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Rotational failure mechanisms for the face stability analysis of
tunnels driven by a pressurized shield

Guilhem Mollon1,∗,†, Daniel Dias1,‡ and Abdul-Hamid Soubra2,§

1INSA Lyon, LGCIE Equipe Géotechnique, Bât. J.C.A. Coulomb, Domaine scientifique de la Doua, 69621, Villeurbanne 
cedex, France

2Civil Engineering Department, University of Nantes, Bd. de l’université, BP 152, 44603 Saint-Nazaire, cedex, France

The aim of this paper is to determine the collapse and blow-out face pressures of a circular tunnel driven 
by a pressurized shield. The analysis is performed in the framework of the kinematical approach of the 
limit analysis theory. Two rotational failure mechanisms are proposed for the active and passive cases. 
These mechanisms have two significant advantages with respect to the available ones: (i) they take into 
account the entire circular tunnel face instead of an inscribed ellipse to this circular area, and (ii) they 
are more consistent with the rotational rigid-block movement observed in the experimental tests. For both 
the active and passive cases, the three-dimensional failure surface was generated ‘point by point’ instead 
of simple use of the existing standard geometric shapes such as cones or cylinders. This was achieved by 
employing a spatial discretization technique. The numerical results have shown that the present rotational 
mechanisms provide, in the case of frictional soils (with or without cohesion), a significant improvement 
with respect to the translational mechanisms. Finally, an extension of the proposed collapse mechanism 
to include a tension cut-off in the classical Mohr–Coulomb failure criterion is presented and discussed.

KEY WORDS: tunnel face stability; limit analysis; pressurized shield; upper-bound methods; collapse;
blow-out

1. INTRODUCTION

The stability analysis of a tunnel driven by a pressurized shield is a key issue in real shield
tunnelling projects. This paper focuses on tunnel face stability and considers a shield tunnelling
under compressed air. In this case, the applied pressure is uniformly distributed on the tunnel face.
The aim of the face stability analysis is to ensure safety against soil collapse and blow-out in front
of the tunnel face. A soil collapse occurs if the applied face pressure is not sufficient to prevent the
movement of the soil mass towards the tunnel. On the other hand, a blow-out appears when the
applied face pressure is high enough to ‘push’ the soil towards the ground surface. It is desirable
to assess both the collapse and the blow-out face pressure and thus determine the range of air
pressure required to prevent both kinds of failure.
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The study of the face stability of circular tunnels driven by pressurized shields has been inves-
tigated by several authors in the literature. Some authors have considered a purely cohesive soil
([1–8] among others). In this case, the stability of the tunnel face is governed by the so-called
load factor N defined as N = (�s +�· H −�t)/cu where �s is the surcharge loading on the ground
surface, �t is the uniform pressure applied on the tunnel face, H is the depth of the tunnel axis,
� is the soil unit weight and cu is the soil undrained cohesion. For the case of a frictional soil,
some authors have performed experimental tests [9, 10]. Others [11–18] have performed analytical
or numerical approaches.

This paper focuses on the face stability analysis in the general case of a frictional and/or
cohesive soil. The most relevant approaches of a purely cohesive soil were proposed by Osman
and coworkers [7, 8]. Their method is based on an admissible continuous velocity field. On the
other hand, the most significant results in the case of a frictional soil (with or without cohesion)
can be described as follows:

• Concerning the experimental investigations, the centrifuge tests by Chambon and Corté [9]
have shown that the soil failure resembles to a chimney that does not necessarily outcrop
at the ground surface. An arch effect that takes place above the tunnel face was pointed
out by these authors to explain this phenomenon. On the other hand, the experimental tests
performed by Takano et al. [10] have shown, by using X-ray computed tomography scanner,
that the shape of the failure zone can be simulated with logarithmic spirals in the vertical
cross-sections and elliptical shapes in the horizontal cross-sections. Their observations are of
particular interest since they imply that a rotational mechanism bounded by log-spirals may
adequately simulate the soil failure.

• Concerning the analytical models, the most significant approaches are based on the kinematical
approach of limit analysis (e.g. Leca and Dormieux [12], and Mollon et al. [16, 18]). All these
authors have suggested translational three-dimensional (3D) failure mechanisms. Leca and
Dormieux [12] have proposed a mechanism composed of two conical blocks for the collapse
case (Figure 1(a)) and a mechanism composed of a single conical block outcropping at the
ground surface for the blow-out case (Figure 1(d)). The mechanisms by Mollon et al. [16]
for collapse (Figure 1(b)) and blow-out (Figure 1(e)) constitute an improvement of the failure
mechanisms by Leca and Dormieux [12] since they are composed of five conical blocks and
thus allow the 3D slip surfaces to develop more freely. Notice however that the solutions by
Mollon et al. [16] and those by Leca and Dormieux [12] suffer from the fact that only an
elliptical area inscribed to the circular tunnel face is involved by failure due to the conical
shape of the rigid blocks, the remaining area of the tunnel face being at rest. This is striking
and is contrary to what was observed in the experimental tests [10] and numerical simula-
tions [13]. This shortcoming was removed in [18] when dealing with the collapse mechanism
(Figure 1(c)). This was made possible by using a spatial discretization technique for the gener-
ation of the 3D failure surface. Although this mechanism provided a significant improvement
of the best existing solutions of the collapse pressure in the framework of the kinematical
approach, it does not simulate the rotational movement observed in the experimental tests
by Takano et al. [10]. The present study aims at developing two 3D rotational mechanisms
for the active and passive cases. One should note that 3D rotational failure mechanisms in
frictional and/or cohesive soils were already investigated in the literature when studying
some stability problems in geotechnical engineering [19, 20]. These valuable approaches are
based on circular cross-sections. At a first glance, a mechanism with a circular cross-section
could appear convenient for the failure of a circular tunnel face. However, experimental and
numerical models [9, 13] have shown that the velocity field of a soil failure is not normal
to the tunnel face, both for collapse and blow-out. It means that the intersection of a failure
mechanism with a circular cross-section would not be circular but elliptic (like in the existing
mechanisms published in [12, 16]). As will be shown later, the approach developed in this
paper is more general than that presented in [19, 20] because it allows to consider the entire
tunnel face even for an ‘inclined’ velocity field. This is made possible by the use of a spatial
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Figure 1. Some available mechanisms for collapse [(a) Leca and Dormieux [12]; (b) Mollon et al. [16];
(c) Mollon et al. [18]] and blow-out [(d) Leca & Dormieux [12]; and (e) Mollon et al. [16]].

discretization for the construction of the velocity discontinuity surface. The generation of
both the active and passive failure mechanisms is explained in the next section.

2. VELOCITY FIELD

This section is devoted to the presentation of (i) the velocity field, (ii) the geometrical construction
of the 3D failure surface and finally (iii) the work equation.

The study considers a circular tunnel of diameter D driven by a pressurized shield in a c-� soil
under a cover depth C . Two rotational rigid-block mechanisms are considered for the active and
passive cases. Figure 2 shows the cross-sections of both mechanisms in the (Y, Z ) vertical plane
passing through the tunnel axis. It is assumed that in both cases, the cross-section is bounded by
two log-spirals emerging from A and B (i.e. the crown and invert of the tunnel face) with a common
centre O . Their respective equations in a polar (r,�) coordinate system centred at O are as follows:

r = rA ·exp(±(�A −�) ·tan�) (1)

r = rB ·exp(±(�−�B) ·tan�) (2)
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Figure 2. Cross-sections of the proposed failure mechanisms in the (Y, Z )
plane: (a) collapse and (b) blow-out.

where

rA =
√

Z2
O +Y 2

O (3)

rB =
√

Z2
O +(YO + D)2 (4)

�A = tan−1
(

− Z O

YO

)
(5)

�B = tan−1
(

− Z O

YO + D

)
(6)

Notice that, in Equations (1)–(2) and in all the following equations, when two signs are used
together, the upper and lower signs refer to the collapse and blow-out mechanisms, respectively.
Notice also that rA, rB , �A, �B , YO and Z O in Equations (3)–(6) can be easily identified from
Figure 2. As shown in Figure 2, the two log-spirals meet at point F. This point represents the top
of the failure mechanism in case of collapse (Figure 2(a)), and is located outside of the failure
mechanism in case of blow-out (Figure 2(b)).

A cylindrical rotational velocity field is considered in this paper. This means that both mecha-
nisms rotate with a uniform angular velocity � around a horizontal X -axis passing through point
O (cf. Figure 2). Thus, the velocity vector is independent of the X coordinate. This property will
be used at several places when writing the work equation. As shown in Figure 2, the velocity
vector at a given point I with radius rI is equal to �·rI and it is inclined at an angle �I with the
horizontal direction. This vector points to the tunnel face in case of collapse and to the ground
surface in case of blow-out. The velocity field is entirely defined by point O in the (Y, Z ) plane,
(i.e. by the two parameters YO and Z O ). The same two parameters YO and Z O are also those
that entirely define the failure mechanism. This is because the failure surface will be constructed
in such a manner to respect the normality condition everywhere along the velocity discontinuity
surface (i.e. the velocity should make an angle � with the failure surface). A quite practical method
is to use rE/D and �E (instead of YO and Z O ) as the set of parameters necessary to entirely
describe the failure mechanism. This is because these parameters are dimensionless and represent,
respectively, the normalized radius and the inclination of the velocity at point E , which is the
centre of the tunnel face. Thus, the position of point O can be expressed as a function of rE/D
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and �E as follows:

YO = D ·
[

rE

D
·cos(�E )− 1

2

]
(7)

Z O = D ·
[
−rE

D
·sin(�E )

]
(8)

Since F is located on the two log-spirals emerging from A and B, one can easily show that:

�F =
± ln(rB/rA)

tan�
+�A +�B

2
(9)

rF = rA ·exp(±(�A −�F ) ·tan�)=rB ·exp(±(�F −�B) ·tan�) (10)

By using Equations (3)–(8), one may see that the polar coordinates of point F (i.e. Equations
(9)–(10)) are also function of rE/D and �E which are the parameters that entirely describe the
failure mechanism.

3. GEOMETRICAL CONSTRUCTION OF THE 3D FAILURE SURFACE

To take into account the entire circular tunnel face, one cannot use a simple geometrical shape
to describe the 3D failure surface, and it is necessary to use a spatial discretization technique.
Thus, the failure surface will be determined ‘point-by-point’. The process of discretization aims at
defining the coordinates (X,Y, Z ) of a set of points located on the velocity discontinuity surface
(i.e. the surface of the moving block). This process is described in more detail in the following
sections.

3.1. Principle of the discretization

The circular contour of the tunnel face is discretized by several points, and the moving block is
discretized by several radial planes that all meet at point O (i.e. all these planes are normal to the
velocity field). As may be seen from Figure 3(c), for both the active and passive cases, Section 1
contains the radial planes that cut the tunnel face and Section 3 contains the radial planes that
do not cut the tunnel face. The main idea for the generation of the 3D failure surface consists
of generating a set of points that represent the contour of the mechanism in a given plane using
another set of points representing the contour of the mechanism in a previous plane; the first plane
being �1 (passing through points O , A1 and A′

1). This quite complex discretization process may
be described in more detail as follows:

The tunnel face is discretized by n� points called A j and A′
j where 1� j�n�/2 (Figure 3(b)).

The discretization parameter n� has to be even, because two symmetric points A j and A′
j must

be located on the same horizontal line. The coordinates of point A j in the (X,Y, Z ) coordinate
system shown in Figure 3(a) are:

X Aj = D/2 ·sin(� j )

YAj = D/2 ·[cos(� j )−1]

Z Aj = 0

(11)

where � j is the angle between segment E A j and the vertical direction. It has to be mentioned
that the present discretization is used for a circular tunnel face. For the more general case of a
non-circular tunnel face, it is only needed to choose the points of the tunnel contour that respect
the same ‘symmetry’ condition cited above.

In Section 1 shown in Figure 3(c), a radial plane is denoted by � j where 1� j�n�/2. In
Section 3, a radial plane is also denoted by � j , but here j is greater than n�/2. The plane � j in
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Figure 3. Discretization technique for the generation of the collapse and blow-out mechanisms, for a given
set of the geometric parameters rE/D and �E .

Section 3 is defined by rotation of plane � j−1 around the O X -axis by a constant angle ��. Thus,
it makes an angle � j =� j−1 +�� with the vertical direction (Figure 3(c)). The planes of Section 2
are generated until reaching the top of the mechanism (i.e. point F) in case of non-outcropping
mechanism or until the log-spirals that emerge from A and B have both attained the ground
surface as shown in Figure 3(c). The last plane is called � j max. Concerning plane � j in Section 1,
this plane contains the three points O , A j and A′

j , and it makes an angle � j with the vertical
direction. Angle � j is one of the polar coordinates of points A j and A′

j with respect to O , and it is
given by:

� j =arctan

( −Z O

YO −YAj

)
(12)

For each one of the radial planes of both Sections 1 and 3, a local coordinate system (C j , x j , y j )
is adopted as shown in Figure 3(c) where C j is defined as the intersection point between the plane
� j and the circle of centre O and radius rF . Notice that y j points towards O and x j is in the same
direction as the X -axis. The coordinates of C j in the (X,Y, Z ) coordinate system are given by:

C j

⎧⎪⎪⎨
⎪⎪⎩

XC, j = 0

YC, j = YO −rF ·cos� j

ZC, j = Z O +rF ·sin� j

(13)

For each plane � j of Section 1 (i.e. for 1� j�n�/2), the two points A j and A′
j of the tunnel face

are assigned two angular parameters �′
j and �′′

j in the (C j , x j , y j ) local coordinate system of plane
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Figure 4. Details of generation of point Pi, j+1 from points Pi, j and Pi+1, j : (a) perspective view and
(b) plan views in planes � j and � j+1.

� j . These parameters represent the angles between both vectors
−−−→
A j C j and

−−−→
A′

j C j and vector y j .
For instance, angle �′

j is given by

�′
j =cos−1

(−−−→
A j C j ·−→y j

‖−−−→
A j C j‖

)
(14)

with

−−−→
A j C j ·−→y j = (YC j −YAj ) ·cos� j −(ZC j − Z Aj ) ·sin� j (15)

‖−−−→
A j C j‖ =

√
(X Aj − XC j )2 +(YAj −YC j )2 +(Z Aj − ZC j )2 (16)

3.2. Generation of the mechanism

As shown in Figure 4(a), each point Pi, j of the failure surface is defined by an index i that
represents the position of this point in a given plane, and by an index j that corresponds to the
plane where this point is located. The basic idea for the generation of the 3D surface consists of
computing the coordinates of each new point Pi, j+1 of plane (� j+1), using the coordinates of two
points Pi, j and Pi+1, j in the previous plane � j . This computation is slightly different in the two
Sections 1 and 3 of the mechanism as will be shown below.

3.2.1. Principle of generation of a new point in Section 1. The generation of new points in
Section 1 begins with the use of points A1 and A′

1 of the tunnel face (Figure 3). These two points
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belong also to plane �1 and can be renamed Pi,1 and Pi+1,1. The angular parameters �i,1 and
�i+1,1 of these points in plane �1 can be obtained from Equation (14) as follows:

�i,1 = �′
1

�i+1,1 = �′′
1

(17)

From these two points, a new point Pi,2 can be generated in plane �2. More generally, it is possible
to generate point Pi, j+1 in any plane � j+1 from two points Pi, j and Pi+1, j of plane � j (cf. Figure
4(a)) using the three following conditions:

1. The plane of the triangular facet Fi, j that includes the three points Pi, j , Pi+1, j , and Pi, j+1

should respect the normality condition, which means that the normal vector
→
N i, j to this plane

(pointing outside of the mechanism) should make an angle 	/2+� with the velocity vector,
for both the active and passive cases. The same value of 	/2+� was adopted in both cases
because the velocity vector is pointing downwards in case of collapse and upwards in case of
blow-out (see Figure 2). Notice that the normality condition is necessary for the mechanism
to be kinematically admissible and for the kinematic theorem of the limit analysis to be
applicable.

2. Pi, j+1 belongs to � j+1.
3. The angular coordinate �i, j+1 of point Pi, j+1 in the local coordinate system (C j+1, x j+1, y j+1)

of plane � j+1 is arbitrarily chosen as the average value of the angular coordinates �i, j
(of Pi, j ) and �i+1, j (of Pi+1, j ) in the local coordinate system (C j , x j , y j ) of plane � j
(Figure 4(b)). This means that �i, j+1 = (�i, j +�i+1, j )/2. This condition is not necessary for
the mechanism to be kinematically admissible. It has simply the advantage to ensure that
the generated points on the contour of the sliding surface in plane � j+1 are quasi-uniformly
distributed along this contour.

Once Pi,2 has been generated in �2, one can consider the two points A2 and A′
2 of the tunnel

face (which belong to �2 as well) and rename them Pi−1,2 and Pi+1,2. One therefore can consider
two segments in �2 (Pi−1,2 Pi,2 and Pi,2 Pi+1,2, respectively) and create two new points in �3
(Pi−1,3 and Pi,3, respectively), following the same method. This operation is repeated until the end
of Section 1. In each plane � j+1, n j −1 points are generated (n j being the number of points in
plane � j ) and two other points located on the contour of the tunnel face already exist. Thus, the
total number of points that can be used to form the contour of the failure surface in plane � j+1
is equal to n j +1.

As a conclusion, this method allows, for each segment Pi, j Pi+1, j in � j , to define a corre-
sponding point Pi, j+1 in plane � j+1 such that (i) the normality condition is respected for the
triangular facet Fi, j and (ii) the generated points in � j+1 are quasi-uniformly distributed along this
contour.

3.2.2. Principle of generation of a new point in Section 2. At the end of Section 1, plane �n�/2
contains n�/2+1 points. This number is equal to the number of segments since the contour of the
discontinuity surface in plane �n�/2+1 is closed. These n�/2+1 segments allow one to generate
n�/2+1 new points in plane �n�/2+1. This generation is done following the three conditions
mentioned in Section 1. The contours are then successively generated, until the end of Section 2
(Figure 3(c)). The mathematical formulation for the generation of point Pi, j+1 from points Pi, j
and Pi+1, j is detailed below.

3.2.3. Mathematical formulation for the generation of a new point from the two previous ones.
As mentioned before, the normality condition states that the plane of each triangular facet Fi, j
containing the three points Pi, j , Pi+1, j , and Pi, j+1 should respect the normality condition. The
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ROTATIONAL FAILURE MECHANISMS 1371

coordinates of (i) vector
−−−−−−→
Pi, j Pi+1, j that joins points Pi, j and Pi+1, j , and (ii) point P ′

i, j that is
located at the centre of segment Pi, j Pi+1, j , in the (X,Y, Z ) coordinate system are as follows:

−−−−−−→
Pi, j Pi+1, j

⎧⎪⎨
⎪⎩
ax = Xi+1, j −Xi, j

ay = Yi+1, j −Yi, j

az = Zi+1, j −Zi, j

(18)

P ′
i, j

⎧⎪⎪⎨
⎪⎪⎩
X ′
i, j = (Xi+1, j +Xi, j )/2

Y ′
i, j = (Yi+1, j +Yi, j )/2

Z ′
i, j = (Zi+1, j +Zi, j )/2

(19)

where the coordinates of points Pi, j , Pi+1, j , and Pi, j+1 are as follows: Pi, j (Xi, j ,Yi, j , Zi, j ), Pi+1, j
(Xi+1, j ,Yi+1, j , Zi+1, j ), and Pi, j+1 (Xi, j+1,Yi, j+1, Zi, j+1). On the other hand, the normal vector
to facet Fi, j is given by �N (Xn,Yn, Zn). Notice that the velocity vector is considered to be applied
at point P ′

i, j . Its norm depends on the position of this point. However, by the definition of the

plane � j , the unit velocity vector
→
v j (i.e. the velocity vector divided by its norm) is constant in

each plane � j , and its coordinates are given by:

→
v j

⎧⎪⎪⎨
⎪⎪⎩
Xv j = 0

Yv j = ∓sin� j

Zv j = ∓cos� j

(20)

The coordinates of the normal vector
→
N should follow the three following conditions for both the

collapse and blow-out cases:

• Fi, j should follow the normality condition and thus
→
N should make an angle 	/2+� with

→
v j ;

• →
N is normal to Fi, j , and subsequently to the vector

−−−−−−→
Pi, j Pi+1, j ;

• →
N is a unit vector.

These three conditions are expressed by the following system of equations:

→
v j ·

→
N = cos(	/2+�)

−→
N ·−−−−−−→

Pi, j Pi+1, j = 0

‖ �N‖ = 1

(21)

By substituting the expressions of vectors
→
v j ,

−→
N , and

−−−−−−→
Pi, j Pi+1, j into Equation (21), one obtains

the following system of equations whose unknowns are Xn , Yn , and Zn:

Xn ·Xv j +Yn ·Yv j +Zn ·Zv j = cos(	/2+�)

Xn ·ax +Yn ·ay+Zn ·az = 0

X2
n+Y 2

n +Z2
n = 1

(22)

ROTATIONAL FAILURE MECHANISMS 1371
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To solve this system, the following intermediate variables are introduced:

A = −Zv j/Yv j (23)

B = cos(	/2+�)

Yv j
(24)

C = −A ·ay −az

ax
(25)

D = −B ·ay

ax
(26)

E = A2 +C2 +1 (27)

F = 2 · A · B +2 ·C · D (28)

G = B2 + D2 −1 (29)

� = F2 −4 · E ·G (30)

The coordinates of
→
N are finally given by:

Zn = −F ±√
�

2 · E

Yn = A · Zn + B

Xn = C · Zn + D

(31)

The negative or positive sign to be adopted for the computation of Zn in Equation (31) was chosen

such that the normal vector
→
N points outside of the external surface of the failure mechanism. This

condition was achieved by accepting the sign leading to
−→
N ·(−−−−−−→

Pi, j Pi+1, j ×−→v j )>0.
At this stage, it should be emphasized that Equation (31) gives the coordinates of the normal

vector that respect the normality condition. In order to obtain the position of point Pi, j+1 on plane
� j+1, one can write

→
C j+1 Pi, j+1 =ri, j+1 ·

→
� i, j+1 (32)

where ri, j+1 is the distance between C j+1 and Pi, j+1 (so far unspecified), and
→
� i, j+1 is a unit

vector with the following coordinates in the (X,Y, Z ) global system of axis:

→
� i, j+1

⎧⎪⎪⎨
⎪⎪⎩

�x = sin�i, j+1

�y = cos�i, j+1 ·cos� j+1

�z = cos�i, j+1 ·sin� j+1

(33)

The expressions of the coordinates of
→
� i, j+1 are simply derived from the director cosines of this

vector in the (X,Y, Z ) axis system. It should be remembered here that
→
� i, j+1 in Equation (33)

imposes the value of the angle �i, j+1 of point Pi, j+1 as the average value of the angles �i, j
and �i+1, j .

To obtain the coordinates of point Pi, j+1, the following normality condition is used:

−−−−−−→
P ′

i, j Pi, j+1 ·−→N =0 (34)
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In order to introduce Equation (32) into Equation (34) (i.e. in order to impose the angle �i, j+1 for

point Pi, j+1), vector
−−−−−−→
P ′

i, j Pi, j+1 may be written as follows:

−−−−−−→
P ′

i, j Pi, j+1 =−−−−−→
P ′

i, j C j+1 +−−−−−−−→
C j+1 Pi, j+1 =−−−−−→

P ′
i, j C j+1 +ri, j+1 ·−−−→

�i, j+1 (35)

After some simplifications, Equation (34) leads to the following expression of ri, j+1:

ri, j+1 =−
Xn ·(XC, j+1 − X ′

i, j )+Yn ·(YC, j+1 −Y ′
i, j )+ Zn ·(ZC, j+1− Z ′

i, j )

Xn ·�x +Yn ·�y + Zn ·�z
(36)

Finally, the coordinates of Pi, j+1 are given by:

Pi, j+1

⎧⎪⎨
⎪⎩

Xi, j+1 = XC, j+1 +ri, j+1 ·�x

Yi, j+1 = YC, j+1 +ri, j+1 ·�y

Zi, j+1 = ZC, j+1 +ri, j+1 ·�z

(37)

3.3. Closure of the mechanism

In the collapse case, the generation of the mechanism is stopped when one of the two conditions
is reached: (i) the angle of the next plane � j+1 is greater than �F , or (ii) all the points of the
mechanism generated in plane � j+1 are located above the ground surface (i.e. the mechanism has
entirely outcropped, which is quite unlikely but can happen for very small values of �). In the
blow-out case, the second condition is the only one to consider, because the mechanism cannot
close to itself and always outcrops. In the outcropping case (for both the collapse and blow-out
mechanisms), the intersection between the moving block and the ground surface is defined as
follows: Each triangular facet Fi, j is tested. If points P ′

i, j and Pi, j+1 are both located above
the ground surface, point Pi, j+1 is deleted. If both points are below the ground surface, nothing
is changed. However, if P ′

i, j is below the ground surface and Pi, j+1 is above, point Pi, j+1 is
replaced by the intersection between the segment P ′

i, j Pi, j+1 and the ground surface using a linear
interpolation.

4. WORK EQUATION

At failure, the applied forces to the rotational rigid-block mechanism are: (i) the collapse or blow-
out face pressures (i.e. �c or �b), (ii) the possible surcharge loading �S acting on the ground surface
(if the mechanism outcrops) and (iii) the weight of the soil composing the block. For the three
calculations concerning the rate of work of these forces, one can use the fact that the velocity
vector is independent of the X coordinate. For each external force, the computation of the rate
of work is achieved by the summation of the elementary rates of work as follows (for details
concerning the computation of the elementary volumes and surfaces, the reader may refer to the
appendix given in [18]):

• Rate of work of the collapse and blow-out pressures are given, respectively, in Equations (38)
and (39) as follows:

•
W �c =

∫ ∫
�

→
�c · →

v j d�=∑
j

(
→
�c · →

v j ·� j )=∓�·�c ·∑
j

(� j · R j ·cos� j ) (38)

•
W �b =

∫ ∫
�

→
�b · →

v j d�=∑
j

(
→
�b · →

v j ·� j )=∓� ·�b ·∑
j

(� j · R j ·cos� j ) (39)

• Rate of work of a possible uniform surcharge acting on the ground surface

•
W �S =

∫ ∫
�′

→
�S ·→

v ·d�′ =∑
l

(
→
�S ·→vl ·�′

l )=±�·�S ·∑
l

(�′
l · Rl ·sin�l ) (40)
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• Rate of work of the soil weight

•
W � =

∫ ∫ ∫
V

→
� ·→

v dV =∑
i, j

(
→
� · →

vi, j ·Vi, j +→
� ·

→
v′

i, j ·V ′
i, j )

= ±� ·�·∑
i, j

(Ri, j ·Vi, j ·sin�i, j + R′
i, j ·V ′

i, j ·sin�′
i, j ) (41)

where Ri, j and �i, j (respectively, R′
i, j and �′

i, j ) are the polar coordinates of the barycentre
of the surface Si, j (respectively, S′

i, j ) shown in Figure 5(c). Notice that all the other variables
of Equations (38)–(41) may be easily identified from Figure 5(a)–(c), respectively.

• Rate of internal energy dissipation: Since a rigid block is considered, the only source of
energy dissipation comes from the plastic soil deformation that occurs along the velocity
discontinuity surface that separates the 3D failure surface and the soil at rest. Notice that the
rate of internal energy dissipation along a unit velocity discontinuity surface is c ·�u where
�u is the tangential component of the velocity along the velocity discontinuity surface [21].
Calculations of the internal energy dissipation are made by the summation of the elementary
energy dissipations along the different elementary surfaces as follows:

•
WD =

∫ ∫
S

c ·v ·cos� · dS =∑
i, j

(c ·vi, j ·Si, j ·cos�+c ·v′
i, j ·S′

i, j ·cos�)

= � ·c ·cos�
∑
i, j

(Ri, j ·Si, j + R′
i, j ·S′

i, j ) (42)

It should be mentioned here that the computation of energy dissipation could also be made
using an alternative convenient approach (for more details, see Michalowski and Drescher
[20]). By equating the total rate of external force (i.e. Equations (38)–(41)) to the total rate
of internal energy dissipation (i.e. Equation (42)), it is found after some simplifications that
the face pressures for collapse and blow-out are given, respectively, by

�c = �· D · N�−c · Nc +�s · Ns (43)

�b = �· D · N�+c · Nc +�s · Ns (44)

where N�, Nc, and Ns are dimensionless coefficients given as follows:

N� =
∑

i, j (Ri, j ·Vi, j ·sin�i, j + R′
i, j ·V ′

i, j ·sin�′
i, j )

D ·∑ j (� j · R j ·cos� j )
(45)

Nc =
cos�·∑i, j (Ri, j ·Si, j + R′

i, j ·S′
i, j )∑

j (� j · R j ·cos� j )
(46)

Ns =
∑

l (�′
l · Rl ·sin�l )∑

j (� j · R j ·cos� j )
(47)

These coefficients represent, respectively, the effect of soil weight, cohesion, and surcharge
loading. To determine the value of the critical collapse and blow-out pressures, one has to
maximize �c given by Equation (43) and minimize �b given by Equation (44) with respect to
the two parameters of the mechanism (rE/D and �E ). The maximization and minimization
procedures were performed with the help of the optimization tool implemented in the commer-
cial software Matlab. The discretization parameters used for the computation of the collapse
and blow-out pressures are as follows: n� =400 and �
 =0.5◦. They were found to be the best
compromises between accuracy and time-cost. The unconstrained optimization tool of Matlab
uses an enhanced gradient optimization method. This process uses an arbitrary user-defined
set of the parameters (rE/D,�E ) as the starting point of the optimization, and converges to
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Figure 5. Computation of the rates of work of: (a) the tunnel face pressure; (b) the surcharge at the
possible outcropping surface; and (c) the soil weight of the moving block.

the unique optimum by a sequence of computations of the value of the pressure at several
points of the space (rE/D,�E ). The optimization automatically stops when a user-defined
precision is obtained. With the discretization parameters mentioned above, one computation
of the pressure takes about 2 s, using the four processors of a Core 2 Quad CPU 2.4 GHz
Computer. The number of computations of the pressure is highly dependant on (i) the position
of the starting point with respect to the optimal point and (ii) the user-defined final precision
of the optimum. This number is generally smaller than 100 and leads to a computational time
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of nearly 3 min. Notice that this time could be reduced (i) by simplifying the computation of
the dissipation term as proposed in [20], and (ii) by using a more efficient optimization tool.

5. NUMERICAL RESULTS

The kinematic theorem of limit analysis is known as the ‘upper-bound theorem’ because it provides
a rigorous upper bound of the ultimate load of a system. In the blow-out case, the applied pressure
on the tunnel face is indeed a load, because it triggers the failure of the system. In the collapse
case, however, the applied pressure is not a load, because it prevents the failure to appear. It may
therefore be considered as a negative (or resisting) load. This is the reason why the kinematic
theorem applied in the previous section will provide a rigorous upper bound of the ultimate blow-
out pressure, and a rigorous lower bound of the ultimate collapse pressure (despite the fact that
the so-called ‘upper-bound theorem’ is applied).

5.1. Load factor of a purely cohesive soil

As mentioned in the introduction, the stability of a tunnel face in the case of a purely cohesive soil
is entirely governed by the so-called load factor N . It should be emphasized here that the collapse
and blow-out mechanisms lead to the same value of N . This is to be expected since the volume
and surface involved by the failure mechanism in both cases are similar. The values of N provided
by the proposed mechanism and by several authors are plotted as a function of the overburden
ratio C/D (cf. Figure 6). It appears that the values provided by the present rotational mechanism
are quite similar to the ones provided by the existing kinematic approaches using rigid-block
mechanisms [3, 16, 18] for C/D <1.5, and less good (i.e. higher) for deeper tunnels (C/D >1.8).
On the other hand, Klar et al. [8] proposed a new kind of failure mechanism based on a continuous
deformation of the soil mass, and obtained similar results to the existing rigid-block approaches.
Nevertheless, it should be emphasized that the approach by Klar et al. [8] has a great potential,
since the arbitrary velocity field chosen in this publication may be considerably improved. It should
be mentioned that all these limit analysis approaches are quite far from the results obtained by
the analytical methods [1], the numerical simulations [5], or the centrifuge tests [4]. It probably
means that the present limit analysis approaches are not adequate to a purely cohesive soil. An

Figure 6. Load factor N versus C/D for a purely cohesive soil.
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Figure 7. Comparison of the collapse pressure with other authors’ results.

extension of the approaches based on a continuous velocity field (developed by Osman et al. [7]
in 2D and Klar et al. [8] in 2D and 3D) by choosing a more suitable velocity field appear much
more promising. This will be the subject of future studies.

5.2. Limit pressures of a cohesionless soil

Figure 7 presents the values of the collapse pressure of a cohesionless soil as provided by the
proposed mechanism and by several authors for the case D =10m, �=20kN/m3, and no outcrop
of the moving block. The classical results by Leca and Dormieux [12] provide rigorous lower and
upper bounds of the critical collapse pressure. The results obtained by Anagnostou and Kovari [14]
(limit equilibrium) and by Eisenstein and Ezzeldine [13] (numerical model) are close to the lower
bound provided by the kinematic approach by Leca and Dormieux [12]. From the figure, it can be
seen that this rigorous bound was improved by the kinematic approach of Mollon et al. [18], and
that the proposed mechanism improves again this last bound.

Figure 8(a) and (b) present a comparison between the collapse and blow-out pressures obtained
by the present method and those of other kinematical approaches for two cohesionless soils
(�=20◦ and �=40◦). For the common values of C/D (i.e. C/D >1), the value of the collapse
pressure �c remains constant (Figure 8(a)). This well-known phenomenon is due to the arch effect,
which prevents the failure to reach the ground surface. The proposed results improve the best
solutions of the collapse pressure provided by the multi-block translational mechanism by Mollon
et al. [18]. The improvement is equal to 5.8 and 10.5% for �=20◦ and �=40◦, respectively. The
improvement with respect to the classical solutions by Leca and Dormieux [12] attains 26.1 and
25.7%, respectively.

On the other hand, the value of the blow-out pressure �b highly increases with the overburden
ratio C/D (Figure 8(b)), since the blow-out always involves failure mechanisms reaching the
ground surface. The improvement (i.e. reduction with respect to the best solutions of �b provided
by Mollon et al. [16]) is significant, especially for large friction angles. Although the values of �b
were significantly reduced with respect to the previous solutions, one should note that, in practical
cases, the overburden ratio is hardly smaller that C/D =1, and that the huge values of �b (larger
than 1000 kPa) make the blow-out failure unrealistic even for small friction angles. The lack of
numerical or experimental results prevents to determine if the proposed solutions of �b are close
to the actual values. It is therefore difficult to know if this failure is actually unrealistic or if
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Figure 8. Critical pressure versus C/D for two sands (D =10m,�=18kN/m3):
(a) collapse and (b) blow-out.

the proposed solution is still not good enough. For this reason, the blow-out failure phenomenon
should be carefully investigated in future studies.

5.3. Limit pressures of a frictional and cohesive soil

Figure 9(a) and (b) provides the collapse and blow-out pressures for two drained clays: (i) �=17◦
and c=7kPa (soft clay) and (ii) �=25◦ and c=10kPa (stiff clay), as given by the present method
and by other kinematical approaches [12, 16, 18].

Concerning the collapse of the tunnel face (Figure 9(a)), the value of �c is improved by 12.4
and 34.9% (for the cases of soft and stiff clays, respectively) with respect to the best existing
solution [18]. The improvement with respect to the classical solution by Leca and Dormieux [12]
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Figure 9. Critical pressure versus C/D for two drained clays (D =10m,�=18kN/m3):
(a) collapse and (b) blow-out.

attains 62.3 and 154.8%, respectively. Concerning the failure by blow-out of the soil (Figure 9(b)),
the observations are very similar to the case of a cohesionless soil: There is a strong improvement
(i.e. reduction) in the values of �b, but these values remain very high, which makes such a failure
quite unlikely. However, this could be because the proposed upper bounds of �b are still not good
enough. Numerical and experimental studies should be carried out in the future to clarify this
point.

5.4. Critical failure mechanisms

Two critical collapse mechanisms obtained from the maximization process are presented in
Figure 10(a) and (b) for a sand (�=30◦) and for a drained clay (�=17◦ and c=7kPa). Three
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Figure 10. Views of the critical collapse mechanisms when D =10m and �=18kN/m3:
(a) �=30◦ and c=0kPa and (b) �=17◦ and c=7kPa.

views are provided for each mechanism. The diameter of the tunnel is equal to 10 m, and the
overburden ratio is sufficiently high for the mechanisms not to outcrop (i.e. C/D >0.2 for the sand
and C/D >0.6 for the clay). It was observed that the initial assumption concerning the shape of
the failure surfaces (log-spirals) in the (Y, Z ) plane is fully verified by the generated mechanism.
One may observe that an important arch effect appears in the sand and leads to a less extended
mechanism.

The critical blow-out mechanisms are plotted for the same two cases in Figure 11(a) and (b).
The geometrical data for the tunnel are D =10m and C/D =1. As expected, the size of the moving
block is obviously much larger than in the collapse case and it increases with the increase of the
value of �.

Finally, it should be noticed that the discretization chosen for plotting Figures 10 and 11 is quite
coarse (n� =100 and �
 =2◦) in order to make visible the discretization of the 3D failure surface.
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Figure 11. Views of the critical blow-out mechanisms when D =10m and �=18kN/m3:
(a) �=30◦ and c=0kPa and (b) �=17◦ and c=7kPa.

It should be remembered here that the discretization parameters used for the computation of the
collapse and blow-out pressures are as follows: n� =400 and �
 =0.5◦.

5.5. Design charts

Two design charts are provided in Figure 12(a) and (b) for the collapse and blow-out modes of
failure in the case of a frictional soil (with or without cohesion). The results are provided in
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Figure 12. Design charts of the critical pressure for a frictional and cohesive
soil: (a) collapse and (b) blow-out.

terms of the parameters �, c/�D, and �c/�D (or �b/�D). For the collapse case (Figure 12(a)),
the assumption of no-outcrop is made, which means that the overburden ratio C/D is larger
than 0.8 (which is practically always true for the considered values of �). For the blow-out case
(Figure 12(b)), several charts should be plotted for various values of C/D, because this parameter
has a significant impact on the blow-out pressures. Nevertheless, only one chart for C/D =1 was
provided here as an example, to limit the length of the manuscript. This overburden ratio was
chosen because it is the smallest one that may occur in practice, and because higher values of this
ratio make this kind of failure unlikely.

Notice that the charts can be used to compute the collapse and blow-out pressures. They may
also be used for the computation of the required tunnel face pressure for which a prescribed safety
factor Fs defined with respect to the soil shear strength parameters c and tan� is desired. This
may be achieved if one uses the chart with cd and �d instead of c and �, where cd and �d are
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based on the following equations:

cd = c

Fs
(48)

�d = arctan

(
tan(�)

Fs

)
(49)

6. IMPROVEMENT OF THE COLLAPSE MECHANISM

6.1. Principle of the improvement

This section focuses on a possible improvement of the collapse mechanism in the case of a frictional
and cohesive soil. As shown in Figure 13 (case 1), the classical Mohr–Coulomb failure criterion
leads to a tensile strength (chosen negative as a convention) equal to −c ·cotan(�). However, the
usual behaviour of frictional and cohesive soils exhibits a smaller resistance to tension. The tensile
strength (denoted by ft) should be considered as bounded by two limit values as follows:

0�− ft�c ·cotan(�) (50)

A reduction in the absolute value of the tensile resistance of the soil would logically lead to
an improvement in the results of the collapse pressure provided by the classical Mohr–Coulomb
criterion. The modified failure criterion proposed in this section is plotted in Figure 13. With
respect to the classical Mohr–Coulomb criterion (case 1), the modified failure criterion is ‘cut-off’
by a circle tangent to the upper and lower linear envelopes, which meets the horizontal axis at a
value ft of the axial stress. Figure 13 presents two cases (i) ft =−c (case 2) and (ii) ft =0kPa
(case 3). The rate of energy dissipation for an elementary discontinuity surface dS for which a
normal velocity discontinuity v is considered, is given by Chen [21]:

•
dWD =− ft ·v ·dS (51)

In order to take account of the tension cut-off in the computation of the collapse pressure, the
failure mechanism described before is modified herein. It is truncated by a plane � j . This plane
has to be normal to the discontinuity velocity v, for the failure to be purely tensile. The planes
� j used for the discretization of the failure mechanism obviously fulfil this condition, because
they meet at the centre of rotation O and are therefore normal to the velocity field (Figure 3). It
means that a tensile failure may take place for any one of these planes, and that the choice of
the critical tensile-failure plane brings a new degree of freedom in the optimization procedure.
Thus, the present modified mechanism includes (i) failure by shear along the lateral surface and

Figure 13. Classical and modified (with tension cut-off) Mohr–Coulomb failure criterion.
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(ii) failure by tension (tension cut-off) at the top of the mechanism. In this study, it was assumed
that the plane � jcut along which tension failure occurs is located in Section 2, i.e. for jcut >n�/2.
In that case, Equations (41) and (42) have to be replaced, respectively, by:

(
•

W �) jcut =
∑

i, j� jcut
(

→
�i, j ·

→
vi, j ·Vi, j +

→
�′

i, j ·
→
v′

i, j ·V ′
i, j )

= � ·�· ∑
i, j� jcut

(Ri, j ·Vi, j ·sin�i, j + R′
i, j ·V ′

i, j ·sin�′
i, j ) (52)

(
•

W D) jcut = c ·cos� · ∑
i, j� jcut

(vi, j ·Si, j +v′
i, j ·S′

i, j )+ ft ·
∑
m

(vm ·�′′
m) (53)

The first term in Equation (53) corresponds to the rate of energy dissipation by shear failure along
the external surface (up to plane � jcut) and the second term corresponds to the rate of energy
dissipation due to tensile failure along plane � jcut. The total rate of energy dissipation is:

(
•

W D) jcut =� ·c ·cos�
∑

i, j� jcut
(Ri, j ·Si, j + R′

i, j ·S′
i, j )+�· ft ·

∑
m

(�′′
m · Rm) (54)

In case where a tension failure takes place in a plane � jcut, the mechanism will not reach the
ground surface. Thus, Ns in Equation (43) vanishes, and the collapse pressure for a given set of
parameters (�E ,rE/D) and for a given value of jcut is given by

(�c) jcut =�· D ·(N�) jcut −c ·(Nc) jcut (55)

where

(N�) jcut =
∑

i, j� jcut(Ri, j ·Vi, j ·sin�i, j + R′
i, j ·V ′

i, j ·sin�′
i, j )

D ·∑k (�k · Rk ·cos�k)
(56)

(Nc) jcut =
cos�

∑
i, j� jcut (Ri, j ·Si, j + R′

i, j ·S′
i, j )+

∑
m

(
ft

c
·�′′

m · Rm

)
∑

k (�k · Rk ·cos�k)
(57)

For the case where ft=0, Equation (57) may be rewritten in a simpler way as follows:

(�c) jcut = (�c) jcut−1 +��−�c (58)

where (�c) jcut−1 is the collapse pressure for a mechanism composed of jcut −1 slices and �� and
�c (which are expressed in kPa) are the contributions of the slice numbered jcut to the critical
collapse pressure (Figure 14). More precisely, �� is the contribution of the weight of the slice jcut,
and �c is the contribution of the rate of energy dissipation due to shear failure of the same slice
jcut. Their expressions are given as follows:

�� = �·
∑

i (Ri, jcut ·Vi, jcut ·sin�i, jcut + R′
i, jcut ·V ′

i, jcut ·sin�′
i, jcut)∑

k (�k · Rk ·cos�k)
(59)

�c = c ·cos� ·
∑

i (Ri, jcut ·Si, jcut + R′
i, jcut ·S′

i, jcut)∑
k (�k · Rk ·cos�k)

(60)

Figure 15 shows the variation of the collapse pressure (�c) jcut as a function of the index jcut
(which represents a possible tension failure plane) for given values of the geometrical parameters
(�E ,rE/D) when ft =0. For each slice of index jcut, �� and �c are also plotted on the same figure.
One may see that for jcut < jcut,max, the contribution of the soil weight of the slice jcut is greater
than the contribution of its energy dissipation. The inverse is true when jcut > jcut,max. Thus, the
critical tensile plane jcut,max is the one for which a further slice reduces the ultimate pressure due to
the fact that the contribution of soil weight of this slice is smaller than that of energy dissipation.
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Figure 14. Determination of the rate of energy dissipation on a tension failure plane.

Figure 15. Determination of the optimal plane for tension cut-off for a given
set of the parameters �E and rE/D.

As a conclusion, for the general case of a frictional and cohesive soil with tension cut-off, the
critical collapse pressure is obtained by first searching the critical tensile plane for given values of
(�E ,rE/D) using a discrete maximization and then by searching the maximal collapse pressure
among all possible values of (�E ,rE/D).

6.2. Results with tension cut-off

Figure 16 presents some numerical results for the collapse mechanism with tension cut-off for
several values of the tensile strength ft/c. This parameter varies from 0 to cotan(�) for each
considered soil. The most common case ft =−c is emphasized on the chart. Three drained clays
are studied with various values of � and c. The improvement with respect to the classical Mohr–
Coulomb criterion is presented in terms of per cent increase of the critical collapse pressure. One
can observe that the improvement provided by the new criterion is much larger when the cohesion is
high than when it is small. For example, the improvement provided by a zero tensile strength is only
1.0% for the case (�=17◦,c=7kPa), becomes equal to 3.8% for the case (�=25◦,c=10kPa),
and reaches 19.9% for the case (�=15◦,c=15kPa). In this last case, the improvement is equal
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Figure 16. Impact of the value of the tensile strength ft on the percent
increase of the critical collapse pressure.

Figure 17. Views of the critical collapse mechanism for a soil with a tension cut-off criterion with �=15◦,
c=15kPa, �=18kN/m3, and ft =0kPa.

to 9% for the common value ft =−c, which proves that the phenomenon of tension failure is not
to be neglected in frictional and cohesive soils.

Three views of a critical collapse mechanism with tension cut-off are provided in Figure 17.
The strength parameters are (�=15◦,c=15kPa, ft =0kPa), and the critical collapse pressure is
�c =18.2kPa, whereas the same pressure for a classical Mohr–Coulomb criterion is �c =15.2kPa.

7. CONCLUSION

Two new failure mechanisms based on the kinematical approach of limit analysis theory were
presented in this paper in the aim to improve the existing solutions of the critical collapse and
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blow-out pressures of a shallow circular tunnel driven by a pressurized shield. The present failure
mechanisms have a significant advantage with respect to the existing translational mechanisms
by Leca and Dormieux [12] and Mollon et al. [16, 18] since (i) they take into account the entire
circular tunnel face and not only an inscribed ellipse to this circular area, and (ii) they are closer to
the observed rotational soil movement. This was made possible by the use of a spatial discretization
technique allowing one to generate the 3D failure surface ‘point-by-point’. The numerical results
have shown that the proposed failure mechanisms decrease (i.e. improve) the existing solutions of
the blow-out pressure and increase (i.e. improve) the existing solutions of the collapse pressure
in the case of frictional soils (with or without cohesion). The improvement with respect to the
classical collapse mechanism by Leca and Dormieux [12] attains 25% in the case of a cohesionless
soil. In the case of purely cohesive soils, the improvement (i.e. decrease) of the critical value of
N with respect to the one by Mollon et al. [16] is not significant. For this kind of soil, it is likely
that a failure by movement of one or several rigid blocks is not adequate. Efforts should be done
to extend the approaches by Osman et al. [7] and Klar et al. [8]. The chosen velocity fields in
these publications are probably not optimal and may be improved. For frictional soils, two design
charts were plotted for simple use in a practical context. In the last part, an improvement of the
collapse mechanism in frictional and cohesive soils was proposed by taking into account a tension
cut-off in the classical Mohr–Coulomb failure criterion. Such a modification induces a significant
improvement when the cohesion of the soil is quite large, but this improvement is smaller when
the cohesion is more reduced. However, the few cases studied here are not sufficient to draw a
conclusion on this phenomenon, and this point probably requires further investigations.

Although the 3D geometrical construction presented in this paper is applied to a circular tunnel
face, it may be easily extended to any form of the tunnel face for the stability analysis of a tunnel
driven by the classical methods, since in the present work, the contour of the tunnel was not defined
analytically but by discretization. More generally, this kind of technique could be quite easily
applied to the failure of other geotechnical systems, such as slopes or foundations. Finally, notice
that the use of a ‘point-by-point’ generation of the slip surface makes possible the application of
the present method in spatially varying soils by considering the soil friction angle as a random
field, which opens a wide range of applications.
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