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Sensitivity Approach for Modeling Stochastic Field of 
Keulegan–Carpenter and Reynolds Numbers Through 
a Matrix Response Surface

The actual challenge for requalification of existing offshore structures through a rational process of reassessment indicates the
importance of employing a response surface meth-odology. At different steps in the quantitative analysis, quite a lot of approximations
are performed as a surrogate for the original model in subsequent uncertainty and sensitivity studies. This paper proposes to employ a
geometrical description of the nth order Stokes model in the form of a random linear combination of deterministic vectors. These vectors
are obtained by rotation transformations of the wave directional vector. This facilitates introduction of an appropriate level of
complexity in stochastic modeling of the wave velocity and of the Reynolds and Keulegan–Carpenter numbers for probabilistic
mechan-ics analysis of offshore structures. In situ measurements are used to assess suitable ranges and distributions of basic
variables.

Keywords: offshore structures, response surfaces, hydraulic parameters, Morison equations, wave loading
Introduction
Nowadays one-third of the existing offshore platforms require a

ife extension. It is well recognized that the application of proba-
ilistic approaches gives an efficient quantitative means for updat-
ng information and for measuring the relative change in safety
evel compared with a predefined requirement. During the past 2
ecades, the efforts were concentrated to develop methods and
orresponding software for structural reliability analyses. Increas-
ngly in practice, failure probabilities and/or reliability indices are
ntroduced for elaboration of load and resistance factor design
LRFD� rules �1� and comparison of design proposals. The actual
hallenge is to provide rational procedures and decision aid tools
elated to the requalification of offshore structures where the
tructural and mechanical integrities are important criteria.

The required structural behavior can be considered as the out-
ut of a system, which varies in response to the changing levels of
everal input variables. The response surface methodology �RSM�
omes, of course, as a basic formal aid-tool �2,3,20�. The response
urves must be based on some prescribed understanding of the
nderlying mechanism �4�. In particular, the time evolution of the
ave propagation is usually described by second order partial
ifferential equations within more or less simplified boundary and
nitial conditions, known as the Navier–Stokes equations. Useful
eviews of wave loads acting on offshore structures are available
n a series of articles �5,6�, which focuses on the deterministic
spects mainly.

Here it is proposed to develop a formal representation of the
ave kinematics field following a geometrical viewpoint. The nth
rder Stokes model has the form of a sum of n vectors, each of
1

them being obtained through suitable homothety and rotation
transformations of the wave direction vector. The homothety ra-
tios and the rotation angles are random functions for which the
stochastic fluctuations depend on the wave height and on the wave
kinematics intensity process. Analyzing the structure for the rel-
evant stochastic processes leads to the derivation of a response
surface for Reynolds and Keulegan–Carpenter numbers suitable
for fatigue and extreme loading computation in the presence of
marine growth �7�.

2 Geometrical Modeling of the Wave Kinematics and
Building of Matrix Response Surface

Physical time scales of wave actions are taken into account with
practical efficiency by identifying sea-states as stationary compo-
nents of a piecewise second order stationary ergodic and differen-
tiable mean square random process �8�. As an extension of the
generalized harmonic analysis, the stochastic process theory con-
siders functions indexed by space/time parameters and with values
in a so called complete probability space �9�. One way of describ-
ing a stochastic process is to specify the n-dimensional joint prob-
ability law whatever n. Another means is to give an explicit for-
mula for the value of the process at each index point in terms of a
family of random variables whose probability law is known �e.g.,
trajectories�. The last option is retained to describe wave by wave
particle velocities on jacket platforms.

There is no magic guidance to generate such formulas by se-
lecting among mathematical models �e.g., Stokes, Boussinesq,
Miche, etc.� for an application to ocean wave actions. Physical
reasoning and observations give some classifications based on de-
terministic criteria. But these theoretical models have to be intro-
duced in a reliability analysis, regarding their stochastic nature
due to their sensitiveness to random or uncertain parameters. This
drives the safety domain topology and its probability measure. To
this extent a formal geometrical representation of the wave kine-

matics within a special care on Stokes waves is proposed.
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2.1 Matrix Response Surface of Airy Wave. Let
O ,OX ,OY ,OZ� be an orthonormal basis in the Euclidean space
3. The origin O is taken at the mean sea level, the axis OZ is
ertical and upward, and OX is the wave directional axis. The
ollowing set of time and dimensionless in space indices is con-
idered: t, x=X / l, and z=Z /d+1, where l is the width of the
tructure �diameter of a cylinder containing the platform� and d is
ater depth. The small amplitude plane harmonic progressive
aves known as airy waves are the simplest of all solutions to the
ave problem. They are derived from a velocity potential also

alled orthogonal stream function. The associated velocity vector
Airy takes the classical form �see Eq. �1�� in the wave plane

OX ,OZ�

VAiry =
H

2
�g

d

cosh�kdz�
cosh�kd�

� kd

tanh�kd�� cos�klx − �t�
tanh�kdz�sin�klx − �t�

�
�1�

here H is the wave height, k is the wave number, � is the
angular� frequency, and �t=�t−� �� is the phase angle�. The
ariables k and � are linked together by the one to one dispersive
elation ��2=gk tanh�kd��.

Equation �1� writes

VAiry = �1�cos��1�OX + sin��1�OZ� �2�

ith

tan��1� =
�VAiry,OZ	
�VAiry,OX	

= tanh�kdz�tan�klx − �t� �3�

�1 = 
VAiry
 =
H

2
�g

d

cosh�kdz�
cosh�kd�

� kd

tanh�kd�
�1 −

sin2�klx − �t�
cosh2�kdz�

�4�
The velocity vector being in the wave plane, it can be written as
combination of a homothety H and a rotation R, applied on the
ector OX, in the geometrical form

VAiry = H�O,�1�oR�− OY,�1�OX �5�

here H�O ,�1� denotes the homothety with center O and ratio �1
nd R�−OY ,�1� denotes the rotation of �−OY� axis �with −OV
OX∧OZ� and with angle �1.
Expression �5� allows analyzing the kinematics field �here ve-

ocity� by separating the intensity and the angle of the vector. The
omothety ratio �1 and rotation angle �1 are random functions
ndexed by �x ,z , t�. The fluctuations of their trajectories are de-
ending on the couple of random variables �H ,k�. Angle �1 is
nalytically independent of variable H.

The range and statistics of k are well adapted to approximate
he vector W=R�−OY ,�1�OX by the normalized first order Taylor

xpansion W�1� around the mean wave number k̄. Subsequently
ome algebraic operations and differentiations are obtained as fol-
ows:

W�1� = W�k̄� + �k − k̄�W��k��k=k̄

here

W�k̄� = R�− OY,�1�OX with �1 = �1�k̄�, �1 = �k − k̄�
��

�k
�k̄�

W��k��k=k̄ = �1�R�− OY,
�

2
W� �k̄�

= �1�R�− OY,�1� � R�− OY,
�

2
OX �6�

�1�
Finally, W writes

2

W�1� = H�O,
1

�1 + �1
2

�o�Id + H�O,�1�oR�− OY,
�

2
�oR�− OY,�1�OX

�7�
The goodness of the approximation can be measured through

the scalar product of the two vectors �see Eq. �8��. It is given by
considering in the wave plane the distance between the point N of
the unit circle and with coordinates �cos��1−�1� ; sin��1−�1�� and
the straight line �D� of equation �X+�1Z=0�. Coordinates of N
and direction of D vary with k. The Latin hypercube sampling
technique is implemented to generate preliminary samples from
the joint probability distribution for �H ,k� of the extreme sea-state
referenced in Table 1. Figure 1 presents a simulation of this dis-

tance and statistics of k around k̄; s denotes the standard deviation.
It is shown that whatever the statistics, the perpendiculars to D
contain all the point O, origin of the repair and the approximation
can be considered as very accurate.

cos��� = �W�1�,W	 =
cos��1 − �� 1� + �1 sin��1 − �� 1�

�1 + �1
2

�8�

Introducing inside Eq. �5� the approximation W�1� instead of W,
the velocity field corresponding has the following response curve:

Table 1 Extreme sea state parameters †10‡

Hs: significant wave height: Gumbel distribution:
exp�−exp− �x−u� /��

�e.g., 100 year period: u=15.5 m; �=1.2�
Tstat: sea-state duration

Exponential distribution with expectation 3 h
E�Tz �Hs�=	�Hs� �e.g., 	�Hs�= �8Hs+21��
H given �Hs ,Tstat�: Gumbel distribution:

exp�−exp− �x−u� /��; u=Hs
�r /2; �= �Hs /2��2r;

r=log�Tstat /	�Hs�� �e.g., 100 years: Hs=15.5 m;
Tstat=3 h; u=28.5; �=1.9�

T given H: normal or lognormal distributed
E�T �H�=	�H� �e.g., 	�Hs�=�6H+39�
Fig. 1 Fluctuations of N-„D… for four statistics of k
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VAiry � VAiry
�1� = a1A + b1B �9�

here A and B are deterministic orthonormal vectors defined by

A = R�− OY,�1�OX and B = R�− OY,
�

2
A

nd the coefficients a1 and b1 are random functions

a1 =
�1

�1 + �1
2
, b1 = �1a1

The random variable �1 is zero-mean and with narrow support.
t follows that b1 is small compared with a1. Consequently A
epresents the main axis for the velocity vector and the component
ollowing B gives the fluctuations of the velocity vector inside a
arrow sector around A.

2.2 Analysis of Stochastic Structure of Airy Wave Velocity.
he previous matrix response surface format of the velocity field

or airy waves allows investigation of the stochastic structure of
his stochastic field through its trajectories.

2.2.1 Role of Phase Angle � . The pseudophase �t play a
articular role on variability of fields defined previously. It con-
ains a time index t, a hazard introduced by �angular� frequency �,
nd a phase which defined the position of the wave on the struc-
ure. In fact, �t being only in sine and cosine functions, its influ-
nce can be seen as a change in repair by translation along the
ave propagation axis whose origin varies with �angular� fre-
uency �. In the following, it is assumed that �t=0 �e.g., initial
ime and the wave crest is on the first pile of the structure�.

2.2.2 Study of Stochastic Field �1, Wave Velocity Intensity.
he intensity of the velocity vector VAiry equals �1. Equation �4�

ndicates that the scalar velocity intensity can be factorized

�1 =
H

2
�g

d

cosh�kdz�
cosh�kd�

� kd

tanh�kd�
D�k,x,z,t� �10�

here

D�k,x,z,t� =�1 −
sin2�klx − �t�
cosh2�kdz�

s a function of the random variable k. This function varies slowly
hen k varies on its support and is the only function indexed by t

nd x. In order to illustrate this stochastic property, let us consider
he extreme sea-state referenced in Table 1. Figure 2 presents the

Fig. 2 Fluctuations of D„x ,0.8,0… for given statistics of k
ariation of D versus x at a depth z=0.8 �Z=−20 m� obtained for

3

the five statistics of k: mean value k̄, mean value plus/minus stan-
dard deviation, and mean value plus/minus two times standard
deviation. The coefficient of variation does not exceed 1% at this
depth, which is in the wave area. Denoted by D� , the value of D for

k= k̄, Eq. �10� is then transformed into a deterministic linear rela-
tionship �11� between two random fields

�1�x,z,t� = D� �x,z,0��1
�1��z� �11�

This property is of course very interesting when investigating
the stochastic properties of the wave velocity intensity. Let M
=aN �a�0� be a linear relation between two random variables. It
is well known that their densities are related by fM�n�
=1 /a fN�n /a�. In particular the density fM becomes tighter when
�a�
1.

Function D is by definition upper-bounded by 1 and in the wave
area, it can be shown that the term cosh�kdz� becomes dominant
in comparison to sin�klx�. D remains in fact very close to 1 and
density distributions of �1 will be tightening only for the highest
values of x in comparison to �1

�1�. Suppose now that �t�0, the
assertions remain true once extended the deterministic factor to
D� �x ,z , t� by fixing �t at the corresponding value to the mean wave
number.

As the random velocity function �1
�1� is indexed by z only, it is

deduced that the coefficient of variation and the normalized sta-
tistical moments of �1 �skewness, kurtosis, etc.� vary only with
this profile index z. As a consequence, the intensity of the airy
wave is a profile random function for normalized statistics.

2.2.3 Study of the Orientation �1 of Velocity Vector. When �1
represents the intensity of the wave velocity vector, angle �1 gives
the main direction of this vector. It is noted that tanh�kdz� varies

slowly with k and may be concentrated at its value for k= k̄. As an
illustration and for variables previously presented in Table 1, Fig.
3 plots this function varying with x for the same five statistics of

k: it is very close to tanh�k̄dz� whatever k. For given values of x,
the distributions of �1 obtained from this relationship at depth 0.8
and varying with z are presented, respectively, in Figs. 4 and 5.

Then tan��1� behaves as a deterministic linear transformation
of tan�klx−�t�. Equation �3� can be expressed as a linear relation
between two random fields

tan��1� = � tan�klx − �t� with � = tanh�k̄dz� �12�
As a consequence the coefficients of variation and the normal-

Fig. 3 Fluctuations of tanh„kdz… „z=0.8…
ized moments of �1�x ,z , t� are depending of the indices x and t
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nly. They are constant whatever the index z. Moreover, in the
icinity of the mean sea level, coefficient � is very close to 1. In
his condition the angle �1 is well approximated as klx−�t.

2.2.4 Study of Stochastic Field �1 . From Eq. �9�, the stochas-
ic field �1 is defined as the projection of the wave velocity vector
n the deterministic vector B. The stochastic analysis of �1 is

asier because this field is proportional to �k− k̄�. This stochastic
eld is then centered and with a similar distribution to k after

inear transformation. Consequently, fluctuations of �1 are weak
nd its spatial variability is directly linked to the one of �1� �Eq.
13��:

�1� = lx tanh�k̄dz�
1 + tan2�k̄lx�

1 + tan2�k̄dz�tan2�k̄lx�
�13�

In particular in the vicinity of the mean sea level �wave area�,
he approximation �1�= lx is viable. It demonstrates that �1 is in-
ependent of the index z. For the study of time dependency, pre-
ious results are extended to the case �t�0,

Fig. 4 Probability density of �1„x ,0.8… for three values of x

Fig. 5 Probability density of � „x,z… for three values of x 
1

4

�1� = �lx −
��

�k
�k̄�ttanh�k̄dz�

1 + tan2�k̄lx − �t + ��

1 + tanh2�k̄dz�tan2�k̄lx − �t + ��
�14�

In the vicinity of the mean sea level, Eq. �14� becomes

�1� = �lx −
��

�k
�k̄�t

In this condition the stochastic field �1 is linearly time depen-
dent.

2.3 Expansion to the Matrix Response Surface of the nth
Order Stokes Model. The nth order potential being the sum of a
set of n potentials, the response surface of each term i is obtained
by a similar transformation based on a Taylor expansion of each
term �see Eq. �7��.

Vi = aiAi + biBi �15�

where Ai and Bi are two deterministic orthogonal vectors in the
wave plane:

Ai = R�− OY,�i�OX, Bi = R�− OY,
�

2 Ai

ai =
�i

�1 + �i
2
, bi = �iai

After projection of these vectors on A and B, the response
surface of nth order wave velocity is deduced �Eq. �16��

Vn = anA + bnB �16�

The multipliers an and bn are analytical random functions

an = �
i=1

n

�ai cos �i − bi sin �i�

bn = �
i=1

n

�ai sin �i + bi cos�i� where �i = �i − �1 �17�

They are expressed as functions of the wave height and of the
wave period. Thus their stochastic fluctuations are governed by
the randomness of these basic variables. The complexity level is
discussed when order �n� is selected in the random functions a�n�
and b�n�. Note that each angle is deduced from relationship �18�.

tan��i� = tanh�ikdz�tan�i�klx − �t�� �18�
By implementing previous reasoning for each order, we may

conclude that in the vicinity of the mean sea level, �i is well
approximated to i�klz−�t� and thus to i�1. This approximation
remains with depth where angles are weaker. In fact a larger rela-
tive difference may be accepted for smaller mean values. Then the
approximation �i� i�1 may be assumed and the �i in Eq. �17� is
well approximated by �i−1��1. Equation �17� makes the sensitiv-
ity analysis easier since each term of order �n� can be expressed as
an additional perturbation of the previous order �n−1�.

3 Matrix Response Surface of Reynolds and
Keulegan–Carpenter Numbers

3.1 General Formulation of Response Surfaces for Re and
KC. For engineering purposes, it is now well admitted that Mori-
son equations give the main trends for the computation of hydrau-
lic forces �11�. The set of coefficients �CD, CM, CX, and CX�� of the
Morison equations depend on the hydraulic numbers: the Rey-
nolds Re and the Keulegan–Carpenter KC numbers �Eqs. �17� and
�18�� �12–15�. The American Petroleum Institute code �16� and

the future ISO regulations adopt the corresponding nonlinear re-
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ationships �ISO/DIS 19902, 2004�. Rather than these numbers,
tokes parameter or Strouhal number can be used.

Re =
maxt��0;T/2��V�

�n��t��D


�19�

KC =
maxt��0;T/2��V�

�n��t��T

D
�20�

here V
�

�n��t� is the intensity �in m/s� of the projection of the
article velocity onto the plane orthogonal to the beam, D is the
iameter of the beam �m�, T the wave period �s�, and  is the
inematics viscosity of sea water �m2 /s�. Here the velocity is
omputed from the Stokes model of order n.

As a consequence, Re and KC are random fields indexed by z.
he field of particle velocity being expressed in the plane
O ,OX ,OZ� in global repair, local coordinates �Ob, xb, yb, and zb�
re defined for its projection where xb is oriented by the beam axis
nd �yb ,zb� is the plane orthogonal to the beam. By denoting �b,
he orthogonal projection onto the beam axis and �b� the projec-
ion onto the orthogonal plane to the beam, we obtain the response
urfaces of Re and KC in Eqs. �21� and �22�.

Re =
maxt��0;T/2��
�b

� �a�t��n�A�t� + b�t��n�B�t��
�D



Fig. 6 First statistics of Re as
�21�

5

KC =
maxt��0;T/2��
�b

� �a�t��n�A�t� + b�t��n�B�t��
�T

D

�22�
In case of vertical component and by using Eq. �16�, these

equations become Eqs. �23� and �24�.

Re =
maxt��0;T/2��
a�t��n� cos��1� − b�t��n� sin��1�
�D


�23�

KC =
maxt��0;T/2��
a�t��n� cos��1� − b�t��n� sin��1�
�T

D
�24�

In case of horizontal component, they become Eqs. �25� and
�26�.

Re =
maxt��0;T/2��
a�t��n� sin��1� − b�t��n� cos��1�
�D


�25�

KC =
maxt��0;T/2��
a�t��n� sin��1� − b�t��n� cos��1�
�T

D
�26�

Note that in practice, support of distribution for H and T are
truncated in view to represent only physical events, then maxi-

nction of z for a vertical beam
mum values can be determined.
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3.2 Response Surfaces in Cases of Marine Growth
resence. In cases of marine growth presence, D must be replaced

n Eqs. �19�–�26� by �mg D where �mg is a multiplying factor.
enerally, it is modeled by a random field indexed by z �17�.

Numerical Studies
Consider the field of extreme waves presented in Table 1. Re-

ponse surfaces of Re and KC are considered. It is suggested to
nalyze these stochastic fields indexed by z both through the evo-
ution of statistics with depth and through the distributions at
iven depth. Modified Latin hypercube sampling technique is
sed for simulations �18�. It allows reducing the size of samples
here 1500�. Convergence tests show that the relative error on
ariance is about 5% in this case.
Figures 6 and 7 present the evolution of the coefficient of varia-

ion, the skewness, and the kurtosis with depth for a vertical com-
onent of diameter 1 m. These statistical moments give the main
nformation on the shape of the distribution. Only the first and the
econd order of the Stokes model are plotted.

First, when considering the order of the Stokes model, it is
hown that the first order is sufficient to predict the main trends of
he evolution with depth. It is noticed that the evolution of these
tatistics with depth is strong and that the coefficients of variation

ig. 7 First statistics of KC as function of z for a vertical beam

Fig. 8 Distribution of Re for a vertical beam „Z=−50  m …
6

near the splash area �z=1� are, respectively, of 15% for Re and
9% for KC. Note that except at the bottom, the coefficient of
variation of Re remains constant value with depth. As the mean
value is strongly decreasing with depth, the variance is decreasing
too. The symmetry of Re �see sign of skewness� can change with
depth. This property is of significant importance for reliability
studies and is underlined with Figs. 8 and 9 where distributions of
Re, respectively, at depth 50 m �z=0.5� and 100 m �z=0� are
given.

5 Conclusions
This paper suggests a new matrix response surface for stochas-

tic modeling of Reynolds and Keulegan–Carpenter numbers. It
starts from a geometrical modeling of the wave kinematics field
based on the Stokes model. The stochastic properties of the geo-
metrical parameters are analyzed and a complete expansion is
provided. It takes the form of a summation of stochastic coeffi-
cients, with known properties, with space, acting on deterministic
vectors. Items such as physical meanings, complexity level in
modeling, distribution effects, and computational tractability are
addressed. They are essential criteria for an operational use of
RSM in a reliability analysis. It allows discussing the complexity
level to introduce in the Stokes model. Results are site specific
and an illustration is given on a site in the North Sea �19,20�. This
new approach provides an algorithmic improvement of the com-
puter module on wave loading, which is available in different
packages such as the evaluation of jackets from a probabilistic
redundant analysis �ARPEJ� and the reliability analysis system for
offshore structures �RASOS�.
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