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Stress–dilatancy behavior for sand under loading and
unloading conditions
Zhen-Yu Yin1,*,† and Ching S. Chang2

1Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
2Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA 01002, USA
Experimental results have shown very different stress–dilatancy behavior for sand under loading and 
unloading conditions. Experimental results have also shown significant effects of inherent anisotropy. In this 
article, a micromechanics-based method is presented, by which the stress–dilatancy relation is obtained 
through the consideration of slips at the interparticle contacts in all orientations. The method also accounts 
for the effect of inherent anisotropy in sand. Experimental results on Toyoura sand and Hostun sand are used 
for illustration of the proposed method.
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1. INTRODUCTION

Stress–dilatancy behavior is an important issue in soil mechanics. Rowe [1] and Roscoe et al. [2]
introduced two different forms of stress–dilatancy equations for sand, which have been widely used as
flow rules in elastoplasticity models for sand. Until today, most plasticity models are either based on
Roscoe’s or Rowe’s dilatancy equations, for example, Nova [3], Jefferies [4], Manzari and Dafalias
[5], Gajo and Muir Wood [6], Li et al. [7], Wan and Guo [8], and Anandarajah [9], among others.

Experimental results have shown that the dilatancy behavior is very different for loading and
unloading conditions. Thus, two equations of different forms are often required separately such as
that discussed by Pradhan and Tatsuoka [10] and Jefferies [4]. Furthermore, the experimental results
show a wide range of dilatancy behaviors for different types of sand, which is attributed to the
various fabric structures of sands due to particle shapes and deposition processes. However, very few
dilatancy models have considered the effect of fabric structure. A model worth noted is proposed by
Wan and Guo [8], which considered a fabric tensor. Nevertheless, most models for soil dilatancy,
including that by Wan and Guo [8], are in themselves a macroscale abstraction of the underlying
micromechanical reality; they do not explicitly model the grain realignments and grain slips.

Along this line of thinking, we propose to model the stress–dilatancy behavior using a
micromechanics approach in which slip mechanism is considered for the dilatancy behavior between
two particles. Because of the difference in slip patterns for loading and unloading conditions, the
derived dilatancy behaviors, naturally, will be different.

In what follows, the stress–dilatancy relations under different loading conditions are first examined
on the basis of several experimental results available in the literature, followed by an overview of the
*Correspondence to: Zhen-Yu Yin, Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai,
200240, China.
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Roscoe’s and Rowe’s equations. After that, the slip mechanism is discussed for loading and unloading
conditions. The slip mechanism is implemented in the micromechanics approach proposed by
Chang and Hicher [11], which determines the overall deformation by considering slip mechanism
at interparticle contacts in all orientations. Experimental results on Toyoura sand are used for
evaluating the model’s capability for prediction of dilatancy behavior in both loading and unloading
conditions. The local dilatancy relations at interparticle planes due to applied load are also discussed.
2. OVERVIEW OF STRESS–DILATANCY BEHAVIOR

2.1. Stress–dilatancy equations

Dilatancy models usually start from a proposition as to the way in which plastic work is dissipated,
Taylor’s [12] analysis of direct shear box test of sand assumed that the entire input work is
dissipated in friction. This principle of energy dissipation has been extended for the condition of
triaxial tests by Roscoe et al. [2], given by

p′depv þ qdepd ¼ Mp′depd for loading; p′depv þ qdepd ¼ �Mp′depd for unloading (1)

where p′ ¼ s′a þ 2s′rÞ=3ð is the mean effective stress, q ¼ s′a � s′r is the deviatoric stress, and depv ¼
depa þ 2depr is the volumetric strain increment. The superscript p denotes plastic components, the
deviatoric strain increment depd ¼ 2 depa � depr

� �
=3, and the subscripts a and r indicate axial and radial

directions, respectively, in a triaxial setup. M is the slope of critical state line.
The right-hand term of Equation (1) represents the dissipation energy in friction, which must

be positive in either loading or unloading tests. Note that the value of depd is positive in loading and
negative in unloading condition. Equation (1) can be rearranged to the form of dilatancy equation

depv
depd

¼ Mc � q

p′
for loading;

depv
depd

¼ �Me � q

p′
for unloading (2)

where Mc = 6 sinf0/(3� sinf0) and Me = 6 sinf0/(3 + sinf0) are the stress ratio corresponding to
zero dilatancy for loading and unloading, respectively, which is also termed as the slope of phase
transformation line [13] or characteristic line [14]. The parameter f0 is termed as the phase
transformation angle.

Rowe [1, 15] assumed that the ratio of the input energy increment to the output energy increment is a
constant, denoted as K. In a loading test, the input energy increment is s′adepa and the output energy
increment is 2s′rdepr , and vice versa for an unloading test. Hence,

s′a
s′r

¼ K 1� depv
depa

� �
for loading;

s′r
s′a

¼ 1
K

1� depv
depa

� �
for unloading (3)

Because of the variation of experimental tests, a constant D is often introduced in Equation (2), such
as that proposed by Nova [3], Jefferies [4], Gajo and Muir Wood [6], Li et al. [7], and Anandarajah [9]:

depv
depd

¼ D Mc � q

p′

� �
for loading;

depv
depd

¼ D �Me � q

p′

� �
for unloading (4)

The value of D is different for loading and unloading case. It has also been suggested that the value
of M is a function of density state (e.g. Manzari and Dafalias [5]).
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2.2. Experimental measurements

Figure 1 shows the stress–dilatancy behavior for three different types of sands: Toyoura sand [16],
Erksak Sand [17], and Portaway Sand [18], where d0 is defined as the depv=de

p
d at q = 0. The

dilatancy behavior is plotted in a plane of depv=de
p
d versus q/p′ for both loading and unloading

conditions. The sign of depv is positive for contraction and negative for dilation. In the unloading
condition, both depd and q are negative.

In Figure 1, two intersection points along the q/p′ axis are termed Mc and Me, respectively, for
loading and unloading conditions. The other two intersection points along the depv=de

p
d axis are

termed dc and de. The slopes of the two lines are marked as D in Figure 1.
A comparison is made in Figure 2 between the dilatancy equations (by Roscoe and Rowe) and the

experimental results for the three sands. According to Roscoe’s dilatancy equation, the dilatancy
curves are linear lines, with the value of dc =Mc and de =Me. Thus, the slopes for both loading and
unloading conditions are Dc =De =� 1. Using Rowe’s equation, the dilatancy curves are slightly
nonlinear. The value of dc is smaller than that of Roscoe’s equation in loading, and the value of dc
is greater in unloading (based on Equation (3) with s′a ¼ s′r).

Because of the large range of dilatancy behavior (see Figure 1), both Roscoe’s and Rowe’s
equations are not able to fit various patterns of measured behavior.
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Figure 1. Stress–dilatancy relations under different loading conditions for different sands.
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Figure 2. Stress–dilatancy relations obtained from different dilatancy equations.
2.3. A micromechanical approach

In this article, a micromechanics approach is adopted for modelling the plastic flow of sand. The
approach, using a direct way to simulate the underlying physical processes of deformation, is
expected to predict correctly the dilatancy relationship for both loading and unloading conditions.
Also, the approach can easily represent inherent anisotropy of packing structure. For this purpose,
the micromechanics approach by Chang and Hicher [11] is selected for this study.
3. MICROMECHANICS-BASED MODEL

3.1. Brief description

In this micromechanics approach, the deformation of an assembly can be obtained by integrating the
movement of the interparticle contacts in all orientations. The orientation-dependent properties of
soil can be explicitly represented as inherent anisotropy. The model is limited to narrowly graded
sands. The brief description for the model by Chang and Hicher [11] can be found in Appendix A,
which includes the definitions of symbols used in this section. The treatment of dilatancy behavior
at the interparticle level for unloading condition is discussed in the next section.
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3.2. Dilatancy behavior of two particles

3.2.1. Slip mechanism for loading and unloading conditions. Sliding between two particles is
governed by the interparticle friction angle (assumed to be fm). For a pair of particles with a contact
force F, the angle of obliquity is also termed as the mobilized angle fm, which is the angle between
the contact normal and the vector F as illustrated as Figure 3(a) (i.e. tanfm= fr /fn, see Appendix A).
Under a loading condition, the mobilized angle fm increases and the preferred sliding direction is in
the direction of B (see Figure 3(a)). On the other hand, under an unloading condition, the mobilized
angle fm decreases, and the preferred sliding direction is on the opposite side, along the direction of A.

The sliding direction for loading (Figure 3(b)) and unloading (Figure 3(c)) gives the following
equations:

ddn
ddr

¼ tan fm � fm

� �
for loading;

ddn
ddr

¼ tan fm þ fm

� �
for unloading (5)

Another way to derive the slip direction is to use a preposition that the input plastic work is
dissipated in friction, as used in the model by Chang and Hicher [11]. Assuming that the plastic
work for a contact plane due to both normal and shear movements fnddpn þ frddpr

� �
is equal to the

energy loss due to friction fn tanf0dd
p
r

� �
at the contact, the local dilatancy can be derived as follows:

ddpn
ddpr

¼ tanfm � tanfm (6)

Considering the sliding effect for unloading, the dilatancy equation becomes

ddpn
ddpr

¼ � tanfm � tanfm (7)

It is noted that Equations (6) and (7) are similar to that given in Equation (5).

3.2.2. Plastic sliding model on an interparticle contact. The yield function F is assumed to be
of Mohr–Coulomb type, defined in a contact-force space (e.g. fn, fs, and ft, see coordinate system
in Figure 4).

F ¼ fr
fn
� k (8)

where the shear force fr can be defined as fr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2s þ f 2t

p
. k is a hardening function, expressed by
m

- m

m

m

Sliding Sliding Sliding Sliding

F
F F

A
B

(c)(a) (b)

Figure 3. Illustration of slip directions under loading and unloading conditions.

5



Z

X

0o

90o

18o

28o

45o

55o

72o

Figure 4. Local coordinate at interparticle contact.
k ¼ kp0 tanfp d
p
r

tanfp þ kp0dpr
(9)

where the plastic sliding defined as dpr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dps
� �2 þ dpt

� �2q
.

Upon shear reversal, the direction of sliding on each interparticle plane is reversed. At the moment
of shear reversal, the plastic displacements dpRs and dpRt and the forces f Rn ; f

R
s ; and f Rt are regarded as

residual state variables of the contacts. The residual state has a significant influence on the subsequent
sliding behavior. Thus, we take account of the residual state variables in the hardening equation
as follows:

k ¼ kp0 tanf�
p d

p�
r

tanf�
p þ kp0d

p�
r

(10)

Note that these two equations carry the same form as the equation for loading condition. The
superscript asterisk (*) represents the effect of residual state on the plastic shear displacement dp�r ,
and on the peak friction angle f�

p, which are defined as follows:

dp�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dps � dpRs
� �2 þ dpt � dpRt

� �2q
(11)

tanf�
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms tanfp �

f Rs
f Rn

� �2

þ mt tanfp �
f Rt
f Rn

� �2
s

(12)

where ms and mt are given by

ms ¼ r�sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�s
� �2 þ r�t

� �2q ; mt ¼ r�tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�s
� �2 þ r�t

� �2q (13)

The mobilized force ratios r�s and r�t , influenced by the residual state variables, are defined as

r�s ¼
fs
fn

� ��
¼ fs

fn
� f Rs
f Rn

; r�t ¼
ft
fn

� ��
¼ ft

fn
� f Rt
f Rn

(14)

A schematic explanation of the effects of reverse state is shown in Figure 5. When the residual state
is null, all previously mentioned equations return to the usual conditions for monotonic loading.
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The flow rule considering sliding directions modified from Equations (6) and (7) is given as

ddn
dds
dds

8<
:

9=
; ¼

D tanf0 � ms
fs
fn
þ mt

ft
fn

� �	 

ms

mt

8><
>:

9>=
>; (15)

Equation (15) can be reduced to Equation (6) for loading and to Equation (7) for unloading, which
gives different amount of dilatancy upon shear reversal. This flow rule represents the slip mechanism
described in the previous section.

To account for the interactions among neighboring particles, we introduced a density state c= ec/e
in reference to the void ratio at critical state. The void ratio corresponding to this state is ec. The critical
state line can be expressed as follows for sand:

ec ¼ eref � l
p′

pat

� �x

(16)

where x and l are two material constants, and p′ is the mean effective stress of the packing.
Resistance against sliding on a contact plane is dependent on the degree of interlocking by

neighboring particles. The resistance can be related to the state of packing void ratio e by (Biarez
and Hicher [19]):

tanfp ¼
ec
e

� �m
tanfm (17)

where m is a material constant (Biarez and Hicher [19]), which is typically equal to 1.
The elastic behavior on a contact plane can be found in Appendix A. The stress–strain relationship

of an assembly can be determined from integrating the behavior of interparticle contacts in all
orientations (see Appendix A).

4. EVALUATION OF THE MICROMECHANICS-BASED METHOD

In this section, Toyoura sand in drained loading unloading condition is used for evaluating the model
applicability. Very loose Hostun sand in undrained condition is also used.

4.1. Stress–dilatancy behavior of Toyoura sand

The experimental results on Toyoura sand is used for investigating the stress–dilatancy relations under
both loading and unloading conditions. The selected drained triaxial tests were performed by Pradhan
et al. [16] under a constant p′ of 98 kPa on Toyoura sand (e0.3 = 0.855 representing the void ratio
under p′= 0.3 kgf/cm2), which has a maximum void ratio of 0.977, a minimum void ratio of 0.597,
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pR

tan R

tan m

tan m
*=

tan R - tan m

tan

p

p*

pR

tan R

tan m

tan m
*=

tan R+ tan m

(a) (b)

fs/fn

(c)

tan p
*

tan
0 ft/fn

tan p

O
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Figure 5. Principle of the force reversal.
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and a specific gravity of 2.65. The mean size of the particle for the sand is d = 0.17mm.
The interparticle elastic constant kn0 is obtained to be 12.5N/mm and n= 0.5 from isotropic
compression test (see Figure 7(a)). The internal friction angle fm= 31� is obtained from triaxial tests.
The parameters for critical state line are obtained from test results by Verdugo and Ishihara [20]:
eref= 0.934, l= 0.019, and x= 0.7 (see Figure 6(a)). The parameter for plastic modulus kpR= 0.15 is
obtained from fitting the stress strain curve (Figure 6(b)). The parameter for shear elastic modulus
krR= 0.5 is assumed. All selected values of parameters are summarized in Table I.

As discussed earlier, the different patterns of behaviors for the two types of sand are caused by
the inherent packing structure of sand. To analyze the effect of packing structural anisotropy, we
made the dilatancy constant D to be orientation dependent, such that the slip dilatancy is different
for contacts. For the cross anisotropy of dilatancy constant D with three different values in principal
axes D11, D22, and D33, a second-order tensor form can be written as

D½ � ¼
D11 0 0
0 D22 0
0 0 D33

2
4

3
5 ¼ Dave

1þ a0 0 0
0 1� a0

2
0

0 0 1� a0
2

2
664

3
775 (18)

where Dave = (D11 +D22 +D33)/3. The orientation distribution of the normal elastic stiffness for a cross-
anisotropic case is (Chang and Misra [21])

D θð Þ ¼ Dave 1þ a0
4

3 cos2θþ 1ð Þ
� �

(19)

where the angle θ is defined in Figure 4 in a spherical coordinate. In this cross-anisotropic case,
the orientation distribution is symmetrical about its major axis that coincides with x-direction (the
vertical direction).

Using the Toyoura sand with all the parameters in Table I, three cases with different degrees of
anisotropy are considered (a0= �0.8, 0, and 1). The three-dimensional pictures for the orientation-
dependent dilatancy constant are shown in Figures 7(a)–7(c). The distribution in the x–z plane is
shown in Figure 7(d).

Figures 8(a)–8(b) show the effect of the three anisotropic constants on the dilatancy and volume
change behavior under Dave = 0.7. On the dilatancy behavior in Figure 8(a), the anisotropy
assumption has shown effect on the dilatancy curves for loading test and unloading test. Figure 8(b)

0.7

0.8

0.9

1

10 100 1000 10000

p' (kPa)

e

IC test
Critical state
Simulation

(a)

Critical state line

-1.5

-0.5

0.5

1.5

2.5

-3 -2 -1 0 1 2 3 4

d (%)

q/
p'

Experiment

Micro model: a0 = 0

Micro model: a0 = 1

Micro model: a0 = -0.8

(b)

: Constant p' = 98 kPa

Figure 6. Experimental results on Toyoura sand: (a) isotropic compression curve and critical states,
(b) constant p′ test under drained triaxial condition with loading and unloading stages.
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shows that the volume change behavior for loading test is slightly influenced by anisotropy, but
significant effects can be seen on the volume change behavior during unloading.

It is noted that there are many combinations of parameters Dave and a0, which can equally fit well the
loading curve (such as a0 =�0.8, Dave = 0.65; a0 = 0, Dave = 0.7; and a0 = 1, Dave = 0.75) as shown in
Figure 8(c). Therefore, to determine the two parameters, the unloading curve should be also used.
As indicated in Figure 8(c), only one set of parameters (a0 = 0, Dave = 0.7) can fit well both loading
and unloading curves. The three sets of parameters also display significant difference on the volume
change behavior for unloading condition (see Figure 8(d)).

The stress–dilatancy behavior predicted by the present model is based on mobilization of contact
planes. Therefore, it is of interest to observe the predicted local dilatancy behavior on individual
contact planes. In a triaxial tests, the applied loading is axisymmetric about vertical x-axis; thus, the
orientation of a given contact plane can be represented by an inclined angle,θ, which is measured
between the branch vector and the x-axis of the coordinate system as shown in Figure 4 (θ = 0˚
corresponds to a horizontal contact plane). Seven contact planes were selected for this investigation:
θ= 0�, 18�, 28�, 45�, 55�, 72�, and 90�, as shown, respectively, in the x–z plane on Figure 4.

To obtain a more direct comparison between the local behavior and the overall stress–strain
behavior, in the following discussions we used the variables of local strain and local stress as
normalized interparticle force and interparticle displacement. For this purpose, we defined a local
normal stress sa ¼ f an Nl=3V and a local shear stress ta ¼ f ar Nl=3V , where l is the branch length and

Table I. Values of parameters for very loose Hostun sand and Toyoura sand.

Global parameters Interparticle parameters

Parameters l eref x D f′m f0 n kn0 (N/mm) krR kpR

Toyoura sand 0.019 0.934 0.7 0.7a 31� 29� 0.5 12.5 0.5 0.15
Hostun sand 0.35 1.18 0.1 3a 33� 33� 0.5 6.2 0.5 1.0

aAverage value.

(a) Dave = 0.7, a0 = 0 (b) Dave = 0.7, a0 = -0.8

0

0.5

1

1.5

0 0.5 1 1.5

Z

X

a0 = -0.8

a0 = 0

a0 = 1

(c) Dave = 0.7, a0 = 1 (d) 

Figure 7. Schematic plot for orientation distribution of inherited anisotropy of dilatancy constant in
sphere coordinate.
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N/V is the total number of contact per unit volume. The corresponding local normal strain is defined as
ea ¼ dan=l and a local shear strain is defined as ga ¼ dar =l . With these definitions, applying static
hypothesis for an isotropic material, the local stress and overall stress are related by ti= sijnj, and
the local strain and overall strain are related by gi = eijnj.

The local stress paths for the seven selected contact orientations during loading and unloading
are plotted in Figures 9(a) and 9(b), respectively. The mobilized shear stresses on contact
planes are different for each orientation. The 55� contact planes reach the highest mobilized ratio
t/s in loading condition (close to p/4 +fm/2 = 62.5�); the 28� contact planes reach the highest ratio
t/s in unloading (close to p/4 � fm/2 = 27.5�). For the 0� and 90� contact planes, shear stresses
are null.

Figure 10 shows local dilatancy relations (expressed by the local normal to shear plastic strain
increment Δep/Δgp versus shear stress to normal stress t/s). Three different cases (a0 = 0, 1 and �0.8
with Dave = 0.7) are plotted: Figures 10(a1)–10(e1) for a0 = 0, Figures 10(a2)–10(e2) for a0 = 1, and
Figures 10(a3)–10(e3) for a0 =�0.8.

For the isotropic case with a0 = 0 (see Figures 10(a1)–10(e1)), according to the local dilatancy used
(Equation (15), the local dilatancy rate Δep/Δgp starts from tanf0 = 0.333 with a slope of �0.7 during
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Figure 9. Local stress paths for selected plane contact orientations for (a) loading and (b) unloading stages.
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Figure 10. Local stress–dilatancy relations for selected plane contact orientations for loading and unloading
stages: (a1)–(e1) a0 = 0, (a2)–(e2) a0 = 1, and (a3)–(e3) a0 =�0.8.
loading for all contact planes. At the end of loading stage, different planes mobilized to different ratios
t/s. Subsequently, at the beginning of unloading, the local dilatancy rate at different planes starts from
different values but with same slope of �0.7. For loading test, the contact planes 18� and 28� behave
only on contraction; other planes mobilized to higher stress level and reach the dilation region. For
unloading test, the contact planes 55� and 72� behave only on contraction and other planes behave
on contraction followed by dilation.

For the anisotropic case with a0 = 1 (see Figures 10(a2)–10(e2)), the contact planes with lower θ
have higher local dilatancy rates and higher slopes D during loading. Inverse situation can be
observed for the case a0 =�0.8 (see Figures 10(a3)–10(e3)). For a given contact plane, the slopes of
dilatancy curve D are same under loading and unloading.
4.2.. Predictions for undrained behavior of loose Hostun sand

In the previous sections, the present model has been evaluated by drained tests on Toyoura sand. Here,
we further evaluate the model with undrained laboratory tests on loose Hostun sand by Doanh et al.
[22]. All samples were prepared in an attempt to have the same initial void ratio before
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consolidation. The initial void ratio, e0, is approximately 1.0, corresponding to a relative density Dr less
than 15%. The minimum and the maximum void ratios of the Hostun RF sand are emax = 1.041 and
emin = 0.648. The sand samples were anisotropically consolidated to confining pressures = 100, 200,
300, and 400 kPa. Then, the specimens were sheared to failure under undrained conditions in a
triaxial condition in two different stress paths: (i) increase in axial load (i.e. loading condition) and
(ii) decrease in axial load (i.e. unloading condition).

The critical state void ratios obtained from these undrained tests are plotted on the log p′� e plane,
as shown in Figure 11 (K0 ¼ s′a= s′r). Other parameters were calibrated from two undrained triaxial
tests: one in loading and one in unloading condition. Anisotropy for dilatancy constant, a0 =� 0.64,
is obtained by fitting the stress path for undrained extension test. All parameters used for the model
are summarized in Table I.

Figure 12 presents the numerical results predicted using the set of parameters given in Table I. Both
predicted undrained stress paths and stress–strain curves are in agreement with the experimentally
measured curves for loose Hostun sand. The dilatancy curves cannot be directly obtained from the
undrained test results. However, the dilatancy relation is closely related to the shape of undrained
stress paths. The predictions in Figure 12 have demonstrated that the model is capable of capturing
the shape of undrained stress paths and simulating the phenomenon of ‘static liquefaction’, in both
loading and unloading conditions.
5. CONCLUSIONS

It is difficult to model the stress–dilatancy behavior of sand because the behaviors are very different
under loading and unloading conditions. Furthermore, inherent anisotropy has made the dilatancy
behavior of sand even more complex.

A micromechanics approach by Chang and Hicher [11] is adopted for modelling the dilatancy
behavior because the micromechanics approach accounts for the underlying slip mechanism between
particles as well as orientation-dependent interparticle properties. Using this method, the stress–
dilatancy relations under both loading and unloading conditions can be predicted with the
consideration of packing structural anisotropy. Drained triaxial tests on Toyoura sand and undrained
triaxial tests on loose Hostun sand were simulated to evaluate the present model. Comparisons
between experimental results and micromechanical analysis have demonstrated the model’s capability
of describing correctly the stress–dilatancy relations under both loading and unloading conditions.
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Figure 11. Critical states and isotropic compression for very loose Hostun sand.
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Figure 12. Comparison between experimental results and simulations for undrained triaxial tests on very
loose Hostun sand under different K0 conditions (K0 = 0.66 and 0.5).
APPENDIX A: MICROMECHANICAL MODEL AND DEFINITIONS OF SYMBOLS
Interparticle behavior

The interparticle model by Chang and Hicher [11] involves the following elements: (i) elastic stiffness,
(ii) friction sliding, and (iii) dilatancy. They are briefly described in the following paragraphs.

For sand grains, the elastic stiffness between two particles is given by

kn ¼ kn0
fn
fref

� �n

; kr� ¼ krRkn0
fn
fref

� �n

(A1)

where fref is the reference value by fref ¼ 3V
Nl pat (pat is the atmosphere pressure equal to 101.3 kPa, and

V/N is the total number of contacts per unit volume), fn is the contact force in normal direction, l is the
branch length between two particles, and kn0, krR, and n are material constants. For two spherical
particles, the branch length is same as particle size l= d. The value of n is typically 0.5 for sand.
13



The yield function F is assumed to be of Mohr–Coulomb type, defined in a contact-force space
(e.g. fn, fs, and ft),

F ¼ fr
fn
� k dpr

� �
(A2)

where k dPr
� �

is a hardening function. When dF> 0, it indicates loading, otherwise unloading.

Note that the shear force fr and the plastic sliding dPr can be defined as

fr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2s þ f 2t

q
and dpr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dps
� �2 þ dpt

� �2q
(A3)

The hardening function is defined by a hyperbolic curve in k� dpr plane, which involves two
material constants: fp and kp.

k ¼ kp tanfp d
p
r

tanfp þ kpd
p
r

(A4)

The value of k asymptotically approaches the apparent interparticle friction angle tanfp. The initial
slope of the hyperbolic curve, kp, is assumed to relate kn by a constant kpR:

kp ¼ kpRkn=fn (A5)

The elastic sliding behavior between two particles does not have a shear induced normal
movements. However, the plastic sliding often occurs along the contact plane with an upward or
downward movement, which is the shear-induced dilation/contraction. It is postulated that

ddpn
ddpr

¼ D tanf0 �
fr
fn

� �
(A6)

where D is material constant for local dilatancy. The tanf0 represents the obliquity at which the plastic
normal movement is zero, which is related to the phase transformation line of the soil assembly.

With the elastic and plastic behavior previously described, the final incremental force–displacement
relationship of the interparticle contact can be derived, given by

_f
a
i ¼ kaij

_d
a
j (A7)

A detailed expression of the elastoplastic stiffness tensor can be derived from yield function and
flow rule (see Chang and Hicher [11]), in which kaij is the function of kn0, krR, kpR, tanfp,D, and fr/fn.
The derivation is not included here.

Influence of density state

To account for the interactions among neighbouring particles, we introduced a density state c= ec/e in
reference to the void ratio at critical state.

Soil is said to be in critical state when it undergoes large shear deformations at a constant volume
and a constant stress state. The void ratio corresponding to this state is ec. The critical state line can
be expressed as follows for sand:
14



ec ¼ eref � l
p′

pat

� �x

(A8)

where x and l are two material constants, and p′ is the mean effective stress of the packing.
Resistance against sliding on a contact plane is dependent on the degree of interlocking by

neighboring particles. The resistance can be related to the state of packing void ratio e by

tanfp ¼
ec
e

� �m
tanfm (A9)

where m is a material constant, which is typically equal to 1. For dense packing, the apparent
interparticle friction angle fp is greater than the internal friction angle fm. When the packing
structure dilates, the degree of interlocking and the apparent frictional angle are reduced, which
results in a strain-softening phenomenon. For loose packing, the apparent frictional angle fp is
smaller than the internal friction angle fm.

Overall stress–strain relationship

The stress–strain relationship for an assembly can be determined from integrating the behavior of
interparticle contacts in all orientations. In the integration process, a micro–macro relationship is
required. Using the static hypothesis, we obtain the relation between the global strain and the
interparticle displacement,

_uj;i ¼ A�1
ik

XN
a¼1

_d
a
j l

a
k ; Aik ¼

XN
a¼1

l ai l
a
k (A10)

where the branch vector lak is defined as the vector joining the centers of two particles, and Aij is the
fabric tensor. Using this hypothesis, the mean force on the contact plane of a given orientation a is

_f
a
j ¼ _sijA�1

ik laVk (A11)

The stress increment can be obtained by the contact forces and branch vectors for all contacts
as follows:

_sij ¼ 1
V

XN
a¼1

_f
a
j l

a
i (A12)

Apply Equation (A12) to the stress in Equation (A11), it can be observe that Equation (A11) is
satisfied automatically.

Using Equations (A10), (A7), and (A11), the following relationship between stress increment and
strain increment can be obtained:

_ui;j ¼ Cijmp _smp; where Cijmp ¼ A�1
ik A�1

mnV
XN
a¼1

kepjp

� ��1
lak l

a
n (A13)

When the contact number N is sufficiently large in an isotropic packing, the summation of flexibility
tensor in Equation (A13) and the summation of fabric tensor in Equation (A10) can be written in
integral form, given by
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Cijmp ¼ A�1
ik A�1

mn

NV

2p

Z p=2

0

Z 2p

0
kepjp θ; bð Þ�1lk θ; bð Þln θ; bð Þ sinθdθdb; and (A14)

Aik ¼ N

2p

Z p=2

0

Z 2p

0
li θ; bð Þlk θ; bð Þ sinθdθdb (A15)

The integration of Equations (A14) and (A15) in a spherical coordinate can be carried out numer-
ically using Gauss integration points over the surface of the sphere.
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