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The effects of filtration on the injection of cement-based
grouts in sand columns

Olivier Chupin · Nadia Saiyouri · Pierre-Yves Hicher

Abstract This article presents injection experiments and modeling of cement based grout
in sand. In particular, it focuses on the role of filtration during the sand impregnation by
the grout. One-dimensional injection tests in sand columns are performed. In these, the
mass intake of the sample and the injection pressure are measured to quantify the effects
of filtration during grouting. The cement-to-water ratio of the grout and the initial density
of the soil are also studied. The modeling of these tests is achieved by incorporating the
filtration and the damage coefficients in the classical transport in porous media equations.
A method is proposed to determine these coefficients. The method simultaneously relies on
both analytical analysis and experimental measurements. Density and viscosity effects are
also considered in the model equations which are solved using the finite element method.
The simulation of an injection test proves that the model is suitable to recover the injection
pressure obtained experimentally. Finally, both experimental and numerical results reveal
the importance of including filtration when analyzing one-dimensional injections of cement
based grouts in sand.

Keywords Grouting · Deep bed filtration · Flow · Transport · Finite element method

1 Introduction

This article deals with grouting experiments and modeling. The injection or grouting tech-
nique is an engineering process, which consists in injecting grout under pressure into a soil
in order to improve its strength or to reduce its permeability. The result of this treatment is
obtained after the grout has hardened. This is a traditional process but, for environmental
reasons, former chemical grouts have been recently replaced by cement-based ones. By
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nature, those are composed of particles that can be responsible for the appearance of
filtration phenomenon during the grout propagation within a soil. Until recently, filtration was
not integrated to studies about grouting. Only few papers on this subject are available in the
literature (Saada et al. 2005; Bouchelaghem and Vulliet 2001a; Eriksson et al. 2000; Schwarz
1997), and more investigations are needed to better understand the role of this phenomenon
during injection.

From a general point of view, different kinds of filtration can be encountered when a fluid
transporting particles flows in a porous material. They are enumerated in McDowell-Boyer
et al. (1986). However, with the grading curves of the grout and soil used in this article,
only deep bed filtration is considered. The latter appears, when the particles of a suspension
are small enough to flow through a porous medium. Some of them just keep trapped into
the medium under either mechanical or physicochemical forces (Herzig et al. 1970 cited by
Dulien 1979), leading to a modification of the flow regime. According to the same authors,
the physicochemical and mechanical forces may have simultaneous contributions to filtration
for particles whose diameter is in between 1 and 30 µm.

In this framework, a mathematical model is presented to simulate grouting tests. It is
based on the continuum description of a multi-phase system, as detailed in Bear and Bachmat
(1991) and Hassanizadeh and Gray (1979). The proposed model depends on two filtration
parameters, namely the filtration and the formation damage coefficients (Herzig et al. 1970;
Isawaki 1937). Dispersion effects are included through a relation proposed by Bear (1972).
Other types of approaches are presented in Tarafdar et al. (1992) and Rege and Fogler (1988).
The filtration parameters are assumed to be constant. They are determined by using the
analytical solution of the model equations in a simplified case and one-dimensional injection
tests. A similar procedure which relies on several pressure drop measurements in a sand
sample and an analytical solution of the flow problem is adopted in Bedrikovetsky et al.
(2001).

One-dimensional injection tests in sand columns are also exposed in this article. The mass
intake of the sample and the injection pressure are measured during those experiments to
exhibit filtration effects during grouting. The influence on the tests of the cement-to-water
ratio of the grout and the initial density of the soil is also studied. As already mentioned, in
addition to providing information about the consequences of filtration during grouting, these
tests are used for the determination of the filtration parameters.

Finally, the model equations of the general nonlinear and coupled problem are solved
numerically. A code based on the finite element method is developed. It involves many
numerical methods to overcome all the challenges inherent to the resolution of coupled flow
and transport problems with possible density effects. These are mentioned in Diersch and
Kolditz (2002). An injection test is simulated by using the developed code. To assess the
ability of the model to predict experimental data, the injection pressure obtained numerically
is compared to the one measured during the test.

2 Mathematical model

A two phase medium composed of a rigid skeleton and a fluid phase is considered.
Initially, the whole pore space is saturated with one fluid. Taking filtration into account,
the transport of a suspension miscible with the existing fluid medium is modeled over a time
period J = [0, T ]. The medium is denoted � ∈ R

d , d = 1, 2, 3; it has a smooth boundary
∂�. The proposed model is based on the advection–dispersion equation in porous media.
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The advection part is related to the mean flow velocity expressed by the Darcy law

q = φv f = − k
µ f

(∇ p − ρ f g), (x, t) ∈ � × J, (1)

where q is the Darcy velocity and v f represents the fluid velocity with respect to a fixed
coordinate system. Superscript f refers to quantities of the fluid phase. k is the permeability
tensor, p the pore pressure, µ f the viscosity of the fluid phase, ρ f the density of the fluid
phase, φ the porosity, and g the gravity. The dispersion effects related to the transported
species, including molecular diffusion, are approached through a relation proposed by Bear
(1972)

D = aT |q|I + (aL − aT )
q

⊗
q

|q| + φDdT, (x, t) ∈ � × J, (2)

where D is the hydrodynamic dispersion tensor, aL denotes the longitudinal dispersion co-
efficient and aT the transversal one, Dd is the molecular diffusion coefficient and T is the
tortuosity.

Due to filtration, the initial permeability of the medium is physically reduced during the
transport of a suspension, and thus modeled by the hyperbolic function (Isawaki 1937) below:

k(x, t) = k0

1 + βχ
, (x, t) ∈ � × J. (3)

Equation (3) depends on the damage coefficient, β, and the concentration of the filtrated
particles, χ . A similar law is suggested by Saada et al. (2005) for the porosity of the medium
in the context of grouting.

The mass balance equation for the transported suspension

φ
∂c

∂t
+ ∇ · (cq) − ∇ · (D∇c) = −λ|q|c, (x, t) ∈ � × J, (4)

accounts for mass exchanges between the transported and the filtrated particles via the right
hand side term of (4). c denotes the concentration of the transported component (mass of
component per unit volume of fluid), and λ is the filtration coefficient. The evolution of the
concentration of the filtrated component, χ

φ
∂χ

∂t
= λ|q|c, (x, t) ∈ � × J, (5)

is proportional to this coefficient, and is expressed as a function of the concentration of the
transported component and the mean velocity of the fluid phase.

The flow equation
∇ · q = 0, (x, t) ∈ � × J, (6)

is obtained from the total mass balance of the whole fluid phase by considering the Boussinesq
assumption. The latter consists in neglecting all density dependencies in the balance terms,
except for the buoyancy term, ρg which is retained in the Darcy equation. The compressibility
of the fluid phase is thus neglected in (6). Finally, the evolution laws below:

ρ f = ρ f (x, t), µ f = µ f (x, t), (7)

3



Fig. 1 Grading curve of the Loire river sand

enable to take into account the evolution of the fluid phase properties. The expression of
these laws are specified in Sects. 4 and 5.

3 One-dimensional grouting experiments

This section provides information about the filtration appearing during the injection of a
cement-based grout in a granular material by analyzing the influence of two key parameters:
the medium density and the cement-to-water mass ratio (C/W ) of the grout. Nowadays, the
grouting engineering process is performed by injecting this kind of grout in soils and the
filtration induced by the particles in suspension in the grout remains a point to be clarified.

Injection tests are performed at a constant inflow rate from the bottom to the top of
a transparent tube of height 1.0 and 0.1 m in diameter filled with Loire river sand whose
properties are given in Dano et al. (2003). This sand is composed of sub-rounded particles
and elongated shell fragments. Its grading curve is plotted in Fig. 1.

Typically, during an injection test, the cement particles are intercepted by the porous
medium resulting in a transient reduction of the medium permeability. Consequently, as far
as a constant inflow rate is maintained, the pore pressure increases even after the grout has
saturated the sand column. This is obviously not true for a fluid without particles and the
pore pressure can be used to quantify the filtration effects. In order to measure the injection
pressure, a transducer is located at the bottom of the column. Moreover, the effluent fluid mass
is weighted at the outlet of the tube. The mass intake of the sample also provides indications
on the amount of filtrated particles. It is deduced by subtraction of the inlet and the outlet
masses of the flowing fluid. The experimental set-up is shown in Fig. 2.

Prior to the grouting phase the sand sample is saturated with water. The filling procedure
of the tube must permit to control the global density of the medium. Therefore, the sand
is deposited by successive layers of about 0.1 m whose density is controlled by a number
of hammer knocks applied at the surface of the column. The permeability of the resulting
sample is measured using a constant-head permeameter. The good repeatability of the filling
procedure in terms of permeability measurements proved the reliability of the method.

The patented grout used for the tests is composed of a very-fine cement (Spinor A12),
water, a plasticizer additive, and an inert charge. The cement particle diameter is lower than
12 µm (Table 1) and media with permeability below 10−4 m/s can be injected using this grout.
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Fig. 2 Experimental set-up for the injection tests

Table 1 Grain sizes of the
injected grout

Grain size D15 D30 D50 D60 D90 Dmax

Value (µm) 1 2 3.5 4.5 8 12

Table 2 Characteristics of the
injection tests

Test Initial soil density Porosity C/W Grout density
(×1,000 kg/m3) (×1,000 kg/m3)

Injection11a 17.22 0.34 0.28 1.36

Injection11b 17.30 0.34 0.28 1.36

Injection12a 17.20 0.34 0.42 1.41

Injection12b 17.24 0.34 0.42 1.41

Injection21a 18.16 0.31 0.28 1.36

Injection21b 18.06 0.31 0.28 1.36

Injection22a 18.14 0.31 0.42 1.41

Injection22b 18.19 0.31 0.42 1.41

Two granular media with a different porosity are injected by using two grouts of different
C/W ratio. Each experiment is conducted twice to ensure the reliability of the results. The
test properties are summarized in Table 2.

Figure 3 shows the evolution of the injection pressure and the mass intake with respect
to time for each test. As mentioned by Saada et al. (2005), the mass intake of the sample
exhibits two distinct kinetic phases (Fig. 3a, c, e, g). The first one lasts up to few seconds after
the saturation time (tsat) which corresponds to the grout arrival in the outlet flow. During this
phase, the grout is progressively mixing in the water that initially saturated the pore space.
The second phase (t > tsat) is due to filtration only and results from the continuous capture
of grout particles by the porous medium. It shows a lower rate than the first phase. For the
comparison of the different curves (pressure and mass intake) in terms of filtration we are
interested in their second phase appearing when the pore space is entirely filled up with grout
(t > tsat). From this time, a fluid without particles would reach a permanent flow regime
with no more pressure or mass evolution.
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Fig. 3 Mass intake of the sand column and injection pressure vs. time
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Concerning the grout composition, the greater the C/W ratio the higher the injection
pressure required to maintain a constant inflow rate. This is noticeable in Fig. 3 by compa-
ring curves (b)–(d) or (f)–(h). The same conclusion holds for the weight gain of the sand
sample which is more important for high C/W ratios (comparison of Fig. 3a–c, e–g). Concer-
ning the medium characteristics, though only dense sands are tested, we noticed slightly
higher pressure for the samples having the highest density at a given C/W ratio (comparison
of Fig. 3b–f, d–h). Note that the porosity should be higher for low density, which would
explain some difference. The mass intake is quite similar for both of the tested media when
C/W = 0.28 (Fig. 3a, e). Nevertheless, the slope of the mass evolution curve after saturation
is higher in Fig. 3g than in Fig. 3c (caution: different scales) indicating that the mass intake
rate increases with the initial medium density for a given C/W ratio.

To sum up, the C/W ratio and the initial density of the medium have both an impact on
the filtration process which is more important for large C/W ratios and for high densities.
Although Fig. 3a, e are close, the corresponding pressure illustrated in Fig. 3b,f are quite
different. Even if the filtration effects seem to be insignificant in term of mass intake of the
column, they can lead to large pore pressure variations. Note that at the saturation time, the
injection pressure of Fig. 3b, f are almost the same.

4 Determination of the filtration parameters

The model presented in Sect. 2 depends on two filtration parameters: λ and β. These are
determined using the injection tests presented above and the analytical solution of the
mathematical model in a simplified one-dimensional case. This procedure is subject to some
assumptions and can be applied only once the saturation time is reached. First, only the
advection part is considered in the transport equation, i.e., without dispersion effects. Se-
cond, we assume that the fluid phase viscosity remains constant after the saturation and that
the density effects are negligible.

Under these conditions, the following analytical solution of the problem

c(x, t) = cmu

(

t − xφ

q

)

exp(−λx); u

(

t − xφ

q

)

=
{

0 if t < xφ/q
1 if t ≥ xφ/q

(8)

χ(x, t) = λqcm

φ

(

t − xφ

q

)

exp(−λx), if t ≥ xφ/q, (9)

is calculated in terms of transported and filtrated component concentrations. The boundary
condition, c(0, t) = cm , is used in the determination of (8). To compute the integration
constant in (9), it is assumed that the concentration of the filtrated particles vanishes at the
grout front position, given by the equation: t = xφ/q. Obviously, the concentration of the
filtrated particles is also zero when t < xφ/q since, at this time, the injected fluid has not
reached the location where the solution is searched.

Then, based on the expressions obtained above, the analytical mass intake of the sample
is deduced from the equation of state of the fluid phase. The latter is assumed to read:

ρ f (x, t) = ρ
f

0

[
1 + βc(c − c0) + βχ(χ − χ0)

]
, (x, t) ∈ � × J. (10)

In (10), the subscript 0 indicates that the quantity under consideration is taken at the initial
time, t = 0. βc and βχ denote the coefficients of concentration that introduce the effect of the
change of density as a result of a change in concentration of the transported suspension and
the filtrated particles, respectively. Equation (10) implicitly means that the concentration of
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the filtrated particles is expressed as a number per pore volume. In other words, the filtrated
particles remain in the fluid phase in a trapped state (Sharma and Yortsos 1987), and they
are not considered to be attached to the skeleton. This assumption enables to keep a constant
porosity in calculations and, thus, a constant volume of the fluid phase. Then, the analytical
mass intake is easily computed as long as the average density of the fluid phase is known.
The latter is calculated by using (8) and (9), and by integrating (10) over the considered
one-dimensional domain [0, l]. Note that the integration over the whole domain is possible
for t > xl/q, i.e., after the saturation. The total fluid mass is deduced as a function of time,
and the mass difference (δm) between two time steps (δt) is written:

δm = φVcol

(

1 − ρw

ρχ

)
qcm

φl

[
1 − exp(−λl)

]
δt. (11)

ρw and ρχ are the densities of the water and the filtrated particles, respectively. φVcol denotes
the volume of the fluid phase. λ is the only unknown of (11) which is a linear function of time.
As noticed during the injection tests, the mass of the sample after the saturation also varies
linearly with time (see Fig. 3a, c, e, g). Consequently, the parameter λ can be determined
from (11) and the experimental mass intake rate (	m/	t) after saturation, i.e., when the
mass intake is only influenced by filtration.

To determine the second filtration parameter, the Darcy law is integrated over [0, l]
respecting the condition t > xl/q. The following equation:

∫ l

0
(1 + βχ)dx = l + βqcm

φ

[
1 − exp(−λl)

]
t

+ βcm

[

l exp(−λl) + exp(−λl) − 1

λ

]

= −K0 (ϕ(l) − ϕ(0))

µq
, (12)

which depends on β and λ is obtained. (12) is a linear function of time, and, as far as λ is
computed first, β can be estimated using the experimental slope of the curve

K0 (ϕ(l) − ϕ(0)) /µq = f (t). (13)

ϕ is the total hydraulic head.

5 Simulation of injection tests

A numerical algorithm is used to simulate the injection tests. Both viscosity and density
effects are considered. The algorithm is based on several methods that enable overcoming the
challenges encountered when solving flow and transport in porous media equations (Frolkovic
and De Shepper 2001; Ackerer et al. 1999; Kolditz et al. 1998; Oldenburg and Pruess 1995;
Pinder and Cooper 1970; Simpson and Clement 2003, or Voss and Souza 1987).

For a sake of conciseness, the numerical algorithm is explained by using the following
formulation

L(u) = mT ∂(gT u)

∂t
+ ∇ · f − b = 0, (x, t) ∈ � × J, (14)
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of the coupled set of partial differential equations. Appropriate boundary conditions along
∂� and an initial condition on �

⋃
∂� are required to solve (14). The following definitions

u =
⎧
⎨

⎩

p
c
χ

⎫
⎬

⎭
, g =

⎧
⎨

⎩

0
1
1

⎫
⎬

⎭
, m =

⎧
⎨

⎩

0
φ

φ

⎫
⎬

⎭
, f =

⎧
⎨

⎩

q
cq − D∇c

0

⎫
⎬

⎭

b =
⎧
⎨

⎩

0
−λ|q|c
λ|q|c

⎫
⎬

⎭
,

(15)

are used in (14). The problem is discretized in time by finite differences using the classical
trapezoidal rule (or θ -rule) and in space by the finite element method (FEM). The θ -rule
applied to (14) yields

mT

(
gT u

)n+1 − (
gT u

)n

	t
= − [

θ∇ · (f)n+1 + (1 − θ)∇ · (f)n]

+ θbn+1 + (1 − θ)bn, (16)

where n represents the time level and 	t is the time step increment. The streamline upwind
Petrov/Galerkin (SUPG) method (Brooks and Hughes 1982) is used in the spatial discretiza-
tion of the transport equation to avoid numerical diffusion and oscillations due to advection
dominance. Its implementation is checked in Chupin et al. (2004). The discrete system that
ensued from the FEM formulation can be written in the general form

A(Un+1)Un+1 − Fn+1 = 0, Un+1 =
⎧
⎨

⎩

pn+1

cn+1

χn+1

⎫
⎬

⎭
, (17)

where Un+1 contains the discrete state variables at time n + 1 and A is the coefficient matrix
of the discretized system. (17) is a nonlinear system that can be solved either by standard
nonlinear methods (e.g., Newton–Raphson method) or in sequences with an outer iteration.
The second choice is selected, and the Gauss–Seidel type algorithm (Langtangen 1999) for
systems of nonlinear PDE’s is retained. It consists in solving the initial system within an
iterative procedure for each state variable separately, leading to a decoupled resolution. For
example, if k denotes the iterative index, the flow equation is first solved with respect to pk,n+1

considering the other state variables at the previous iteration, k − 1. The system relative to
the flow equation reads:

[
App Apc Apχ

]n+1
pk ,ck−1,χk−1

⎧
⎨

⎩

pk

ck−1

χk−1

⎫
⎬

⎭

n+1

= {
Fp

}n+1
. (18)

The following expressions

App =
∫

�

∇WT
(

k
µ f

)

∇N d�, Apc = 0, Apχ = 0, (19)

Fp =
∫

�

∇WT
(

k
µ f

)

ρ f g d� + Boundary Conditions, (20)

are used in (18) which is a simple system in the present case. More complex systems can
be solved by the numerical algorithm which is designed to also handle multidimensional
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Fig. 4 Evolution of (k0 (ϕ(l) − ϕ(0)) /µq) vs. time for Injection22

problems where, for example, Apc and Apχ are not equal to zero. In (20), Boundary Condi-
tions include both Neumann or Robin types, and W is the FEM weighting function. Once the
solution of (18) is known at iteration k, the transport and the filtration equations are solved
with respect to ck,n+1 and χk,n+1, respectively, by using the most recently computed state
variables. The nonlinearities remaining at the decoupled level are handled with the Picard
method. Iterations of the Gauss–Seidel method stop when a convergence criterion is fulfilled.
According to Darcy’s law, the velocity is deduced from the pressure gradient. To avoid incon-
sistency in the velocity approximation (Diersch and Kolditz 2002), a smoothing technique,
namely the Moving Least-Squares (MLS) technique, is used to derive the velocity field. This
technique consists of fitting a linear or a quadratic polynomial to the discrete values of a
finite-element field.

Injection22 (Table 2), which exhibits the strongest filtration effects among all the tests
performed is simulated.

Before running the calculation, the filtration parameters have to be determined. This is
done by applying the procedure described in the above section and by using Figs. 3(g), 4,
which represents the evolution of (13) in time. The obtained filtration parameter values are:

λ = 0.1217 m−1, β = 7.57 × 10−3 m3/kg. (21)

For the determination of λ and β, ρχ is chosen equal to the cement grain density (ρχ = 2,930
kg/m3).

Without precise information about the evolution of the viscosity with regard to the grout
concentration within the suspension, a linear law

µ f (x, t) = (
µg − µw

) c

ρg
+ µw, (x, t) ∈ � × J, (22)

is assumed. µg and ρg are the viscosity (measured with a rheometer) and the density of
the grout, respectively. µw is the viscosity of the water. The domain is discretized by 100
elements of equal length and the time step is set to 1 s. The parameter values used in the
simulation are summarized in Table 3. The boundary conditions are as follows:

c(0, t) = ρg,
∂c

∂x
(l, t) = 0, q(0, t) = qimp, p(l, t) = 0. (23)
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Table 3 Parameter set used in
the simulation of Injection22

Quantity Notation Value

Porosity φ 0.308

Permeability K0 1.75 × 10−11 m2

Density of the grout ρg 1,410 kg/m3

Viscosity of the grout µg 4.83 × 10−3 Pa.s

Imposed specific discharge qimp 7.5 × 10−4 m/s

Coefficient of longitudinal dispersion aL 1.0 × 10−3 m
Coefficient of molecular diffusion Dd 1.0 × 10−10 m

Concentration coefficient of transpor-
ted particles

βc 2.91 × 10−4

Concentration coefficient of filtrated
particles

βχ 6.59 × 10−4

Fig. 5 Evolution of the injection pressure vs. time for Injection22

The entire Injection22 is simulated. Both pre- and post-saturation phases are studied. Note that
the post-saturation phase is only considered in the determination of the filtration parameters.
A simulation of Injection22 without including filtration (λ = β = 0) is also performed.
These two simulations (with and without filtration) are confronted to the experimental data
in terms of injection pressure. The resulting curves are illustrated in Fig. 5. The simulation
without filtration is represented by a dotted line and the results including filtration comprise
triangular markers. In the first case (λ = β = 0), the injection pressure becomes constant
after the saturation, and the simulation curve is far from the experimental measurements
plotted as a continuous line, even before the saturation time. However, the simulation with
filtration exhibits an injection pressure close to the experimental data during the entire test,
and the model improvement is clearly noted. The comparison of the numerical results to
the experimental data prove the necessity of considering the phenomenon of filtration in the
simulation. The discrepancies observed before the saturation between the experimental data
and the numerical solution for λ = β = 0 can be mainly explained by the effects of filtration.

Figure 6 plots the variation of the concentration of the transported suspension along the
distance to the injection point at different times. The major difference between the two simu-
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Fig. 6 Concentration at different times of the transported grout against the distance to the injection point.
Comparison between the simulations with and without filtration (numerical solution)

Fig. 7 Concentration at different times of the filtrated particles against the distance to the injection point
(numerical solution)

lations (with and without filtration) lies in the concentration profile obtained at the stationary
stage (t = 700 s). When this regime is reached and for λ = β = 0, the concentration is
uniform within the whole sample and is equal to ρg . With filtration, a gradient of concen-
tration is observed. The latter depends essentially on the filtration coefficient, λ. The higher
λ the sharper the gradient computed between the two ends of the column. The density of
the effluent fluid can also be computed by considering Fig. 6 and the equation of state of the
fluid phase. At t = 700 s, this density is approximately equal to 1360 kg/m3 [the concen-
tration of the filtrated particles is equal to zero outside the sample and it is assumed that
c(x = l−, t) = c(x = l+, t)]. This value is not far from the density of the injected grout. The
measured density of the effluent suspension is also close to ρg in the experiments presen-
ted in Sect. 3. Moreover, the concentration of the transported suspension computed at time
t = 300 s is still equal to zero at x = l. This result is logical since the saturation time which
corresponds to the arrival of the grout in the effluent suspension is around 350 s.
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Figure 7 represents the concentration of the filtrated particles against the distance to the
injection source, displayed at different times. At t = 700 s, this concentration in x = 0 is
approximately equal to 290 kg/m3 and indicates that the initial permeability of the medium
has been divided by a factor of 3.2 during the simulation (the computation of the permeability
uses (3)).

6 Conclusion

The experiments and simulations presented in this article prove that filtration plays a
significant role during one-dimensional injection tests of cement grouts in sand. Experi-
mentally, this is highlighted by measuring the mass intake of the sand sample and the injec-
tion pressure. In the whole duration of the tests, both these quantities increase continuously
contrary to the case of a flow which does not involve filtration. In the absence of filtration, a
plateau in the mass intake and the injection pressure would be expected after the grout has
saturated the sand. Note that to avoid nonfiltration effects which could influence the pressure
via a modification of the fluid phase properties, the tests were performed in a duration that
does not allow the cementation process to take place.

It has also been shown that the higher the cement-to-water ratio of the injected grout the
higher the sample mass intake and injection pressure after saturation. The same conclusion
holds for the initial density of the sample. Moreover, after the saturation, a small-mass intake
of the column (small amount of filtrated particles) can occur in the same time as a high
pressure increase. Thus, either the filtration effects are greater on the injection pressure than
on the mass intake or an additional phenomenon to the filtration also influences the pore
pressure.

A suitable modeling of the injection tests is obtained by using a flow and transport model
which includes the filtration and the damage coefficients. A method based on an analytical
solution of the model equations was proposed to determine these coefficients. It uses the
mass intake and pressure measurements.

Whereas, a simulation without filtration does not match the experimental results, a
simulation which relies on the model described above does. In the latter case, the small
remaining discrepancy between simulation and measurement may be reduced by using a
different viscosity law which would have to be determine from rheological experiments.
Moreover, the effect of varying filtration coefficients could be considered.
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