z
X

duTbdXþ
Z
@XN

duTtd@X ð5Þ

where X is the domain of the problem to be solved, subjected to
Dirichlet boundary conditions on a region @XD and Neumann
boundary conditions with surface tractions t on @XN, such that
@XD [ @XN ¼ @X and @XD \ @XN ¼ ;. e denotes the engineering
strain vector, D is the elastic stiffness constitutive matrix, b repre-
sents the external body forces per unit volume and du is any virtual
variation of the displacement field u that is compatible with the
prescribed boundary conditions on @XD.

In the formulation of the PGD, we assume that the displacement
field is approximated by (4). This approximated solution is gener-
ated by adding new terms (or modes). Let us assume that we al-
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ready know the first n modes of the approximated solution and
we are interested in adding a new term nþ 1:

uðx; y; z; m;BÞ �
Xn

i¼1

ui
xyðx; yÞ � ui

zðzÞ � ui
mðmÞ � ui

BðBÞ þ Q xyðx; yÞ

� RzðzÞ � SmðmÞ � TBðBÞ
¼ un þ Q xyðx; yÞ � RzðzÞ � SmðmÞ � TBðBÞ ð6Þ

where Q xy;Rz; Sm; TB are unknown terms of the separated functions
uxy;uz;um;uB for that mode, respectively. Since the first n modes
are already determined at this stage, the admissible variation of
the displacement field is:

duðx; y; z; m; BÞ ¼ d Q ðx; yÞ � RðzÞ � SðmÞ � TðBÞð Þ ð7Þ

Substituting into the weak form (5) and omitting the symbol ‘‘�’’ in
subsequent equations for the sake of compactness:Z

X
eðdðQRSTÞÞTDeðQRSTÞdX ¼ �

Z
X
eðdðQRSTÞÞTDeðunÞ

þ
Z

X
ðdðQRSTÞÞTbdX

þ
Z
@XN

ðdðQRSTÞÞTtd@X ð8Þ

where the first term on the right hand side of the equation corre-
sponds to the contribution of the first n modes already available,
being un the summation of these n modes given in (6).

On the other hand, the engineering strain vector involves the
first derivatives of u and when applied to the new mode to be
found yields:

eðQ xyRzSmTBÞ ¼

Qu1
xy;xRu1

z Su1
m Tu1

B

Q u2
xy;yRu2

z Su2
m Tu2

B

Q u3
xy Ru3

z;zS
u3
m Tu3

B

Q u1
xy;yRu1

z Su1
m Tu1

B þ Q u2
xy;xRu2

z Su2
m Tu2

B

Q u1
xy Ru1

z;zS
u1
m Tu1

B þ Qu3
xy;xRu3

z Su3
m Tu3

B

Q u2
xy Ru2

z;zSu2
m Tu2

B þ Q u3
xy;yRu3

z Su3
m Tu3

B

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð9Þ



The superscripts indicate the corresponding components of the dis-
placement field and the second subscripts denote the customary
derivatives with respect to the spatial coordinates. Upon substitu-
tion into (8) and after routine algebra, the terms can be grouped
for each of the separated variables, arriving to an expression of
the form:
Z

xy
dQ u1

xy;xQu1
xy;xdxdy �

Z
z

dRu1
z Ru1

z dz �
Z

m
dSu1

m D11ðmÞSu1
m dm �

Z
B

dTu1
B Tu1

B dB

þ � � � ¼ �
Z

X
eðdðQRSTÞÞTDeðunÞ þ

Z
X
ðdðQRSTÞÞTbdX

þ
Z
@XN

ðdðQRSTÞÞTtd@X ð10Þ

Note that the elements of the stiffness matrix, Dij, depend on the
Poisson’s ratio and, therefore, D11 has been grouped in the corre-
sponding integral in (10).

The solution for the sought functions Q xy;Rz; Sm and TB is
searched by iteration using the fixed point method, due to both
its easy of implementation and good convergence properties. As-
sume that an initial guess is given for the functions Rz; Sm and TB

and their contribution for each summand on the left hand side of
(10) is termed a1, a2, etc. Then, an estimation for Q xy can be ob-
tained by solving a standard weak form on Q xy:

a1

Z
xy

dQu1
xy;xQ u1

xy;xdxdyþ � � � ¼ �
Z

X
eðdðQ ÞRSTÞTDeðunÞ

þ
Z

X
ðdðQ ÞRSTÞTbdX

þ
Z
@XN

ðdðQ ÞRSTÞTtd@X ð11Þ

In this work, this weak form is solved numerically in the 2D domain
ðx; yÞ by using a 2D finite element approximation, after introducing
the corresponding discretization. Once the estimation for Q xy is
available, the functions Rz; Sm and TB are, in turn, estimated analo-
gously. Note that these functions are solved in their corresponding
1D spaces using 1D finite element discretizations and, therefore,
their numerical approximation is computationally inexpensive.
The process is repeated iteratively until convergence of the nþ 1
mode of the displacement approximation (6), i.e. until
jjunþ1 � unjj < �, where � is a prescribed tolerance.

The convergence of the method was proved for symmetric and
positive definite differential operators in Bris et al. (2009) and Am-
mar et al. (2010). In the general case, as the one addressed here in
which new coordinates have been introduced, the convergence has
been always attained in the numerous tests carried out until now,
including other problems in engineering. However, at present
there is not a mathematical proof of such convergence. To date,
convergence of the PGD has been observed for all the general ellip-
tic or parabolic problems tested, and the technique has also been
successfully applied in the case of hyperbolic equations (Huerta,
2011; Barbarulo, 2012). Thus, from our numerical experiments re-
ported in Chinesta et al. (2011b), the efficiency and robustness of
the solvers based on the construction of separated representations
have been verified.

The nonlinear problem involved in each enrichment step can be
addressed by using any appropriate linearization strategy. In Am-
mar et al. (2006) and Ammar et al. (2007) the Newton’s strategy
was considered. The simple alternated direction fixed point algo-
rithm used in this work is efficient and robust despite its simplic-
ity. Moreover, we have observed that the converged solution does
not depend on the initial guess and the convergence rate does not
depend significantly on that choice. In this work, all the initial
guesses are random vectors. Based in our experience, the best con-
vergence (with respect to the number of fixed point iterations at a
4

given enrichment step) is actually observed for random initial
guesses which excite all the modes of the operator.
2.3. Computation of the J-integral

The great advantage of obtaining a displacement approximation
of the form uðx; y; z; m;BÞ is that a 3D problem plus two additional
coordinates is solved in a single analysis. Postprocessing for given
values of the spatial coordinates and of the parameters m and B
within the range of their domains of definition is immediate.
Therefore, the displacement field at the nodal grid 2D� 1D is avail-
able as in a standard FE solution and the strain and stress fields can
also be derived.

Our objective in the work is to demonstrate the effectiveness of
the PGD to solve a 3D crack in an elastic plate. In general, two types
of singularity coexist in a cracked 3D plate with free boundaries:
the classical Williams solution (r�0:5 singularity) and the corner
or vertex singularity. Therefore, we have provided comparisons
to both the Williams solution and the corner singularity computed
by Benthem as a function of the Poisson’s ratio (the latter, for the
straight-through crack problem only). The comparison of the Wil-
liams solution has been performed in terms of the pointwise J-inte-
gral, which is directly related to the stress intensity factors, and
therefore it characterizes the Williams contribution to the solution.
The use of the pointwise J-integral for a 3D crack problem is widely
acknowledged in the literature (e.g. Li et al. (1985), Newman and
Raju (1983) and Nakamura and Parks (1988)).

In this work, we use the J-integral as a scalar functional to mea-
sure the quality of the Williams solution. The J-integral is a quan-
tity of interest in fracture mechanics that it is defined pointwise at
each position of the crack front in 3D problems, J ¼ JðsÞ, where s is a
parametric coordinate along the crack front, see Fig. 2. The compu-
tation of JðsÞ has been performed using an equivalent domain inte-
gral, as proposed by Li et al. (1985) and Shih et al. (1986)
(deLorenzi (1982, 1985), obtained exactly the same result using
the concept of virtual crack extension and a consistent continuum
mechanics approach):

JðsÞ � Jvol ¼
Da
Ac

Z
V

rij
@uj

@x1
�Wd1i

� �
@q1

@xi
dV ð12Þ

where W is the strain energy density, dij is the Kronecker’s delta, Da
is a virtual crack extension at a point s of the crack front (see Fig. 2),
Ac is the virtual increment in crack area generated by the virtual
crack extension, and q1 is a continuous weight function that varies
between 0 and 1 and scales the virtual crack extension Da within
the crack front segment Ds. The fields are expressed in the local
coordinate system of axes x1; x2; x3 shown in Fig. 2. The volume of
integration V must surround the crack front from one crack face
to the other and its width at the crack front is Ds. Note that the va-
lue of the volume integral Jvol is indeed an approximation to the
pointwise value JðsÞ, since Ds is finite. In the context of the standard
FEM, it is well known that the computation of J as a domain (vol-
ume) integral is numerically advantageous, as it becomes unneces-
sary to capture the details of the singular field near the crack front.
In addition, it tends to provide more accurate results than the
equivalent contour integral, because it involves information evalu-
ated in a domain instead of a contour. An important advantage of
the method is that, theoretically, the value of JðsÞ is independent
of the domain chosen, although discretization errors present in
the vicinity of the crack front force to avoid small domains sur-
rounding the crack front.

The same advantages and recommendations apply when com-
puting JðsÞ from a PGD solution. We have performed the integra-
tion over V by defining volume cells that would match the 3D
finite elements that could be constructed by the underlying 2D �



Fig. 2. Virtual crack extension of a crack front segment Ds for the application of the EDI method.

σ

1D nodal grid. In this work, we will only deal with mode I examples
and hence the pointwise value of the mode I stress intensity factor
K I (SIF) can be calculated using the following expression:

K IðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðsÞ E

1� m2

r
ð13Þ

where E is the Young’s modulus and m the Poisson’s ratio.
H

Upper crack face

B/2

W

a

Symmetry conditions

y

x

Fig. 3. Model of a plate with a single edge crack loaded in tension.
3. Numerical verification

In this section, two problems are analyzed to verify the perfor-
mance of the PGD to solve cracked plates. The first problem in-
volves a straight-through crack front, with a discretization that
enables to capture the corner singularity with high accuracy at a
low computational cost and, at the same time, providing solutions
for a range of m and B. The convergence of the method with an
increasing number of modes is also evidenced by comparison to
a standard finite element solution. A quarter-elliptical corner crack
in a plate is also solved, showing that the application of the PGD is
not limited to straight-through crack fronts. In this latter case, the
validation is restricted to the Williams part of the solution, since
reference solutions for the corner singularity are not available for
this geometry.

3.1. Plate with a straight-through crack

3.1.1. Problem description
Fig. 3 is a sketch of the geometrical model of a plate with a

straight-through crack. It represents a plate of thickness B with a
single edge crack of length a=W ¼ 0:5. The plate is loaded with uni-
form tension r. The particular dimensions of the model are
W ¼ 2; H ¼ 6 [units of length]. As the thickness B is an indepen-
dent parameter included in the PGD formulation, it is solved for
the range B=2 2 ½0:5;10�. Symmetry conditions are applied on the
ligament (plane xz) and on the midplane (parallel to the plane
xy). The material model is linear elastic, with E = 207,000 [units
of pressure], being m solved in the range m 2 ½0;0:49� as an indepen-
dent parameter. Note that the origin of the global system of refer-
ence is located at the intersection of the crack front and the free
surface, where the corner singularity exists.

The discretizations for the space domain in the xy plane (2D do-
main) and in the z direction (1D domain) are shown in Fig. 4. The
elements are conveniently refined towards the crack tip and to-
wards the crack front corner, respectively. The 2D discretization
is composed of 7031 linear triangular elements. The mesh was
5

h-adapted by refining a previous 2D analysis to optimize the 2D
discretization (it is plotted in the deformed shape to show the
crack location). The 1D mesh is composed of 42 2-node linear ele-
ments. Note that the equivalent 3D discretization using prisms of
triangular base amounts to 295,302 elements, which is a large
number when compared to the number of elements in the 2D or
1D discretization. The discretization of the m and B spaces is per-
formed using 1D FE discretizations with two-node elements in
increments of 0.01 in the range m 2 ½0;0:49� and in increments of
0.1 in the range B=2 2 ½0:5;10� for the B-space. This would corre-
spond to a very large number of 3D solutions if they were to be
solved with a standard FE approach, since it would be necessary
to perform 4800 3D standard FE analyses to obtain the solutions
in the range m 2 ½0;0:49� times the range of variation of
B=2 2 ½0:5;10� given their respective increments.

3.1.2. J-integral along the crack front
In this problem, we have computed JðzÞ through (12), using an

annular q-function at each location, defined by a ring with
rmin ¼ 0:5 � 10�3 and rmax ¼ 4 � 10�3 units, as indicated in Fig. 2.
The q-function decays linearly in the z direction at both sides of
the extraction location within the calculation ring (except at the
free surface and midplane locations, where q decays linearly at
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one side only). Fig. 5 shows the results obtained for the J-integral
along the crack front, particularized for the case B=2 ¼ 1 and
m ¼ 0:3. Note that the bottom plot is an enlarged view of the zone
near the corner singularity. It can be observed that JðzÞ exhibits the
expected behavior reported in the literature (e.g. Nakamura and
Parks, 1988) with a maximum at the midplane and decaying to
zero at the corner point. The PGD solution has been obtained calcu-
lating n ¼ 30 modes for the approximation (4). Note that the PGD
provides virtually the same results as a standard FEM analysis with
the same discretization (295302 linear prisms, about 4:7 � 105

dofs), even in the vicinity of the corner point, at a much lower com-
putational cost and including in the single solution the results for
any choice of B and m in their respective intervals of variation. In
Fig. 5 another FE solution is included as reference solution, com-
puted with a very refined mesh with more than 2:3 � 106 degrees
of freedom using 20-node hexahedrons and 160 elements along
the crack front, which differs from the PGD solution and the other
FE solution mainly due to the discretization error.
Fig. 5. Pointwise value of the J-integral along the crack front for the case B=2 ¼ 1
and m ¼ 0:3. Bottom: enlarged view near the corner point.
3.1.3. Convergence with number of modes n
Fig. 6 exemplifies the convergence of the PGD solution with the

number of modes n. As the number of modes in the approximation
(4) increases, the PGD solution converges towards the equivalent
FE solution obtained with the same discretization. In other words,
the FE solution is the best possible solution for a given discretiza-
tion. In our example, sufficient accuracy is attained with n ¼ 30
modes.

Having fixed B=2 ¼ 1 and m ¼ 0:3, the solution with a single
mode n ¼ 1 corresponds to the approximation uðx; y; zÞ �
uxyðx; yÞ � uzðzÞ, which means that the solution of the 2D space do-
main is fully decoupled from the z direction. It is very interesting to
note that the PGD solution for n ¼ 1 matches the 2D plane strain
solution computed for the 2D domain. In this problem, the 2D
plane strain solution is the only physical solution for which the
2D solution is independent of the z direction and, as a result, the
PGD converges to it when only a single mode is allowed. Fig. 6 also
shows that the successive addition of modes modify the plane
strain solution to account for the corner singularity effect.
3.1.4. J-integral for different values of the Poisson’s ratio
In this section, we benefit from the single PGD solution for dif-

ferent values of the material parameter m. The solution has been
found for the range m 2 ½0;0:49� using a 1D FE mesh at increments
6

of 0.01 and can be interpolated to any other value within this inter-
val. Fig. 7 shows five representative solutions. The case m ¼ 0 im-
plies that all normal strains are uncoupled (there is no Poisson’s
effect). As a consequence, no corner singularity effect arises and
the JðzÞ solution is constant along the thickness. For an in-plane
loading such the one applied in this example, there is no strain
in the z direction and the case m ¼ 0 can be considered a plane
strain problem. At the same time, no stress triaxiality is induced
in the crack front vicinity and the solution for m ¼ 0 can also be
considered a plane stress solution. As a consequence, the case
m ¼ 0 is the only one for which a truly plane stress solution can ex-
ist in the whole 3D domain, being simultaneously a plane strain
solution.

For any m > 0, the different contractions in the z direction, i.e.
differences in the out-of-plane strain ez, in the most loaded region
near the crack front (ligament) and the less loaded region (crack
face), induce a state of stress triaxialiaty (rz – 0) in the interior re-
gion of the plate that must vanish at the free plate surface. As a
consequence, a corner or vertex singularity arises. Fig. 7 shows
that, the larger the value of m, the larger the extent of this
effect. Note that for a typical value m ¼ 0:3, this effect modifies
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Fig. 6. Convergence of the PGD solution with an increasing number of modes. Case
B=2 ¼ 1 and m ¼ 0:3. Bottom: enlarged view near the corner point.
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the distribution of J in a region of about 40% of the half-thickness
measured from the free plate surface (z ¼ 0).

Thanks to the refined discretization in the z direction, computa-
tionally affordable by the PGD, the zone dominated by the corner
singularity has been conveniently captured. Fig. 8 shows a log–
log plot of the value of the stress intensity factor along the crack
front computed through (13). The straight portions of the plots
indicate the extent of the corner singularity dominated zone (about
10% of the half thickness), in agreement with Benthem’s prediction,
who showed that (Benthem, 1977):

KðzÞ / zkBðmÞþ0:5 when z! 0 ð14Þ

where kB is the exponent computed by Benthem that depends on m.
Table 1 compares the slopes obtained in this work from the PGD
solutions and the values predicted by Benthem, showing a very
good agreement. This analysis also verifies Benthem’s results, ob-
tained under a half-infinite domain hypothesis. We note in passing
that, although these results are accepted in the literature, they have
been questioned in some numerical works due to the lack of enough
FE discretization.

3.1.5. J-integral for different thicknesses
The formulation for the PGD considered in this work also in-

cludes the thickness B as a parameter in the solution. This param-
eter takes values within the interval B=2 2 ½0:5;10� that is
discretized using a 1D FE element mesh and the corresponding
interpolation, thus benefiting from the versatility of the PGD ap-
proach with a single analysis. Fig. 9 shows the variation of the
pointwise JðzÞ along the crack front for four different thicknesses
and m ¼ 0:3 (results are plotted versus normalized thickness). It
can be observed that the thickness also influences the shape of
the JðzÞ distribution, being B=a the relevant parameter. The distri-
bution changes from a single maximum at the midplane for small
B=a ratios to a couple of maxima in the vicinity of the free bound-
aries for the whole thickness and large B=a ratios. This behavior is
in good agreement with the study presented in Giner et al. (2010).

3.2. Plate with a straight-through crack solved with 1D-discretization
in the y-direction

To verify the performance of the PGD with other types of
discretizations, the same problem has been solved with a 2D dis-
cretization in the xz plane combined with a 1D discretization in
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Fig. 8. Log–log plot for computing slopes from the stress intensity factor solutions
along the crack front, KðzÞ. PGD results for different values of m. Case B=2 ¼ 1.



Table 1
Values of the slopes from the PGD solutions shown in
Fig. 8 compared to the values derived from Benthem’s
exponents. Case B=2 ¼ 1.

m Log–log slope kB þ 0:5

0.15 0.017 0.016
0.30 0.049 0.048
0.40 0.087 0.087
0.45 0.116 0.116
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Fig. 9. Pointwise value of the J-integral along the crack front for m ¼ 0:3 and
different values of B vs. normalized thickness.
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Fig. 11. Pointwise value of the J-integral along the crack front for B=2 ¼ 1 and
m ¼ 0:3. Same results as in Fig. 5 including 2D discretization with quadrilaterals and
1D discretization in y-direction.
the y-direction, as shown in Fig. 10. In this case bilinear quadrilat-
eral elements for the 2D mesh have been used.

When applying the PGD technique, this option has the addi-
tional difficulty that a portion of the xz plane must be constrained
in the y-direction (ligament) whereas the crack face must remain
free. This has been accomplished by using a penalty approach to
impose the boundary constraint on the ligament region. Fig. 11
shows the results obtained with this new discretization compared
to the previous results presented in Fig. 5. It can be observed that
the discretization using bilinear quadrilaterals in the xz plane tends
to provide good results, virtually matching the reference solution
obtained with a very refined mesh with 20-node hexahedra.
Fig. 10. 2D and 1D discretizations of the space do
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3.3. Plate with a quarter-elliptical corner crack

The possibility of discretizing the crack plane with the 2D dis-
cretization, as verified in the previous section, paves the way for
the solution of planar cracks with curved crack fronts. In this sec-
tion, a quarter-elliptical corner crack (see Fig. 12) is modelled using
4-node quadrilaterals in the xz plane plus a 1D discretization in the
y-direction, as shown in Fig. 13. The particular dimensions of the
model are t ¼ 1, a ¼ 0:5; c ¼ 1:25; h ¼ w ¼ 6:25, which corre-
spond to the ratios a=c ¼ 0:4; a=t ¼ 0:5. The material properties
are the same as in the previous example, with m ¼ 0:3. A solution
to this case was provided by Newman and Raju (1983) using the
standard FEM, which will be taken here as a reference solution.
Newman and Raju’s numerical solution (N&R) is given with an
accuracy of 5% and is valid for m ¼ 0:3 and for a ratio c=w 6 0:2
(c=w is exactly 0.2 in our case). The solution to this problem can
also be found in e.g. Murakami and ed. (1987). Newman and Raju
(1983) reported some point values using FE analyses and a fitted
equation for a wide range of /, i.e. the position angle defined in
Fig. 12. These solutions are reproduced in Fig. 14.

Fig. 14 also shows the PGD results for the stress intensity factor
K I along the crack front. The PGD results exhibit the same trend as
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elements
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main ðx; zÞ � y for the same problem of Fig. 3.
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Fig. 13. Quarter-elliptical corner crack. 2D and 1D discretizations of the space domain ðx; zÞ � y.
the N&R’s solution, although the PGD values are slightly greater, ly-
ing within the 5% relative error. Other recent works that solve anal-
ogous problems with the FE method (e.g. González-Albuixech et al.
(2011)) also yield values above those of the N&R’s solutions.

Note that the PGD solution also tends to capture the free bound-
ary effect, evidenced by a decaying value of K I, especially in the
neighborhood of / ¼ p=2. The effect at this corner is more manifest
because, in this region, the crack front closely approximates a
straight crack front intersecting a free boundary. This effect was
also reported in Newman and Raju (1983) for a similar geometry
using several refined meshes.

3.4. Convergence of the numerical solutions

The number of PGD modes to achieve an accurate solution de-
pends largely on the type of problem and, therefore, the number
of modes cannot be estimated a priori to ensure that the computed
solution is accurate enough. As commented at the end of Sec-
tion 2.2, the convergence check consists in computing the relative
residual of the problem considered. Then, the iterative enrichment
9

process keeps running until the relative residual of the problem is
smaller than a prescribed tolerance.

Fig. 15 shows the exact error between the full 3D FEM solution
and the PGD solution on the same equivalent mesh as a function of
the prescribed tolerance of the PGD problem. This error is com-
puted as the integral over the whole domain of the relative error
between the PGD solution and the 3D FEM solution using the en-
ergy norm. As can be noticed, the reduction of the prescribed tol-
erance is a good indicator of the accuracy of the solution because
the integral of the relative error decreases very rapidly when the
prescribed tolerance is reduced, i.e. the convergence is quite fast.

Fig. 16 shows the number of modes in the PGD solution for the
numerical examples. As expected, the number of modes needed to
describe the solution increases with the required accuracy. More-
over, the parameterized solution including the thickness B and
the Poisson’s ratio m as coordinates needs many more modes to
capture the complexity of the solution. However, the accuracy is
quite similar in comparison with non-parametric solutions. In
practice, a prescribed tolerance of 10�3 can be used for conven-
tional engineering applications, which implies that less than 50
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10
modes are included in the approximated solutions of the presented
examples.
4. Conclusions

In this work, a formulation of the Proper Generalized Decompo-
sition (PGD) for solving efficiently 3D cracked plates has been pre-
sented. For plate geometries, the space domain can be separated
into a 2D discretization plus a 1D discretization. Moreover, certain
material and geometry parameters that can be of interest for frac-
ture mechanics problems have been included in the approximating
space of the solution, namely the Poisson’s ratio and the plate
thickness. These parameters are considered as independent coordi-
nates that take values within their respective intervals of defini-
tion. Thus, a single solution for a 3D elastic problem plus two
additional coordinates can be obtained simultaneously in the space
ðx; y; z; m; BÞ. The method provides large computational cost reduc-
tions when compared to standard FE 3D analysis, not to mention
the parametric variation of m and B, and it also captures conve-
niently the crack front and corner singularities.

By means of numerical examples, it has been shown that very
accurate results can be obtained with a reduced computational
cost, including the variation with the parameters m and B. The accu-
racy of the results has been measured in terms of the J-integral and
the stress intensity factor K that are the main quantities of interest
in linear elastic fracture mechanics. The intensity of the corner sin-
gularity has also been estimated, correlating well with predictions
available in the literature. It has also been shown that the proce-
dure can be successfully applied to solve planar cracks with curved
crack fronts with the above commented advantages.
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