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1. Introduction

Mesh generation of complex geometries can be very time-
consuming, within a classical finite element analysis. The main
difficulty arises from the necessity of the mesh to conform to physical
surfaces. Discontinuities such as holes, cracks and material interfaces
may not cross mesh elements. Moreover, local refinements close to
discontinuities and mesh modification to track the geometrical and
topological changes in crack propagation problems for example, can
be difficult. Also, when geometries evolve and history dependent
models are used, robust methods to transfer the solution to the new
mesh are needed. This issue is particularly significant, since computed
fields defined on these discontinuities are often the most important
ones.

In order to improve the geometrical representation of surfaces, and
particularly with complex geometries including curves, a solution is to
locally refine the mesh, close to discontinuities, i.e. to decrease
element size. Several methods of adaptive h-refinements were
developed (for example [9,25,30]), by subdividing elements or
remeshing. The position of nodes can also be adjusted in order to
improve the geometrical representation while keeping their number
constant; this is called r-refinement.

Another mean to reduce geometrical errors is to introduce curved
elements in the mesh. Elements with curved boundaries are used to
represent curved geometries, increasing the degree p of geometrical
shape functions and the number of geometrical nodes on boundaries.
This technique allows the use of meshes with fewer elements.
Adaptive p-refinement, also called p-method, is presented in [30].
Usually, these shapes functions are constructed with Legendre
polynomials. With iso-parametric element, shape functions are the
same for the field approximation and the geometry. Curvilinear mesh
generation encounters two main issues [4,26]: the respect of the
geometrical representation, and the generation of a valid mesh. For
example, gaps and overlaps have to be removed from meshes.
Integration of functions on these elements must be computed with
caution [14,30]. If an order p increases, oscillations may nevertheless
appear.

Recent studies about p-versionmesh generation develop the use of
Bezier polynomials to represent curves and surfaces [17,18]. Increas-
ing the geometric approximation order and subdividing elements
become easier, due to properties of Bezier polynomials. Newmapping
procedures have to be defined. However, mesh generation and
geometrical approximation still have to be controlled.

Isogeometric analysis [11] gets rid of Lagrange polynomials
drawbacks: geometry is exactly represented by NURBS and refine-
ments simplified. However, this geometrical benefit leads to addi-
tional difficulties in numerical integration [12].

Several numerical methods were developed, in order to get rid of
mesh difficulties. An idea was, for example, to base approximations on
a set of nodes without creating any mesh. These kinds of methods are
called Meshfree Methods [8]. Therefore, hp-adaptivity becomes easier
because of the absence of a mesh [5]. However, difficulties arise from
numerical integration and treatment of essential boundary conditions.



For sake of mesh simplifications, the eXtended Finite Element
Method (X-FEM) was developed 10 years ago, initially for crack
propagation [1,3,22].

Within the X-FEM, surfaces that are not represented explicitly by
mesh boundaries can be implicitly represented by the iso-zero values of
a level set function. This is particularly useful formoving interfaces such
as crack surfaces in crack propagation analysis [29]. The finite element
approximation is enriched by additional functions through the notion of
partition of unity [20] to represent, for example, discontinuities at
interfaces [28] or asymptotic expansions terms near crack tip [29] to
improve convergence rate. X-FEM is a good alternative to the classical
finite element method for solving mechanical problems with complex
or evolving geometries.

Enrichment functions are usually defined with the help of the level
set functions to access the distance to the interface at any given point.
Although interfaces do not have to be meshed, the correct integration
of the element stiffness matrix, for elements enriched by a
discontinuous function along an interface, needs to be done carefully.
These elements are split for integration purpose along the iso-zero
level set, creating a set of integration cells called partition. A regular
integration is done separately on each cells of the partition.

In the case of free surfaces [28], the level set is only used to
construct the partition and to determine if integration cells of this
partition are in the material or in the hole. On the contrary, material
interfaces and cracks need additional functions for displacement field
[3,21] depending on level set values on element nodes.

Difficulties to represent the surface in the classical finite element
method are, in the context of X-FEM, partly shifted on the integration
procedure. Amethod for eliminating the subdivision of elements during
the integrationof the stiffnessmatrix is presented in [32]: discontinuous
and non-differentiable functions are replaced with equivalent poly-
nomials (exact equivalence for triangular and tetrahedral elements).
However, it applies only for linear shape functions and a straight
discontinuity across elements. Nevertheless, X-FEM gives good results
with linear elements and linear level set in elements: optimal rate of
convergence is achieved with curved geometries [28].

In order to accelerate the energy error convergence, p-versions of
X-FEM were developed. In [13,15,27] for example, high order X-FEM
for straight cracks also reaches an optimal rate of convergence. If the
crack has not a flat surface, the error is reduced with shape functions
of higher order without improving the geometrical representation,
but the optimal rate of convergence is not achieved. The problem is of
course related to the well known fact that, in the framework of
classical finite element method, when increasing the order of the
approximation field, the order of representation of the geometrymust
be increased accordingly to get optimal rate of convergence. Iso-
parametric elements have an energy error norm on regular problems
with curved boundary that converges as O(hp), where h is the element
size and p the polynomial basis order (see [33]).

To get optimal rate of convergence when curved interfaces are
represented with level set, the obvious solutions would be to increase
the order of the level set representation near the iso-zero values of the
level set, as in [31]. In this case, the integration problem can become
quite difficult:within anelement, the iso-zero surface canhave complex
shape and topology. In [16], X-FEM is developedwith spectral elements,
to deal with arbitrary discontinuities: optimal rate of convergence in
energy norm are not reached for curved discontinuities, and integration
is more delicate. The influence of the geometry description within the
Finite Cell Method is investigated in [6] for three-dimensional problems
with curved boundaries: using an implicit representation and using a
voxel model that is promising for biomechanics simulations.

X-FEM is extended to high order approximations in [2] for
arbitrary curved strong and weak discontinuities. Elements crossed
by a discontinuity are divided into subcells with one curved side.
Optimal convergence is reached in the first case and a close-to-
optimal one in the second case using the Corrected X-FEM [7].
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The alternative approach proposed here consists in representing
the level set on a finer sub-mesh than the finite element mesh, while
keeping the level set representation piecewise linear by element
(without adding any degree of freedom to the mechanical field). This
is used in [19] to localize an interface. This idea was also developed in
hp Generalized FEM [24]: representation of crack surfaces is controlled
by a Delaunay tetrahedralization of elements cut by the discontinuity.

X-FEM is presented in the next section, with a brief recall of linear
elasticity. A new strategy is then introduced to use high order X-FEM
and applied to domains with curved boundaries. Numerical applica-
tions of free surfaces and material interfaces are developed within the
framework of linear elasticity with polynomial approximations up to
order three.

2. Extended finite element method

2.1. Model problem

The formulation is written within the framework of linear elasto-
static. Consider a domain Ω, with boundary Γ, representing a linear
elastic, homogeneous and isotropic solid. The domain is submitted to
impose displacementū on Γu and imposed tractions t̄on Γt.We study the
case without volumic force, in small strain. Stresses, strains and
displacements are respectively denoted by σ, ε and u.

The problem is to find the admissible displacement field which
satisfies the following equations:

• Equilibrium equations:

∇⋅σ = 0 on Ω

σ⋅n = t on Γt ;with n the external normal

• Kinematics equations:

εðuÞ = 1
2

∇u + ∇uð ÞT
� �

on Ω

u = u on Γu

• Constitutive law:

σ = C : ε; on Ω; where C is Hooke0s tensor

LetU be the spaceof admissibledisplacementfield, andU0 the spaceof
kinematically admissible test functions, vanishing on Γu. Theweak formof
equilibrium elastostatic and boundary conditions can be written as:

Find u∈U such that

∫
Ω
εðuÞ : C : εðυÞdΩ = ∫

Γt
t⋅υdΩ; ∀υ∈ U0

2.2. eXtended Finite Element Method

Within the finite element method, the domain Ω is divided into
elements, called finite elements and constituting a mesh. The
displacement field is approximated on these elements:

uðxÞ = ∑
n

i
ϕiðxÞui

where ϕi(x) are the finite element shape functions, and ui the nodal
displacements.

Within X-FEM, the mesh does not necessarily conform to internal
discontinuities (such as holes, cracks, and material interfaces), which
allows the use of simple meshes (structured or not). Moreover, the
finite element approximation is enriched by additional functions



(through the partition of unity [20]) that model the behavior of
boundaries, as follows:

uhðxÞ = ∑
i∈N

ϕiðxÞui + ∑
j∈Ng

ϕjðxÞFðxÞaj ð1Þ

where F(x) is the enrichment function; aj are additional degrees of
freedom, for enriched nodes; N represents the set of the nodes of the
mesh, and Ng the set of enriched nodes.

For example, in the case of material interfaces, only nodes
belonging to elements crossed by the interface are enriched. If the
mesh conforms to discontinuities, there is no enrichment on nodes,
and classical finite element method is recovered.

As surfaces are not represented explicitly by mesh boundaries, a
function, called level set φ(x, t) [23], is introduced to track them. This
function usually gives the signed distance to the interface at any point
of the domain (Fig. 1). Consequently, the interface location is given by
the iso-zero value of the level set: φ(x, t)=0.

3. High order X-FEM with complex geometries

3.1. A new approach

For the moment, X-FEM is mostly used with linear approximation
shape functions ϕi(x) and linear level set. Optimal (or nearly optimal)
rates of convergence are reached in the case of holes, material
interfaces and cracks [15,21,28,29] for straight cracks).

Our purpose is to accelerate the convergence of X-FEM, using high
order shape functions for the finite element approximation. However,
the optimal rate of convergence can't be reached without improving
the geometrical representation, geometrical errors becoming more
important than approximation errors.

Instead of using an exact representation of the domain (as [11] for
example), the finite elementmethod utilizes a polynomial representation
of the geometry. The first idea for the representation of complex geo-
metries with X-FEM would be to use elements with curved boundaries.

These elements can be easily generated by adding geometrical
nodes on edges, with hierarchical shape functions. p-refinement does
not need to be uniform throughout the domain. Energy error norm on
regular problems converges as O(hp) with iso-parametric elements,
where h is the element size and p the polynomial basis order. How-
ever, the mesh generation might become quite difficult with this kind
of elements. Indeed, Fig. 2 illustrates a classical problem of geo-
metrical representation: when the edge 1 is improved, overlap can
appear.

In reference [31], level set of order two are used to model
interfaces, providing a more accurate representation. In [27], higher
order elements are applied to curved cracks problems (six-node
triangular elements) with quadratic shape functions. Although the
energy error is reduced, the rate of convergence is not improved.
Furthermore, it is shown that the use of linear shape functions for the
enrichment function gives better results, even though higher order
shape functions are used for the continuous approximation.

Instead of using a level set representation of higher order, leading
to complex shapes of iso-zero surfaces and integration difficulties, a
strategy is presented to get closer to the real geometry of the
Fig. 1. Level set φ(x).
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discontinuity while keeping a linear representation of the geometry.
This consists in representing the level set on a finer mesh than the
finite element mesh, without additional degree of freedom for the
mechanical field. Thus, representation of discontinuities such as holes
boundaries, material interfaces or cracks is improved in a simple way.

3.2. Geometrical representation using level sets

The level set is interpolated on elements with finite element shape
functions. These geometrical shape functions are generally the same
than approximation shape functions (case of iso-parametric ele-
ments). For now, within X-FEM, the level set is linear on elements
(linear shape functions). Therefore, the mesh has to be fine enough to
accurately locate the interface.

The aim is to improve the geometrical representation while keeping
the samecomputationalmesh, and thereforewithout addinganydegree
of freedom. The level set is computed on a finer mesh than the
computational mesh, called “geometrical grid”, and its elements are
called “cells”. Initially, the geometrical grid is a copy of the computa-
tional mesh. If the geometrical representation has to be improved, the
geometrical grid has to be refined. Thus, each cell crossed by the iso-zero
is split into cells of same nature. For example, a triangle in 2D is divided
in 4 triangles (quadtree refinement). Level set values are then computed
on thenewnodes. Theprocedure is done recursively up toauser defined
maximum depth, forming the final geometrical grid (see Fig. 5). Each
element of the analysis is then linked to an octree-like partition where
the level set is represented and on which the integration procedure is
applied for each sub-element. The approximation of the iso-zero surface
is then improved at each level of refinement of the geometrical grid. The
interfacemesh representing the boundary of a hole is plot on Fig. 3,with
no refinement, and a level of refinement equal to 1 and 2. Refining the
geometrical grid improves the representation of the interface while
keeping a level set piecewise linear on elements.

3.3. Numerical integration

Numerical integration has to be handledwith care in X-FEM. Indeed,
discontinuous functions can't be directly integrated on elements.
Therefore, cells of the geometrical grid cut by the iso-zero value of the
level set are split in integration cells (Fig. 4), creating partitions tied to
mesh elements, as presented in [22]. A regular integration is thus done
in these integration cells (Gauss integration), on both sides of the
discontinuity. For example, an element crossed by the boundary of a
hole is split in integration cells, and integration is performed only on the
cell belonging to the material (i.e. not in the void).

If the geometrical grid is refined according to the previous
description, integration operations are applied to cells: integration
cells are created, and gathered in partitions linked to mesh elements.
This process is explained in Fig. 5.

Finally, partition cells are classified depending on their distances to
the interface. For example, in the case of holes, partition cells are
classified in two groups: cells in the material or in a hole. Thus,
integration is performed only on partition cells in the material, those
in holes being ignored.

Next sections prove the validity of this high order approach. The
study of benchmark elasticity problems allows one to verify the
convergence of energy norm with high order X-FEM. First, the case of
curved free surfaces is observedwith an infinite platewith a circular hole
under uniaxial tension. The case of curvedmaterial interfaces presents a
more sensitive issue and is afterward studied with circular inclusion. All
results are presented using GMSH [10] as a post-processing tool.

4. Free surfaces

First, the treatment of free surfaces with X-FEM is considered. In
order to check the validity of this proposed method, we are interested



Fig. 3. Mesh of the boundary of a hole (grey): elements cut by the hole are refined internally once and twice (without adding new degrees of freedom), improving the geometrical
representation of the hole.

Fig. 4. Numerical integration with X-FEM: creation of a partition.

Fig. 2. Boundary of a hole with finite elements.
in studying the convergence of the solution for an infinite plate with a
hole under uniaxial tension. Thus, the classical finite element method
and the extended finite elementmethod can easily be compared, since
an analytical solution exists.

The case of free surfaces can be easily handled with X-FEM [3,28].
Nodes for which the support is totally inside voids are wiped out of
the computation.

4.1. Infinite plate with a hole under uniaxial tension

We consider an infinite plate with a circular hole under uniaxial
tension σ∞=1 along axis x (see Fig. 6). This plate is modeled by a
4

square domain of side L with a circular hole of radius a in its center.
Exact tractions are imposed on boundaries of the domain.

Exact solution is shown in [30]. Components of exact stress tensor
are:

σxxðr; θÞ = 1− a2

r2
3
2

cos 2θð Þ + cos 4θð Þð Þ
� �

+
3
2
a4

r4
cos 4θð Þ ð2Þ

σyyðr; θÞ = − a2

r2
1
2

cos 2θð Þ− cos 4θð Þð Þ
� �

−3
2
a4

r4
cos 4θð Þ ð3Þ



Fig. 5. Numerical integration with high order X-FEM: creation of a partition.
σxyðr; θÞ = − a2

r2
1
2

sin 2θð Þ + sin 4θð Þð Þ
� �

+
3
2
a4

r4
sin 4θð Þ ð4Þ

And exact displacements read:

uxðr; θÞ =
a
8μ

r
a
ðκ + 1Þ cosðθÞ + 2

a
r
ð1 + κÞ cosðθÞ + cosð3θÞ−2

a3

r3
cosð3θÞ

" #
ð5Þ
5

uyðr; θÞ =
a
8μ

r
a
ðκ−3Þ sinðθÞ + 2

a
r
ð1−κÞ sinðθÞ + sinð3θÞ−2

a3

r3
sinð3θÞ

" #
ð6Þ

with:

• a=0.4
• E=105: Young Modulus
• ν=0.3: Poisson's ratio



Fig. 6. Infinite plate with a hole under uniaxial tension.
• μ: shear modulus
• κ: Kolosov constant κ=3–4ν (simulations are carried out in plane
strain)

5. Results

In order to compare precision of the finite element solution with
the one computed with X-FEM, convergence of the relative error in
the energy norm is studied, for square regular meshes with 8, 16, 32,
64 and 128 elements (triangular elements) by side. The side length is
2. Numerical experiments are done with polynomial approximation
up to order three. Energy error norm is given by:

e =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫Ωεðuh−uexÞ : C : εðuh−uexÞdΩ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫ΩεðuexÞ : C : εðuexÞdΩ

q ð7Þ

Fig. 7 presents the relative energy error functions of the mesh
element size, convergence rates being computed from errors of the
two finest meshes (with 64 and 128 elements). Using high order finite
element approximation without improving the geometrical repre-
sentation does not give good results, in term of convergence rate of
the energy error norm. The use of approximation functions of orders 2
Fig. 7. Energy error norm for a plate with a hole, with orders of approximation 1, 2 and 3.
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and 3 improves the convergence rate compared with an approxima-
tion of order 1. However, it does not reach the classical finite element
rate (Fig. 7), that is O(hp). We note that the quadratic approximation
reaches a convergence rate quite close to the finite element one:
average rate of 1.87. On the contrary, the cubic approximation
converges with a rate of 1.62. Note that these rates correspond to a
particularly penalizing case. Indeed, using a circular inclusion radius
of 0.4, the iso-zero value of the level set passes over some elements
nodes, which is slightly penalizing.

Using the present method, improving the geometrical represen-
tation of the boundary of the hole reduces geometrical errors and
consequently global error. Fig. 8 presents the convergence of the
relative energy error functions of the mesh element size, with cubic
approximation shape functions, for different level of precision of the
geometrical representation (recursive refinement of the geometrical
grid). The more refined is the geometrical grid, the smaller is the
relative error norm. Choosing an optimal refinement level, depending
on the order of approximation p and on the element size h, allows to
accelerate the convergence of energy error functions of the mesh
element size (see Fig. 9): energy error converges with a quasi-optimal
rate of 2.93.

Wenote that the conditionnumber could bedeteriorated if elements
or part of them are located within the hole. This is why elements
completely in the hole are removed from the computation, and
integration is performed only in partition cells in the material.
Moreover, a loop is done on mesh edges. If the intersection point
between an edge and the iso-zero value of the level set is very close to
one of the two nodes (distance smaller than 10−3 h, with h the edge
size), the level set value of the node is modified and equal to zero. This
node is “moved” on the interface. Then, precision of computations is
assured by a direct solver. Finally, condition number is not deteriorated.

Thus, we show that optimal convergence rate can be achievedwith
an optimal geometrical representation of the boundary of the hole.

Global error is made up of interpolation error and geometrical
error. Approximation error decreases as (ha)p, ha being the relative
approximation element size, and p the degree of approximation shape
functions. Numerical experiments show that geometrical error
decreases as (hg)2, hg being the relative geometrical cell size. With a
linear approximation and a linear geometry on X-FEM elements (and
also for iso-parametric elements), relative approximation and
geometrical elements are the same: ha=hg. This relation is no longer
correct with higher order approximation. Amethod to find the correct
Fig. 8. Energy error norm for a plate with a hole using cubic approximation shape
functions and different refinement level of the geometrical grid.



Fig. 9. Energy error norm for a plate with a hole using orders of approximation 1, 2 and
3, improving the geometrical representation.
geometrical cell size, that is to say the correct refinement level, is
presented.

Consider a mesh of relative element size ha. In order to find the
geometrical cell size, let us consider geometrical and approximation
errors orders to be equal:

h2g = hpa

Therefore, the relative geometrical cell size is:

hg = ðhaÞ
p
2 =

1
n

� �p
2 = ha

1
n

� �p
2
−1

ð8Þ

For example, considering quadratic shape functions (p=2), we
have hg=ha. Indeed, the relative energy error converges with the
optimal rate, without the need to improve the geometry.

With cubic shape functions (p=3), the relation becomes:

hg =
1
n

� �1
2ha ð9Þ
Fig. 10. Free surfaces: refinement le
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Fig. 10 shows theoretical division of the approximation element
and the chosen refinement level for each mesh, as element size can
only be divided by 2r during geometrical refinement. The smaller is
themesh element size, the bigger is the refinement level. For example,
the geometrical grid is refined twice using cubic shape functions and a
square mesh with 32 elements by side.

This relation just provides hg=hg(ha), to maintain the optimal
convergence rate. However, it does not depend on the curvature of the
interface. A straight interface does not need refinement, as geometry
is correctly represented with linear level set. On the contrary, a highly
curved interface has to be well represented on elements thanks to a
fine geometrical grid. A reflexion has to be lead on a correct rule to
define the refinement level depending on local curvature of interface.

Thus, dealing with free surfaces, the proposed method allows one
to use higher order approximation shape functions while keeping the
optimal convergence rate of classical finite element methods while
avoiding the generation of curved meshes.

6. Material interfaces

6.1. X-FEM for material interface

The X-FEM approximation requires an enrichment function, able
to represent the behavior of an interface between two materials.
Indeed, as the mesh does not conform to the interface, some elements
overlap the two materials. An enrichment term is added to the finite
element approximation on nodes of elements cut by the interface,
introducing additional degrees of freedom aj, and an enrichment
function F(x).

uhðxÞ = ∑
i∈N

ϕiðxÞui + ∑
j∈Ng

ϕjðxÞFðxÞaj

where ui are the degrees of freedom and ϕi(x) the approximation
shape functions.

Elements cut by the discontinuity have to be split into sub-elements
belonging to one or the other material, for numerical integration.

Displacement is continuous across a material interface, with a
discontinuous gradient. In the case of material interface, the level set
φ(x) is not only used to track the geometry of the interface, but it is
also used to build enrichment functions. In [21], an enrichment
strategy is proposed to model discontinuities along material inter-
faces. The enrichment function (10) was tested for a 2D circular and a
3D spherical inclusion under tension in an infinite domain. This
function is continuous, with a discontinuous derivative across the
interface (Fig. 11). It is maximal on the interface, and equal to zero on
vel for a cubic approximation.



Fig. 11. Initial enrichment.

Fig. 13. Iso-zero value of the level set.

Fig. 14. Energy error norm for the plate with a straight material interface.
element nodes, edges and faces not crossed by this interface. The
convergence rate of energy error is observed as close-to-optimal one.

FðxÞ = ∑
i
jφi jϕiðxÞ− j∑i φiϕiðxÞj ð10Þ

with φi the level set value on element nodes.

6.2. High order X-FEM for straight interfaces

Before studying curved material interfaces, we are interested in
using high order approximation shape functions simply with straight
material interfaces. In this case, the transition to high order X-FEM is
obvious. Indeed, as geometry is represented by a linear function, the
enrichment function has to remain the samewhen the geometrical grid
is refined. Thus, the previous enrichment term [21] is still convenient.

For example, consider a plate of side L=2, and section S with two
materials 1 and 2: E1=1, E2=10, ν1=ν2=0. Plain-strain condition is
assumed. It is embedded on the left side and a variable volumic load is

imposed on the plate (Fig. 12): ∥→f ∥ = f x
L

� �2
.

Exact displacements in the two materials are:

u1ðxÞ = f
3E1SL

2 L3x−x4

4

� �
x

u2ðxÞ = f
3E2SL

2 L3x−x4

4

� �
+ 31f L2

192S
1
E1

− 1
E2

� �
x

Computations are done on squared irregular meshes, with 5, 10,
20, 40, and 80 elements (triangular elements) by side (L=2), with
linear, quadratic and cubic polynomial approximations. Element
edges of theses meshes do not align with the straight interface, as
shown in Fig. 13: iso-zero value of the level set is plot on a mesh with
10 elements by side. Results are presented in Fig. 14: energy norm
converges with close-to-optimal rates, when higher order approx-
imations are used.
Fig. 12. Plate with a material interface and a variable volumic load.
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6.3. New enrichment strategy for curved material interfaces

Enrichment described in Eq. (10) is used with a linear representation
of the geometry. In order to use high order approximation functions, the
same strategy than free surfaces is applied for curved material interfaces.
That is to say that the geometrical grid is locally refined while keeping a
piecewise linear level set representation by element. The level set is
computed on the geometrical grid, so that its representation is more
precise than if it is computed on the original mesh (without refinement).
However, the previous enrichment function is not suitable anymore
because of a gap between the position of the iso-zero value of the level set
and the discontinuity on the element (Fig. 15).
Fig. 15. Iso-zero value of the level set computed on the initial mesh and the octree
(refined once).



A new enrichment strategy is developed to solve this problem and
to obtain optimal convergence.

Elements that are not crossed by the iso-zero value of the level set
are not enriched. As the enrichment function is continuous over the
domain, it has to be equal to zero on nodes, edges and faces, whose
adjacent elements are not enriched. The derivative is discontinuous
across the interface, whose position is given by the iso-zero value of
the level set. Moreover, it has to be valid whatever the refinement
level of the geometrical grid. This new enrichment is here proposed
for triangle elements in 2D. It will be presented for tetrahedron
elements in 3D in a forthcoming paper.

Different configurations are considered, functions of the position
of the iso-zero value of the level set in relation to the element.
Fig. 16. Construction of the
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To build such function, we start by something similar to the
enrichment in the linear case: the enrichment term depends on both
level set nodal values and its values on the geometrical grid.

F̂ðxÞ = ∑
i∈mesh

jφi jϕiðxÞ−j ∑
j∈octree

φjϕjðxÞj ð11Þ

This function (11) has a discontinuous derivative across the iso-zero
value of the level set, and is equal to zero on mesh element nodes. It is
different to zero on edges, and particularly on edges that are not cut by
the iso-zero value of the level set. However, mesh elements that are
not crossed by the interface are not enriched. Therefore, enrichment
function on edges that are not cut has to be equal to zero. Theses edges
enrichment function.



Fig. 18. Triangle element crossed by the iso-zero value of the level set.

Fig. 19. Barycentric coordinates in a triangle.
are thereafter called “non-cut edges”. Fig. 16 shows that this function is
no more canceled on non-cut edges, when the geometrical grid is
refined.

A correction term has to be added in order to correct the
enrichment function, and is called “edge bubble function” (Fig. 17).

F̃ðxÞ = ∑
i∈mesh

jφi jϕiðxÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
①

− j ∑
j∈octree

φjϕjðxÞj|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
②

− ΠlinφNon�cut edge Πedgex
� �

−φNon�cut edge Πedgex
� �� �

ðϕ1ðxÞ + ϕ2ðxÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
③: edge bubble function ð12Þ

This enrichment Eq. (12) is computed for an element “e” of the
mesh (computational mesh) which is crossed by the iso-zero value of
the level set. The first sum is computed on nodes i of the element “e”.
This element is split into cells called“er”, creating the octree (part of
the geometrical grid). The second sum is computed on nodes j of each
element er. Shape functions of the term (ϕ1(x)+ϕ2(x)) are elements
shape functions. The “edge bubble function” corresponds to the level
set computed on edge (12), of which the linear part is removed, and
which is “stretched” to the opposite node 3.

Example. Consider a triangle element (see Fig. 18) which is crossed
by the iso-zero value of the level set. We are interested in the number
of non-cut edges. The iso-zero value of the level set cut two edges, so
there is only one non-cut edge: edge (12). It means that an edge bubble
function corresponding to edge (12) is added is in the enrichment
function.

Following notations are used. Let G be a Gauss point of the
element, with local coordinates (u, v) and barycentric coordinates
(λ1, λ2, λ3) (Fig. 19). The projection of this point on the edge (12)
gives a distance χ = λ2

λ1 + λ2
from node 1. Expressions of theses

barycentric coordinates are the same than triangle shape functions
(ϕ1(x), ϕ2(x), ϕ3(x)), so barycentric coordinates are used to simplify
the enrichment formulation:

F̃ðxÞ = jφ1 jλ1 + jφ2 jλ2 + jφ3 jλ3−j∑j∈octreeφjλjj
− jφ1 j 1− λ2

λ1 + λ2

� �
+ jφ2 j λ2

λ1 + λ2

� �
−jφð12Þ λ2

λ1 + λ2

� �j
" #

×ðλ1+ λ2Þ

φ(12) is the representation of the level set on the edge (12) , with
edge shape functions. The value depends on the projection of the
Gauss point on this edge χ = λ2

λ1 + λ2

� �
(Fig. 19).

Following notations are used:

• φi: level set value on node i,
• λi(x)=λi: barycentric coordinate of a point x in the element e,
• χ: projection of a Gauss point on an edge (ij)
Fig. 17. Bubble function on an elem
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• φ(ij)(χ): level set value on edge (ij), depending on the projection χ
of the Gauss point on this edge,

All level set values are computed from the geometrical grid.
Finally, we obtain:

F̃ðxÞ = jφ3 jλ3 + jφð12Þ λ2

λ1 + λ2

� �jðλ1 + λ2Þ−j ∑
j∈octree

φjλjj
Enrichment function directly depends on edge bubble functions,

and thus on the number of edges that the iso-zero value of the level
set does not cut. Different configurations are presented in Fig. 20. We
ent: refined once and twice.



Fig. 20. Different ways for an interface to cross a triangle element.

Fig. 21. Relative error norm with linear, quadratic and cubic approximation shape
functions: without improving the geometrical representation.
could even imagine a discontinuity located in one element, provided
that the octree is enough refined: the enrichment function is enriched
by three edges bubble functions.

6.4. Circular inclusion with imposed displacement

The following problem is a circular inclusion Ω1 in the center of a
material Ω2. A linear displacement is imposed on the boundary Γ2
(r=b). Material parameters are: E1=1, ν1=0.25 (equivalent to the
Lamé constants λ1=μ1=0, 4), and E2=10, ν2=0, 3 (equivalent to
the Lamé constants λ2=5, 769 and μ2=3, 846). We work with polar
coordinates (r, θ).

The exact displacement solution reads:

urðrÞ =

(
1−b2

a2

� �
α + b2

a2

� 	
r if 0≤ r≤ a

r−b2

r

� �
α + b2

r
if a≤ r≤ b

uθ = 0

with:

α =
ðλ1 + μ1 + μ2Þb2

ðλ2 + μ2Þa2 + ðλ1 + μ1Þðb2−a2Þ + μ2b
2

Displacement is continuous, but with a discontinuous derivative
across the interface.

And the strain solution is:

εrrðrÞ =
1− b2

a2

 !
α +

b2

a2
if 0≤ r≤ a

1 +
b2

r2

!
α− b2

r2
if a≤ r≤ b

8>>>>><
>>>>>:
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εθθðrÞ =
1−b2

a2

 !
α +

b2

a2
if 0≤ r≤ a

1−b2

r2

 !
α +

b2

r2
if a≤ r≤ b

8>>>>><
>>>>>:

Stresses are defined from strains:

σrrðrÞ = 2μεrr + λðεrr + εθθÞ

σθθðrÞ = 2μεθθ + λðεrr + εθθÞ



Fig. 22. Circular inclusion — strain with improvement of the geometry.
7. Results

The numerical model is a square domain Ω2 of side L=2, with a
circular inclusion Ω1 of radius a at its center. Geometrical parameters
are: b=2 and a=0.4. Exact tractions are imposed on the boundary on
the domain. Computations are performed with the same meshes than
those for the plate with a hole.

Convergence of relative error of energy norm toward elements
size, when initial enrichment function (10) is used, is presented in
Fig. 21. As expected, the error decreases when quadratic and cubic
approximation shape functions are used. Whereas, the precision gain
is lower than the previous case of free surfaces. Optimal rates of
convergence are not reached: rates of 0.93 with p=2, and 0.90 with
p=3 (rates computed from energy error values of the two finest
meshes).

Fig. 22 shows strains on the plate, computed using the new
enrichment function (12). Strains are presented with the same coarse
mesh (8 elements by side), but with different refinement levels of the
geometrical grid: first with no refinement, then with a geometrical
grid refined once and twice. Improving the geometrical representa-
tion improves the strain field around the inclusion.

As displacements are continuous, the enrichment function has also
to be continuous on the domain. Therefore, the refinement of the
Fig. 23. Homogeneous refinement of the octree when an element is crossed by the
material interface.
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geometrical grid is no more recursive, but homogeneous per element.
Fig. 23 presents integration cells of a square mesh with 8 elements by
side, created from a geometrical grid twice refined.

Results using the proposed enrichment method Eq. (12) are
plotted on Figs. 24 and 25 according to elements size, for
approximation orders 1, 2 and 3. Initially, X-FEM converges with
high order, but slower than using classical FEM, that is to say O(hp),
where h is the element size and p the polynomial basis order.
Improving the geometrical representation reduces energy error.
However, contrary to the previous application (plate with a hole),
optimal rates of convergence cannot be reached with an optimal
depth of refinement. Indeed, the required refinement level of the
geometrical grid is more important with a material interface; but for a
given mesh, energy error reaches a limit when the refinement level
increases.
Fig. 24. Relative error norm with quadratic approximation shape functions with the
proper enrichment function.



Fig. 25. Relative error norm with cubic approximation shape functions with the proper
enrichment function.

Fig. 26. Plate with a squared inclusion under uniaxial tension.

Fig. 27. FEM mesh with 16 elements by side (left),
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Nevertheless, the improvement of the geometrical representation
and the proposed X-FEM enrichment enable the use of higher order
approximation shape functions, reducing considerably energy error.

7.1. Material interface with geometric singularities

Up to now, only smooth interfaces were considered. The proposed
enrichment function can also be applied to inclusion with geometric
singularities as polygonal shape. In order to compare results from
classical FEM and X-FEM, a plate with a squared inclusion under
uniaxial tension is studied.

The numerical model is a square domain of length L=2, with a
square inclusion of side L=0.57 and of center (0, 0.1) (Fig. 26). The
finite element solution is computed on a fine mesh with 400 triangu-
lar elements by side. Its element edges respect the material interface,
and particularly the four corners. For example, a finite element mesh
with 16 elements by side is shown in Fig. 27. The finite element
solution is the reference solution. X-FEM meshes are square regular
grid with 8, 16 (Fig. 27), 32, 64, and 128 triangular elements by side.
All meshes are generated with GMSH. Corners of the material inter-
face are contained in elements of X-FEMmeshes, in order to study the
influence of the enrichment function.

Fig. 28 shows enrichment function computed on a regularmeshwith
16 elements by side, with a geometrical grid twice refined. Using the
initial enrichment function [21], corners of the interface are truncated if
elements do not respect this interface. By contrast, refining the geo-
metrical grid allows the enrichment function to introduce a discontin-
uous derivative closer to the real position of the material interface.

X-FEM solutions are compared to the finite element reference
solution. Energy error norms with linear, quadratic and cubic shape
functions are shown in Figs. 29–31. This enrichment only introduce a
discontinuous derivative in the displacement field. Geometrical
singularities as corners of the squared interface lead to singularities
in the field. The material interface enrichment cannot represent these
singularities. This is why refinement only can reduce energy error
norm, and is not able to improve convergence rates.

To obtain optimal rates of convergence, singular functions should
be added to the finite element approximation, to be able to represent
the behavior of the squared material interface. For example, to
represent a crack propagation, the displacement field is enriched by a
discontinuous field along a crack and by asymptotic fields near crack
tips [22].

8. Conclusion

This article studies the possibility to use higher order approxima-
tion shape functions with X-FEM, when geometries include curved
discontinuities. In particular, we are interested by curved free surfaces
X-FEM mesh with 16 elements by side (right).



Fig. 28. Enrichment function for a squared material interface.

Fig. 29. Squared inclusion: energy error normwith linear approximation shape functions.

Fig. 30. Squared inclusion: energy error norm with quadratic approximation shape
functions with the material interface enrichment function.

Fig. 31. Squared inclusion: energy error norm with cubic approximation shape functions
with the material interface enrichment function.
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and material interfaces. A geometrical improvement is done refining
the level set representation. Moreover, a new enrichment function is
required in the case of material interfaces. Convergences studies are
done with two numerical examples in two dimensions: a plate with a
hole under uniaxial tension, and a circular inclusion with imposed
displacement. Results show that improving the representation of
geometry allows to reduce energy error. Considering the plate with a
hole, rates of convergence are close to classical FEM ones, that is to say
O(hp), with h the element size, and p the order of approximation
shape function. This approach gets rid of difficulties met during mesh
generation, as mesh do not have to respect discontinuities with X-
FEM. Operations to represent geometries are simplified, and complex
geometries can be represented on coarse meshes.

Study of curved crack representation will be presented in a
forthcoming paper, along with development of the proposed approach
in three dimensions.
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