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Abstract. Efficient numerical models have been already developed in 2D to take into account the movement
of electromagnetic devices with rotating parts in the framework of the Finite Element Method (FEM).
When the movement becomes complex it leads to large mesh distortions. A remeshing step is then required
which increases the computational complexity and can also lead, in some cases, to numerical ripples
on forces and torques due to the field projections between old and new meshes. Moreover, remeshing
procedures in 3D remain an open topic. Meshless methods seem an appealing choice for alleviating the
mesh constraints. The Natural Element Method (NEM) which, has known a growing interest in the domain
of mechanics, allows to proceed in the meshless framework, avoiding one of the main drawbacks related
to the vast majority of meshless techniques, as is the imposition of essential boundary conditions. In
this paper, a variant of the NEM, known as constrained natural element method (C-NEM) is applied for
simulating electromagnetic machines involving rotating parts. A new mixed strategy combining the finite
element and the constrained natural element methods is proposed and then tested by using an appropriate
error estimator.

Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems, Finite-element 
and Galerkin methods

1 Introduction

1.1 Numerical modelling of electromagnetic machines

To accurately model electrical machines, one needs to
solve the Maxwell equations taking into account the move-
ment of mobile parts. Generally, an electrical rotating ma-
chine is made up of two parts. The moving part (the ro-
tor) and the static one (the stator) are separated by a thin
clearance (the air gap) to enable the rotor movement. In
fact, most of the energy of the machine is concentrated in
the air-gap. Thus, it is necessary to take into account very
accurately the relative movement between both parts.

At present, the Finite Element Method (FEM) is
widely used to solve numerically the Maxwell equations.
To take the movement into account, several methods have
already been proposed: the macro element [18], the mov-
ing band [5], the slip surface [16], the use of Lagrange
multipliers [8], the overlapping technique [27], the nodal
interpolation strategy [15], the mortar element [17], among
many others. Meshless techniques could be envisaged for
alleviating the computational complexity related to these
approaches.

The main aim of the present work is the analysis of
meshless approaches as well as the proposal and evalua-
tion of a new mixed strategy combining the simplicity of
finite element descriptions with the robustness of meshless
descriptions in the regions involving large mesh deforma-
tions.

1.2 Meshless approaches

In the past years meshfree methods for the solution of
partial differential equations have significantly matured
and are used in various fields of applications. One of the
reasons for this development is the fact that meshfree dis-
cretizations and particle models are often better suited to
cope with geometrical changes of the domain of interest
than mesh-based discretization techniques such as finite
differences, finite elements or finite volumes. Furthermore,
the computational cost associated with mesh generation
is alleviated in meshfree approaches since they are based
only on a cloud of nodes, without any geometrical restric-
tion concerning their relative positioning.

Among the main meshless approaches we highlight
the Smooth Particle Hydrodynamics (SPH) [10], the
Diffuse Element Method (DEM) [13], the Element Free
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Galerkin (EFG) [1], the Reproducing Kernel Particle
Method(RKPM) [9], the h-p Cloud Method [6] and the
Natural Element Method (NEM) [25].

Some of these meshless techniques are still nowadays
confronted to some difficulties related to: (i) the quality
of the approximation as well as the conditioning of the
global system is pathologically dependent on the size of
the support of the shape functions; (ii) imposing of es-
sential boundary conditions needs special treatments; (iii)
integration is not accurate enough, and (iv) physical dis-
continuities across interfaces must be accurately enforced.

Several techniques for the analysis of problems involv-
ing discontinuities or interfaces have been proposed in the
finite element [2,12] and in the meshless [14,28] frame-
works. The extended finite element method (X-FEM) [12]
makes use of the Partition of Unity paradigm [11,12] for
approximating discontinuities. The goal of the extended
finite element method is to expand the finite element ap-
proximation functions for including some features of the
solution that are known.

Alternative to the aforementioned methods, the con-
strained natural element method (C-NEM) [29] has been
proposed to handle discontinuities and moving interfaces
in meshfree methods in a very simple manner [30]. The
technique uses the features of the natural element method
in tandem with a visibility criterion. In opposition to the
vast majority of meshless strategies, the C-NEM allows
to enforce exactly essential boundary conditions on the
domain boundary, and then to account for transmission
conditions across fixed or moving interfaces.

In this paper, the constrained natural element method
will be applied to model rotating electrical machines. For
this purpose, we first summarize the constrained natu-
ral element method (C-NEM). Then, the equations to be
solved are given and the method to take the movement
into account is described. Finally, a Variable Reluctance
Machine (VRM) is modelled using the constrained natural
element method and results are compared with results ob-
tained by using the FEM. A mixed formulation combining
the versatility of finite elements and the robustness of the
meshless approaches to address large mesh deformations
is then proposed and evaluated.

For comparison purposes we use the error estimator in-
troduced in [3] in the natural element method framework,
which is based on the solution of both complementary
potential formulations. It will be applied to quantify the
accuracy of the different solutions as well as to compare
C-NEM and FEM solutions. A mixed approach combining
the versatility of finite elements and the robustness of the
meshless approaches to address large mesh deformations
will be also proposed and its accuracy checked. This com-
parison is one of the main original contributions of this
paper, an one of the first exhaustive comparative analysis
of both approximations to take into account movement,
at least in our knowledge.

Fig. 1. Voronoi diagram.

2 The meshfree constrained natural element
method (C-NEM) revisited

In this section, the ability of the C-NEM for describing
moving interfaces and discontinuities in a fixed cloud of
nodes is discussed. After a brief review of the Voronoi-
based interpolants, we introduce the constrained Voronoi
diagram which is used to compute the shape functions in
any domain. To avoid duplication with some of our former
publications, different references to our former works will
be addressed.

2.1 Natural neighbor interpolation

We briefly touch upon the foundation of Sibson’s natu-
ral neighbor coordinates (shape functions) that are used
in the natural element method. For a more in-depth dis-
cussion on the Sibson interpolant and its application for
solving second-order partial differential equations, the in-
terested reader can refer to Sambridge and Braun [19],
and Sukumar et al. [25]. The NEM interpolant is con-
structed on the basis of the Voronoi diagram (see Fig. 1).
The Delaunay tessellation is the topological dual of the
Voronoi diagram.

From now on, we focus only in the 2D case, the 3D
case being a direct extension. Consider a set of nodes
S = {n1, n2, . . . , nN} in �2. The Voronoi diagram is the
partition of �2 into regions Ti (Voronoi cells) defined
∀i ∈ S by:

Ti = {x ∈ �2 : d(x,xi) < d(x,xj), ∀j ∈ S; j �= i}, (1)

where d( ) denotes a distance. The Voronoi cells related
to neighbor nodes have a common edge.

In order to define the natural neighbour coordinates
it is necessary to introduce the second-order Voronoi di-
agram of the cloud defined for each couple of nodes
(i, j) ∈ S2 with i �= j as

Tij = {x ∈ �2 : d(x,xi) < d(x,xj) < d(x,xk),

∀k ∈ S; k �= i, j}. (2)

Sibson [24] defined the natural neighbor coordinates of a
point x with respect to one of its neighbors ni as the ratio
of the cell Ti that is transferred to Tx when adding x to the
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initial cloud of points, to the total volume of Tx. In other
words, if κ(x) and κi(x) are the Lebesgue measures of Tx

and Txi respectively, the natural neighbor coordinates of
x with respect to the node ni is defined as

φi(x) =
κi(x)
κ(x)

. (3)

Figure 2 illustrates the construction of φ1(x), that in this
case is given by:

φ1(x) =
Area(afghe)
Area(abcde)

. (4)

If the point x coincides with the node ni, i.e. (x = xi),
φi(xi) = 1, and all other shape functions are zero, i.e.
φj(xi) = δij (δij being the Kronecker’s delta). The prop-
erties of positivity, interpolation, and partition of unity
are then verified [25]:⎧⎨

⎩
0 ≤ φi(x) ≤ 1
φi(xj) = δij∑N

i=1 φi(x) = 1.
(5)

The natural neighbor shape functions also satisfy the local
coordinate property [24], namely:

x =
N∑

i=1

φi(x)xi (6)

which combined with equation (5), implies that the natu-
ral neighbor interpolant spans the space of linear polyno-
mials (linear completeness).

Sibson natural neighbor shape functions are C1 at any
point except at the nodes, where they are only C0. The
continuity can be enhanced by using special classes of nat-
ural neighbor shape functions [7].

Another important property of this interpolant is its
strict linearity over the boundary of convex domains. The
proof can be found in Sukumar et al. [25]. An illustration
is depicted in Figure 2b: as the areas associated to points
on the boundary become infinite, the contribution of in-
ternal nodes vanish in the limit when the point approaches
the convex boundary, and the shape functions associated
with nodes n1 and n2 become linear on the segment joining
both nodes (Sn1→n2). This result is essential to guarantee
strict continuity of the approximation across material in-
terfaces. The lack of this property is an important issue
in most meshfree methods which require special numerical
strategies to circumvent this drawback [14]. Nevertheless,
the property of linearity of the interpolant is only satisfied
along convex boundaries [25]. The non-convex case needs
further developments that will be addressed in the next
section.

Consider an interpolation scheme for a scalar function
u(x) : Ω ⊂ �2 → �, in the form:

uh(x) =
∑
i∈I

φi(x) ui (7)

n1
n2

x
a

b
c

d

e

f
g
h

x
n1

n2

Fig. 2. Construction of the Sibson shape functions.

where ui are the nodal values of the field u at the n(x)
neighbor nodes of point x, all them grouped in the set I,
and φi(x) are the shape functions at that point associated
with each neighbor node. It is noted that equation (7)
defines a local interpolation scheme. Thus, the trial and
test functions used in the discretization of the variational
formulation related to the electromagnetic model treated
in this paper could be approximated by equation (7).

2.2 The constrained natural element method

2.2.1 Constrained Voronoi diagram

It was proved in [25,29] and [4] that spurious influences
between “non-visible” nodes and loss of linearity in the
interpolation along boundaries of non-convex domains ap-
pear in the framework of the NEM. In order to avoid this
drawback and to recover all properties of the method for
any geometry (including non-convex domains containing
fixed or moving interfaces), a visibility criterion was intro-
duced in order to restrict influent nodes among natural
neighbors [29]. The computation of the shape functions
is then done on the basis of the so-called constrained (or
extended) Voronoi diagram (CVD), introduced by Seidel
in [22] which is the strict dual of the constrained Delaunay
triangulation.

To illustrate this behavior, we consider the situation
depicted in Figure 3, where the point x moves from Ω1

to Ω2. If x is in Ω1, the interpolated field is constructed
from equation (7) using the neighbor visible nodes from
point x (ΓI is assumed opaque). If x is on ΓI the inter-
polated field is strictly linear because it only depends on
the two neighbor nodes located on ΓI . Finally, when x is
in Ω2, the interpolated field is defined using the neighbor
nodes, visible from point x (ΓI being opaque). The con-
tinuity of the interpolated field is then guaranteed, but a
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Fig. 3. Reproducing discontinuous derivatives using the constrained Voronoi diagram.

discontinuity appears in the field derivatives, because of
a sudden change in the neighbor nodes across the inter-
face. Thus, we can then reproduce a continuous field with
discontinuous normal derivative across the interface.

The intersection between the constrained Voronoi di-
agram and the domain closure is composed of cells T C

i ,
one for each node ni, such that any point x inside T C

i is
closer to ni than to any other node nj visible from x. The
constrained Voronoi cells are defined formally ∀i ∈ S by:

T C
i = {x ∈ �n : d(x,xi) < d(x,xj);

∀j ∈ S, j �= i; Sx→ni ∩ Γ = ∅; Sx→nj ∩ Γ = ∅} (8)

where Γ is the domain boundary and Sa→b denotes the
segment between the points a and b.

All these constructions can be generalized to
3D [20,21].

2.2.2 The constrained natural element approximation

In order to solve partial differential equations defined on
non-convex domains, we consider the following approxi-
mation for both the trial and the test functions:

uh(x) =
∑
i∈IV

φC
i (x) ui

δuh(x) =
∑
i∈IV

φC
i (x) δui

(9)

where the set IV contains the V (x) natural neighbors
nodes visible from point x, and φC

i represents the con-
strained natural neighbor shape function related to the
ith node at point x. The computation of the C-n-n (con-
strained natural neighbor) shape functions is similar to
the natural neighbor ones, when one proceeds using the
constrained Voronoi diagram introduced previously. It was
proved in [29] that the use of the constrained Voronoi di-
agram does not affect the properties of the NEM interpo-
lation, allowing the extension of the linearity of the shape
functions on the convex domain boundaries, to any geom-
etry, convex or not.

The ability of the C-NEM to treat problems involving
cracks was illustrated in [29] and for moving interfaces

in thermal problems in [30]. In the present paper, the do-
main is partitioned in some regions with different material
properties. Each subdomain is discretized using a cloud of
nodes and the interfaces between the different regions are
described by a polygonal curve defined by a set of nodes.
Then, a constrained Voronoi diagram is defined in each
subdomain with respect to the domain boundary and the
interfaces. The attractive feature of the present technique
is the possibility to move the interfaces without special
care for the shape of the underlying Delaunay triangles
because the interpolation accuracy does not depend on
the geometrical quality of the Delaunay triangles, in con-
trast to the FEM. In this manner, the continuity of the
approximation is guaranteed by the strict linearity of the
interpolation across the interfaces, that are defined by a
set of interface nodes.

2.3 Taking into account movement

It is well known in the context of the FEM that frequent
remeshing procedures are required for accounting accu-
rately the rotation. To model the rotation of the electrical
machine different methods ara available. Remeshing can
be very simple when using a regular mesh. Thus, one must
shift the unknowns located on the boundary of the mov-
ing part. Nevertheless, the rotation step must be constant,
that can be a drawback if one wants to model a machine
working at variable speed.

To overcome this task, other methods are applied on
a slip line using an interpolation technique to obtain a
relation between the static and mobile unknowns. Thus,
the nodal values on the slip line of the mobile part are
expressed from the ones on the fixed part and then no ad-
ditional unknowns are introduced. The interpolation can
be linear, expressing a moving unknown from two static
unknowns [15]. It can be also quadratic [23] where three
static nodes are necessary to define the interpolation. An-
other more general approach is given by the “mortar”
method [17] which allows expressing the moving unknowns
as a function of all the static ones. The solution defined
on the moving surface is projected on the fixed one us-
ing the Galerkin technique. It is obvious that the “mor-
tar” method gives the best results but the size of the
linear system bandwidth increases significantly, in con-
trast with the two first techniques which do not increase
the linear system bandwidth but lead to less accurate
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solutions, in particular the linear interpolation. Still on
the slip line, Lagrange Multipliers can be considered [8].
This technique consists in introducing test functions for
minimizing the gap in the nodal values (related to moving
and static nodes) computed on the slip line. In this case all
the nodal unknowns must be computed, and consequently
the size of the linear system increases significantly and its
conditioning is degraded, like when interpolation methods
are used.

Other techniques use a special mesh in the air gap such
as the moving band [5]. In this method, the mesh is dis-
torted, due to the movement, until an unacceptable degree
of deformation. Then, the surface is re-meshed and the
nodal connectivity updated as in the locked step approach
(regular mesh in the air gap). Unfortunately some numer-
ical ripples can be observed on the torque when remesh-
ing is used. For the macro element technique, an analytic
solution is introduced in the air-gap [18]. However, the
associated linear system bandwidth increases too and the
analytic solution can be difficult to obtain for some kind of
machines. Finally the overlapping method uses two meshes
in the air-gap [27]. One mesh is associated to the static
part and the whole air-gap region. A Dirichlet condition is
imposed at the nodes of the mesh that belong to the mo-
bile part. The same operation is carried out with a second
mesh (that contains the mobile part and the air-gap) pre-
scribing the field at the nodes located in the static domain.
Thus, two different meshes cover the air gap. This method
leads to very accurate results but the mesh computation
in the airgap requires significant efforts.

In the C-NEM context, accounting for movement is
quite natural and very simple to implement. One could
just move the nodes defining the interface because the ge-
ometrical quality of the resulting Delaunay triangles does
not affect significantly the accuracy of the resulting ap-
proximation. In the simulations reported in this work we
decided to rotate all the nodes within the inner airgap
circle. Then the constrained Voronoi diagram is updated
and the interpolation shape functions computed again.

3 Simulating rotating electrical machines

To test the capability of the C-NEM to model rotating
electrical machines, we consider a 6–4 Variable Reluctance
Machine (VRM). The calculation of the torque for each
relative position between stator and rotor, that is parame-
trized using the angle θ, is a very tricky problem because
for computing the torque (as we explain later) one must
proceed in the air gap region where sharp angles due to
the presence of rotor and stator teeth are encountered. If
the mesh is not regular and fine enough, parasitic ripples
can appear in the computed torque (as illustrated later)
when one proceeds in the finite element framework.

In Figure 4, a 3D view of the machine is given, as well
as the 2D model that is solved. The domain under study
is a cross section of the machine defined as Ω = {(x, y) :
x2 + y2 < R2

ext}, being Rext the stator external radius.
The stator has 6 teeth and holds three phase windings.
Each one is composed of two coils that are wound around

stator

rotor

air

coil

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

+J +J

- J - J

Fig. 4. (Color online) Scheme of a rotative electromagnetic
machine: 3D and 2D views (units in metric system). In the
bottom figure we can see the regions where the current density
is non zero (in red and blue). Only one phase among the three
phases is supplied.

one tooth. In our study only one phase is supplied by
a DC current. Two regions are then defined the first is
flown by a current density +J and the other by a current
density −J (|J | = 1 Amm−2) (see Fig. 4). Elsewhere the
current density is equal to zero. The eddy currents are also
neglected.

The electromagnetic field distribution can be calcu-
lated by using either the vector potential or the scalar
potential formulations. To introduce the notations we con-
sider the basic electromagnetic equations:{∇B = 0

∇× H = J (10)

where B is the magnetic flux density, H the magnetic field
and J the current density. There is a constitutive equation
that links B and H that writes

B = μ H (11)

where μ > 0 represents the magnetic permeability.
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On the boundary ∂Ω of Ω we assume that the normal
component of B vanishes, that is, Bn = 0, where n is the
unit outwards vector defined on ∂Ω.

A field B is said admissible, Badm, if it verifies the first
relationship in (10). Analogously, a field H is said admis-
sible, Hadm, if it verifies the second relationship in (10).
Obviously a couple (Badm,Hadm) that verifies the consti-
tutive equation (11) is the exact solution of the electro-
magnetic problem.

In the 2D problem that we are analyzing we can as-
sume that the magnetic flux density has a zero out-of-
plane component, that is Bz = 0, that implies that it ex-
ists a field A, with components AT = (0, 0, Az) = (0, 0, A)
such that B = ∇ × A. Thus the magnetic field can be
defined everywhere using the constitutive equation (11):
H = ∇ × A/μ, that introduced in the second relation
of (10) leads to the 2D vector potential formulation:

{
−∇

(
1
μ∇A

)
= J in Ω

A = 0 on ∂Ω
(12)

where the vector current density J has only a z-
component, i.e. JT = (0, 0, Jz) = (0, 0, J), with both A
and J independent on the z-coordinate.

Obviously, by construction, its solution allows to define
an admissible magnetic flux density Badm that will be
referred as BA. The associated magnetic field writes HA =
BA/μ.

In the same way, another complementary potential for-
mulation can be introduced. Let Hs be a field such that
∇× Hs = J. Since H− Hs is curl free, we can introduce
a scalar potential ω such that:

H = Hs −∇ω. (13)

Then, the equation to be solved can be written:
{−∇ (μ ∇ω) = −∇ (μ Hs) in Ω

μ (Hs −∇ω)n = 0 on∂Ω.
(14)

This formulation leads to the admissible magnetic field
denoted by Hω, but the associated magnetic flux density
B = μHω is not admissible anymore because it does not
verify ∇B = 0. It will be denoted in what follows by
Bω = μ Hω.

In the electromagnetic system here considered the per-
meability of the ferromagnetic part (stator and rotor) is
assumed to be constant μs = μr = 4π × 10−4 Hm−1

(saturation and hysteresis effects are neglected) and the
permeabilities of the air and of the coil are μa = μc =
4π × 10−7 Hm−1.

The weak formulation related to equation (12) results:
Find A ∈ H1

0 (Ω) such that

∫
Ω

1
μ
∇A∇δA dΩ =

∫
Ω

J δA dΩ, ∀δA ∈ H1
0 (Ω) (15)

where H1
0 (Ω) is the usual Sobolev functional space.

In the same way the weak formulation related to equa-
tion (14) writes:∫

Ω

μ∇ω∇δω dΩ =
∫

Ω

μHs∇δω dΩ, ∀δω ∈ H1(Ω).

(16)
In Figures 5–7 we can observe the cloud of nodes consid-
ered for the discretization of the electromagnetic equations
as well as the associated Voronoi cells. The interfaces be-
tween the different regions are described by a polygonal
curve defined by a set of nodes (thick lines in Fig. 7). In
order to appreciate the nodal refinement in the air gap
between stator and rotor we depict in Figures 6 and 7
two zooms of this area. We can observe that a constrained
Voronoi diagram has been associated with each subdo-
main Ωs (stator), Ωc (coil), Ωa (air) and Ωr (rotor) with
respect to the corresponding interfaces. Thus, the continu-
ity of A and ω across the interfaces is guaranteed, allow-
ing the discontinuity of the tangential component of the
magnetic flux density across the interface, as discussed
previously. Let D0 be the disk centered on the shaft of
the electrical machine and with a diameter equal to the
diameter of the rotor as it was reported at the end of Sec-
tion 2. For accounting a rotation Δθ of the rotor all nodes
within D0 rotates of that angle Δθ. At each rotation step,
the constrained Voronoi diagram has to be updated, allow-
ing the computation of the approximation shape functions
and then the discretization of the variational formulations
(Eqs. (15) and (16)).

Thus, substituting the trial and test functions (both
approximated in the C-NEM framework) in the above
variational formulations and using the arbitrariness of the
fields δA and δω, the following linear system of equations
is obtained for the vector potential formulation:

KA(θ) A(θ) = FA(θ) (17)

and for the scalar potential formulation

Kω(θ) ω(θ) = Fω(θ) (18)

where θ refers the relative position between stator and
rotor, A(θ) the vector containing the nodal values of the
vector potential field for that relative position θ, and ω(θ)
the vector containing the nodal values of the scalar poten-
tial at position θ.

The associated torque can be calculated from:

C(θ) =
∫ 2π

0

R Ft(θ, R, ϕ) dϕ (19)

where R is the radius of a circle completely defined in
the air gap, and Ft the tangential component of the elec-
tromagnetic force density F that is computed from the
Maxwell stress tensor. Thus, during a complete turn, the
torque varies and due to the localization of the potential
gradients significant oscillations appear when the torque is
computed using a coarse mesh in the finite element frame-
work if no remeshing is performed, as we illustrate later.

Figure 8 depicts, for 4 relative positions between the
rotor and the stator (θ1 = 0◦, θ2 = 15◦, θ3 = 30◦ and
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Fig. 5. (Color online) 2D scheme of a rotative electromagnetic
machine partitioned with constrained Voronoi cells.

Fig. 6. (Color online) 2D scheme of a rotative electromagnetic
machine: detail.

Fig. 7. (Color online) 2D scheme of a rotative electromagnetic
machine: detail.

θ4 = 45◦), the flux path-map given by the vector po-
tential formulation when the phase indicated in Figure 4
(bottom) is supplied with a DC current.

In order to compare the solutions related to different
approximation schemes, we are using an appropriate error
estimator based on the verification of the constitutive re-
lationship. This error estimator was introduced in [26] and
is often used to estimate numerical errors in static electro-
magnetism. This estimator was recently used to compare
finite element and meshless natural element solutions in
the case of magnetostatics (without taking into account
movement) in [3]. In the present work we are applying
this estimator in order to compare both methods when
the movement is also taken into account. This estimator

Fig. 8. (Color online) Vector potential field A(x) for four
different rotor positions (θ1 = 0◦, θ2 = 15◦, θ3 = 30◦ and
θ4 = 45◦).

is defined by:

eB = ‖Badm − μHadm‖ = ‖BA − Bω‖ (20)

where ‖v‖ =
∫

Ω
(vv)/μ dΩ.

It was proven in [26] that this error corresponds to
the distance between the averaged magnetic flux density
B = 0.5 (Badm + μHadm) and the exact field Bex.

Obviously we can define an equivalent error norm op-
erating on the magnetic fields:

eH =
∥∥∥∥Badm

μ
− Hadm

∥∥∥∥ = ‖HA − Hω‖. (21)

A more appropriate expression for the error consists of
normalizing the previous expressions. In that follows a rel-
ative error will be computed by using

E2
H = 2

‖HA − Hω‖2

‖HA + Hω‖2
(22)

or by using the equivalent norm:

Ê2
H = 2

‖HA − Hω‖2

maxθ‖HA + Hω‖2
. (23)

As described previously the torque can be computed as
soon as the fields are available. However, these fields can
be computed by using either the vector potential formula-
tion or the scalar potential one. The resulting torques will
be denotes by CA and Cω respectively.

Obviously all these fields, HA and Hω and the scalars
CA and Cω , depend on the relative position between the
rotor and stator. To define a torque relative error we must
be careful because the torque vanishes for some rotor po-
sitions. To overcome this difficulty we could integrate the
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Fig. 9. (Color online) Error in the magnetic field by using the FEM, the C-NEM and the mixed FEM-NEM discretizations
calculated with a cloud of 400 000 nodes.

different norms in the angular coordinate defining the ro-
tor position:

Ẽ2
C = 2

∫ π
4

0
|CA(θ) − Cω(θ)|2dθ∫ π

4
0 |CA(θ) + Cω(θ)|2dθ

(24)

where the integration domain is reduced to θ ∈ [0, π
4 ] by

symmetry considerations.
One could expect that the main differences between a

finite element and a natural element solutions should be
located in the air gap where due to the rotor movement
the finite element mesh becomes very distorted. Of course
in a precise implementation of the finite element method
the mesh is updated locally or globally to avoid too dis-
torted elements. However, in this work we have decided
to proceed with the same cloud of nodes to perform both
discretizations, the one using the FEM and the other the
C-NEM. Thus, a linear finite element interpolation will be
applied directly on the Delaunay’s triangulation to obtain
de finite element shape functions. The same triangulation
was also considered to define the Voronoi diagram used to
computed the C-NEM interpolation functions.

As the C-NEM becomes piecewise linear on the do-
main boundary or on any internal interface, as previously
illustrated, one could define two interfaces, the first one
located on the rotor external radius, and the other one
on the internal stator radius. Thus, the region in between
both radii defined the air gap, where a maximum mesh
distortion is expected. It seems natural that an appealing
choice for the interpolation in that region would consist
of using the C-NEM approximation. On the other hand,
because the CPU time related to the construction of the
C-NEM shape functions is much more higher that the one

required to define the finite element approximation, one
could prefer to use in the other two remaining regions
a linear finite element discretization constructed on the
Delaunay triangulation. In this way, both interpolations
connect perfectly on the interfaces between the differ-
ent regions. The mixed discretization strategy uses the
C-NEM in the air gap and the FEM in the remaining do-
main.

Figure 9 depicts the evolution of ÊH(θ) for the three
functional approximations: FEM, C-NEM and the mixed
FEM/C-NEM, where by symmetry considerations θ varies
in the interval θ ∈ [45◦, 90◦]. These solutions were com-
puted using a cloud of 400 000 nodes.

Now, we compute the torque for different rotor
positions θ ∈ [45◦, 90◦], different formulations (vector po-
tential and scalar potential), different discretization tech-
niques (C-NEM, FEM and mixed FEM-NEM) and differ-
ent nodal densities.

Figure 10 compares the computed torques C(θ) using
both potential formulations and the different discretiza-
tion techniques (the FEM, the C-NEM and the mixed
strategy), when a cloud of 6755 nodes was considered.
Figures 11–13 compare the different formulations and
discretization techniques when a cloud of N = 27 046,
N = 106 804 and N = 419 116 nodes are considered re-
spectively.

We can notice that for coarse meshes the FEM gen-
erates the expected spurious oscillations whereas the
C-NEM solution looks significantly less perturbed. All
these solutions come close as the number of nodes in-
creases, illustrating the convergence of all the used for-
mulations. The mixed FEM/C-NEM solution shows less
oscillations than the finite element solution, being its
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Fig. 10. (Color online) Computed torque using the vector and scalar potentials, different discretization techniques
and 6755 nodes.
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Fig. 11. (Color online) Computed torque using the vector and scalar potentials, different discretization techniques
and 27 046 nodes.
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Fig. 12. (Color online) Computed torque using the vector and scalar potentials, different discretization techniques
and 106 804 nodes.
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Fig. 13. (Color online) Computed torque using the vector and scalar potentials, different discretization techniques
and 419 116 nodes.
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Fig. 14. (Color online) Convergence analysis for the magnetic field.
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Fig. 15. (Color online) Convergence analysis for the torque.

associated computing cost similar to the one related to
the finite element solution.

Finally, we quantify the convergence rates for both
the magnetic field and the torque. Concerning the mag-
netic field we consider a particular position of the rotor, in
our simulation θ1 = 0◦, evaluating the error according to
equation (22) for different nodal densities. The resulting
error evolution is depicted using a log–log scale in Fig-
ure 14, where the norm (22) was used. The slope of this
representation corresponds to the convergence rate, that
for both the C-NEM and the linear FE interpolation here
considered is expected to be one for the energy norm here
considered. We can notice that despite the same conver-

gence rate that both discretizations exhibit, the C-NEM
accuracy is significantly better. The convergence rate of
the mixed formulation is also first order and its accuracy
is in between the ones related to the FEM and the C-NEM.

Figure 15 depicts the results associated with the torque
convergence analysis, where the error is computed accord-
ing to equation (24). The conclusions are similar to the
ones just addressed in the magnetic field convergence anal-
ysis. One can notice that the mixed solution is a bit less
accurate that the C-NEM solution, but it is much better
that the FEM one. However, the computing time related
to the mixed solution is very close to the one associated
with the FEM.

11



4 Conclusions

In this paper the constrained natural element method
has been applied for simulating electromagnetic rotative
machines. The use of the aforementioned technique al-
lows to alleviate the difficulties related to remeshing in
the finite element context, improving significantly the so-
lution accuracy. A method combining the versatility of the
FEM and the robustness of the meshless natural element
method to take into account the movement has been pro-
posed and tested. It seems that this combination is a good
compromise between computing time and accuracy.

The extension to 3D geometries and the nodal den-
sity adaptation using appropriate error estimators are in
progress.
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