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Surface response meta-models for the assessment of embankment
frictional angle stochastic properties from monitoring data: An
application to harbour structures
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For several decades, many structures have been monitored during maintenance or during their service
lives to analyse long-term behaviour. A large number of sensors, properly distributed in the structure,

are necessary, especially if the structur
probabilistic modelling is applied, becau
physical parameters, monitoring measur
model. This paper presents a monitoring
mented and the geotechnical characteris
formed using a meta-model fitted with
finite element model implemented with
efficient approximation to fit the origina
model to describe the variability of the
Wharves
Soil variability
Response surface methodology
Inverse analysis

plex and includes significant spatial variability. When
ntrinsic uncertainties in the model as well as uncertain

can be used to identify the parameters of the structural
le of a pile-supported wharf in which tie rods are instru-
he soil embankment are identified. The modelling is per-
erical database obtained from direct simulations with a

full quadratic response surface model (RSM) is the most
lement model. The identified soil parameters enable the

ed loading in the tie rods.
1. Introduction tic methods are becoming more and more popular. These methods
In the context of maintenance and redesign of existing structures,
the improvement of in-service behaviours requires the application
of a wide range of technical and methodological tools to provide
decision support for rational tools. Such tool includes data collection,
which provides feedback, as well as the modelling of progressive
phenomena, such as fatigue and corrosion, which is predictive. Sys-
tematic predictive maintenance programs are not easy to implement
in systems with large infrastructures because of the heterogeneity of
building ages and building styles. This is especially true for struc-
tures in coastal areas [1,2]. A survey of the structures (displacement
data) provides some additional information, but it is still challenging
to update the model if many different factors are involved. Thus,
intrusive structural monitoring of complex structures is the only
way to accomplish the following: (a) measure the actual in-service
behaviour influenced by building conditions and settling, the factors
expected to separate the present behaviour from the theoretical one
[3–5]; and (b) understand complex interaction mechanisms, such as
soil-structure interaction [6,7].

Because of the randomness of each building materials (concrete,
embankment) and natural properties of materials (soil), probabilis-
constitute a theoretical framework in which one can address
uncertainties involved in the structural assessment of buildings
with respect to sensitivity analyses or reliability assessments.

In this study, the physical and mechanical properties of a pow-
dery embankment for soil pressure quantification are character-
ised. The randomness of the soil properties from the monitoring
of tie rods in a wharf is also characterised. First, a complete model
of the wharf is suggested, and then a meta-model is proposed as a
surrogate to this complex and time-consuming model. Several
polynomial response surfaces are introduced as solutions, and
samples are constructed to fit these meta-models to a data base
probabilistically. Finally, the soil properties are identified and the
analysis focusses on the frictional angle.

2. Description of the structure, the instrumentation and the
available data

2.1. Description of the structure

The structure is station 4, which is an extension of the timber
terminal of Cheviré, and is named Cheviré-4 wharf. Cheviré-4
wharf is located downstream of the Cheviré bridge near the city
of Nantes (in western France), in a river environment, on the left
bank of the Loire River. It is 180 m long and 34.5 m wide. Collabo-



ration with the Port Authority of Nantes Saint-Nazaire (PANSN)
permitted a survey of the structure. A sketch of a typical cross sec-
tion, showing the primary components, is presented in Fig. 1. Each
component plays a specific role in the function of the pile-sup-
ported wharf.

2.2. Structural instrumentation

The instrumentation strategy follows the global behaviour of the
wharf for at least 5 years post-construction. The goal of the study is
to improve prediction models. The validated models will allow the
maintenance policy to be based on an improved understanding of
the in-service behaviour of the structure. The large dimensions of
these structures, the building hazards and the soil behaviour suggest
that the service behaviour would vary from the expected design
behaviour, primarily because of conservative choices and the use
of highly theoretical hypotheses in the design stage.

The objective is to understand the behaviour of the wharf under
horizontal loading, i.e., actions of the embankment, ship berthing
and wind action on the cranes; therefore, the tie rods were moni-
tored because they are sensitive elements of the wharf that are not
accessible after the building period. The wharf was instrumented
on twelve tie rods (regularly distributed along the length of the
wharf; see Fig. 2) to follow the normal load on the cross section
of the rods. Electric strain gauges were used, mounted in full bridge
and bonded to the rods with a high-temperature epoxy resin used
for sensor manufacturing; these gauges are linked to a Campbell
Scientific CR10X data logger. Wiring the strain gauges in a full
bridge ensures temperature self-compensation. The system also
ensures corrosion protection of the rods. A tidal gauge (controlled
by PANSN) measures the actual tide level every 5 min; the tidal
gauge is located 1 km downstream from the Cheviré Bridge. This
measurement enables adjustment of the data for the over-crests
from the air pressure, the rate of the river flow and the wind.

2.3. Available data

The loads in the tie rods were measured for 2 years (January
2004–October 2005) and have been analysed by Yáñez-Godoy et al.
[8]. Two types of variations characterise the loads in the tie rods:

– Temporal: medium-term variations, where the load levels change
within a month (approximately one period of the moon’s rota-
tion), and short-term variations, where the load amplitudes
change with the tides (a period of approximately 12 h); and

– Spatial: variations of the loads distributed in each tie rod.

An analysis of the spatial load variations is conducted in [8],
where significant scatter is shown from one tie rod to another.
Yáñez-Godoy et al. [8] showed that this load variation is much
Fig. 1. Cross section
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more stable from tie rod to tie rod in time within a single tide.
The present paper focuses on this behaviour and considers a mea-
surement on each tie rod as an independent measurement of the
behaviour of a tie rod placed in a section of the current. After sev-
eral months, sensors in 4 of the 10 tie rods instrumented in the sec-
tion (see points on Fig. 2) were disabled; thus, this study uses the
data collected from the 6 remaining sensors, i.e., T4, T11, T17, T21,
T31 and T34, underlined in Fig. 2.

2.4. Primary assumptions for the probabilistic modelling using the
spatial profile and time series

For a decade, investigations of structural behaviour using non-
destructive testing or monitoring have stressed the need for im-
proved methods of data processing and structural computation.
The time series for this type of application can be roughly classified
into three categories as follows:

– Time series describing the evolution of the ageing phenomena,
such as chloride ingress in concrete and crack propagation;

– Time series measuring the strain produced by non-periodic
loadings, such as wind loading and truck loading; and

– Time series measuring the strain from cyclic loadings, such as
temperature, tides or waves.

This study focusses on the data obtained from the last two cat-
egories during the training period, i.e., before any ageing occurs.
When similar elements, placed at a given location xi, are monitored
(beams [9] or tie rods [8]) and subjected to the same loading, a sta-
tistical study of their loading LT(xi, t, hj) can be performed, where t
denotes the time and hj is the event that represents the primary
hazard during construction and composition of the material
around the monitored elements. In this context, hj is a term that
describes the hazard h when h e X (the probabilistic space that
gathers all the hazard inputs that generate events), thus including
the random variables (material properties, tide level, etc.). Practi-
cally, the measurement in a tie rod (i.e., at position xi) at a given
time t is unique and is represented by LT(xi, t). After understanding
the physical mechanisms involved in this study, several assump-
tions provide the foundation for the statistical analysis:

– First, when structural components are buried in the ground
(sheet piles, piles, rods, etc.) and are submitted to daily cyclic
variations of the water level (tides), the water level changes
modify the granular soil structure with time and with respect
to the composition of the surrounding material. Thus, if two
measurements of the loading at times t1 and t2 are performed
and the period between t2 and t1 is long enough (several weeks),
it can be assumed that they are independent measurements of
the loading in the tie rod. That will be the case in the following
of the wharf.



Fig. 2. View of the instrumentation plan.

Fig. 3. Variation with time of sensitivity of the measured normal load DLT in tie rod
T1 for a falling tide (CMAR = 42, 69 and 100).
between two tides with the same tidal coefficient (see Sec-
tion 5.1). It thus becomes a loading on the same component
in different material conditions. With this assumption, and for
simplification, LT(xi, tk) is replaced by LT(xi, hk).

– Second, this study relies on the analysis of the loading during
tidal variations. In that case, the spatial correlation between
the loads at several positions LT(xi, h) and LT(xj, h) cannot be pro-
ven [8]. Thus, LT(xi, hk) are considered spatially independent. LT(-
xi, hk) can therefore be replaced by LT(hk). Fig. 3 shows the
evolution of the sensitivity of the loading. In the figure, DH is
the water level change in Loire River during a falling tide for a
given tie rod (T1) and for three tidal coefficients (CMAR), 42,
69, and 100. In France, the oscillation amplitude of the semi-
diurnal tide is associated with a dimensionless coefficient, the
tidal coefficient (CMAR) (see [8] for more information), with
values between 20 and 120. CMAR is computed as follows:

CMAR ¼ DHðtÞ
DHe

ð1Þ

where DH(t) and DHe are the difference between high and low tide
levels at time t and during mean high water springs and mean low
water springs near the equinox date (i.e., 21 March or 21 Septem-
ber). CMAR assists in finding similar tidal conditions; however,
the loading is affected by the water level of the Loire River. That
is most likely why there is a small change in sensitivity (less than
2 kN/m) with time for CMAR = 69 and CMAR = 100 (Fig. 3); the scat-
ter is much larger for CMAR = 42. Because a lower CMAR implies
low load levels in the tie rods, other phenomena than tides are con-
tributing to these changes. The goal of this study is to provide a
probabilistic model of the soil properties to use for reliability anal-
yses of wharves during storms [10]. These extreme events occur pri-
marily in winter when CMAR is higher. Consequently, the
horizontal wharf behaviour will be analysed only for CMAR > 69.
3. Numerical modelling and meta-model assessment

3.1. Numerical strategy

Numerical models are integrated in an optimisation procedure
to identify the soil properties. Computation time should be as short
as possible because of the large number of calls to the model nec-
essary for the optimisation problem. Thus, starting from a com-
pletely two-dimensional finite element model (FEM) developed
in the Plaxis environment [11], the best meta-model M(X(hj)), with
3

X(hj) random input variables, that represents the desired behaviour
is chosen. The choice of Plaxis is governed by the ease of imple-
menting the phases of real construction and refurbishment
through the interface and also by the wide set of soil properties
and behaviour available. Plaxis is also a well-known tool that has
provided realistic behaviours of geotechnical structures in the past.
Several meta-models have been developed for deterministic or
probabilistic analyses of wharves during the past two decades,
e.g., neuronal and Bayesian networks [12,13], spectral stochastic fi-
nite element models based on regression or projection methods
[14,15], and polynomial or other response surfaces.

Quadratic polynomial response surfaces are chosen for this
model because of their asymptotic properties [13,16–18].
3.2. Finite element model

The structure is modelled using a Plaxis finite element model by
including all the construction phases. Fig. 4 shows the geometry
and the modelled soil levels, as listed in Table 1. The upper layer,
Layer 1, in which the tie rods are placed, has the most important
effect on the behaviour during a tide and therefore only its behav-
iour is modelled using random variables. A 2-D model is used to
represent a standard cross section, not affected by the edges and



consistent with the assumptions in Section 2.4. A barbican (drain-
age channel) is installed 3 m under the embankment surface to re-
duce the water pressure on the wharf when the tide is falling. The
effect of the flow in the soil under the screen is neglected because
of the presence of the sheet pile.

The main characteristics of the mechanical model are shown in
Table 2 (see [15] for further details). The back-wharf wall has an L-
shape and is composed of two plates (Fig. 4).

Several models have been tested to determine the limiting con-
ditions for the anchoring plate at one end of the tie rod; plate and
geogrid models are the most-used. The best model to follow the
tide loading with time is found to be the geogrid model. For the
same reason, the connection between the back-wharf wall and
the sheet pile is modelled through a hinge. Schoefs et al. [15] have
shown that the concrete platform and the piles can be modelled by
an embedded horizontal beam with deterministic behaviour (see
Fig. 4); the rigidity of the platform in the horizontal plane reduces
the variance of each pile connected to it and is much larger than
the tie rod’s axial rigidity. In this case, the tie rod is passive, with
an unknown preload applied manually, as is usual for this type
of structure.

During a tide, the water level varies in both the embankment
and the river. Six phases have been used to describe each tidal cy-
cle, as shown in Table 3 and explained in Section 4.1. The values are
for a tidal coefficient CMAR = 69; this tidal coefficient has been se-
lected because it is both high and common (i.e., there are sufficient
number of occurrences during the period of monitoring). Fig. 5
gives a schematic example of the water levels in the embankment
and in the river for phases 1 and 6.

3.3. Meta model: quadratic response surfaces

In current research, many types of response surface functions
have been tested for different applications. There are two general
types of functions in current use [13,16]: the physical response
function and the analytical response function. This analysis focuses
on an analytical response function defined by a polynomial of or-
der less than 3, with or without interaction terms, known as a qua-
dratic response surface (QRS). QRS has been developed in several
fields [19–22]. This form has specific properties, e.g., asymptotic
behaviour for the transfer of distribution tails, which fit the phys-
ical problem in this study. This property is essential when only a
few experiments are available, to ensure a realistic transfer of dis-
tribution tails [18,23].

The general form of the full QRS is as follows:

LT;SR ¼ b0 þ
X

biXi þ
X
i–j

bijXiXj þ
X

i

biiX
2
i ð2Þ
Fig. 4. Geometry modelled in the Plax
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where LT,SR is the load in the tie rod, Xi is the ith random variable
and bk coefficients are determined by regression from a numerical
test plan based both on the probabilistic distribution of the vari-
ables (distribution of numerical values) and on their potential influ-
ence on the response (number of numerical values, i.e., size of the
sample, for each variable).

Setting each of the coefficients equal to zero, various mathe-
matical models are formed and compared to experimental data,
and the coefficients are determined using the response surface
function. These models are the following:

- Full quadratic.
- Linear if bij,i–j = 0 and bii = 0.
- Pure quadratic if bi = 0 and bij,i–j = 0.
- Linear with interaction if bii = 0.

As the model becomes more complex, more data are needed to
identify the coefficients.
4. Random variables and probabilistic modelling

4.1. Numerical experimental design

To identify the values of the coefficients bk in Eq. (2), a QRS has
been fitted to a numerical database with a probabilistic meaning,
i.e., samples are generated from a probability density function for
each variable. The basic random variables considered are the fol-
lowing: csat and cunsat, the saturated and unsaturated density of
the soil (levels 1 and 2), respectively; E and m, Young’s and Pois-
son’s moduli, respectively; and u, the internal frictional angle.
The cohesion, c, is ignored. The structure is analysed during the
first 2 years when there is no exploitation by ships.

The range of variation for each variable is selected from the liter-
ature or preliminary knowledge. Available published data for sand
(soil level 2) and embankment (soil level 1) are shown in Table 4.

Based on the data in Table 4, the basic random variables, their
distribution, the parameters (or the range if bounded) of the distri-
butions and the values selected for the experimental design (in
bold) are shown in Table 5. A uniform distribution was selected
for the soil parameters because of a lack of previous knowledge;
with this type of distribution, considerable weight is given to val-
ues in the distribution tails. The following deterministic functional
relationship is used to relate the unsaturated density, cunsat, to the
saturated density, csat, of the embankment to reduce the number of
independent variables: csat = cunsat + 2.

With respect to the tide-river level and the corresponding water
level in the embankment (soil level 1), a tide with a high and fre-
is environment by the FE model.



Table 1
Main properties of the soil levels.

Soil level Type of soil Material model Type of material behaviour Thickness (m)

Level 1 Embankment Mohr–Coulomb Drained 4.0
Level 2 Recent alluvium, fine to coarse grey sand, little clay Mohr–Coulomb Drained 8.0
Level 3 Surface rock talus Mohr–Coulomb Drained 2.0
Level 4 Recent alluvium, coarse grey sand, little clay, compact under 6.6 m Mohr–Coulomb Drained >20

Table 2
Main structural characteristics.

Structural component Mechanical behaviour EA (kN/m) EI (kN m2/m) c (kN/m/m)a m E (kN/m2)

Spring (platform + piles) Linear elastic 20.91 � 103

Plate (back-wharf wall) Linear elastic EA1 = 3.08 � 104 EI1 = 410.7 22.8 0.1 35,000
EA2 = 1.4 � 104 EI2 = 746.7 20.8

Tie rod Linear elastic 971,437
Geogrid (c-anchoring plate) Linear elastic 105

Sheet piles Linear elastic 3.32 � 106 6.45 � 104 1.245 0.1 210 � 106

a c Is the weight per linear meter of wharf per meter of depth.

Table 3
Water level at selected phases during a tide for CMAR = 69.

Phase River level (m) Water level in embankment (m)

Phase 1 6.21 5.19
Phase 2 5.75 5.39
Phase 3 4.84 5.19
Phase 4 4.17 4.96
Phase 5 2.98 4.54
Phase 6 2.19 4.13

Table 4
Review of intervals for sand and embankment characteristics.

Type of soil Variables Value Refs.

Sand Density (kN/m3)
Saturated, csat [17:1] [24–26]
Non saturated, cunsat [16:20] [24–27]

Young’s modulus, E (Mpa) [3:120] [24–27]
Frictional internal angle, u (�) [25:40] [24–29]
Poisson’s modulus, m (–) [0.3:0.45] [24–26,29]
Cohesion, c (kPa) [0:20] [25–28]

Embankment Density (kN/m3)
csat [17.5:22] [25,30]
cunsat [16:20] [17,25,31–34]

E (Mpa) [2:100] [24,25,32,33]
u (�) [25:38] [17,25,31,32,34]
m (–) [0.25:0.3] [17,25,31,32]
c (kPa) [0:20] [17,25,31–34]
quent CMAR of 70 is analysed. In the 2-year database, a CMAR of 69
was observed on March 2nd, 2005 with a high level, Hmax = 6.21 m,
and a low level, Hmin = 2.19 m, measured from sea level along the
French coast. Fig. 6 shows the distribution of the tide-river levels
measured during the 2 years. The data show that the values of Hmax

and Hmin corresponding to the selected tide are representative of
the mean values of each distribution, so that the chosen tide can
be considered as a representative tide. Further, the tide-river level
has been discretised in six phases between the values Hmax and
Hmin to model a good representation of potential situations during
the tide (Table 3). They can also be tested as other extreme tide
levels. For each water level, the water level in the embankment
has been measured and is reported in Table 3. Water levels for
phases 1 and 6 are shown in Fig. 5. From this experimental design,
using the basic random variables, which are assumed to be inde-
pendent, 450 computations are performed with the Plaxis finite
element model.

The sand characteristics (soil level 2) are considered determin-
istic because they have a weak influence on the horizontal behav-
iour. According to Table 4, the values assumed for the computation
Fig. 5. Water levels in the embankment and in
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are cunsat = 19 kN/m3, E = 30 MPa, u = 30�, m = 0.001 and dilatancy
angle, w = 0.
4.2. Uncertainty and sensitivity analysis for the basic random variable
selection

With the six random variables presented in Table 5, 28 coeffi-
cients, bk, must be calibrated to fit a full quadratic response surface.
This calibration requires a database that contains more than 450
simulations. Consequently, this initial numerical database is used
to highlight the most influential random variables and to reduce
the total number of BRVs required. All the results are available in
the river for phases 1 (left) and 6 (right).



Table 5
Pre-selection of variables and relative distributions.

Variables Distribution Size of the support/parameters Selected values for simulationa

Density (kN/m3)
csat Relationship with cunsat

cunsat Uniform [16:20] 16, 17, 18, 19, 20
Young’s modulus, E (Mpa) Uniform [30:50] 30, 35, 40, 45, 50
Frictional internal angle, u (�) Uniform [25:35] 25, 27, 30, 32, 35/25, 30, 35
Poisson’s modulus, m (–) Uniform [0.25:0.4] 0.25, 0.3, 0.35, 0.4/0.27
Cohesion, c (kPa) Deterministic 0
High tide level, Hmax (m) Generalised extreme value l = 5.84; r = 0.69 See Fig. 6
Low tide level, Hmin (m) Generalised extreme value l = 1.61; r = 0.79 See Fig. 6

a Values in bold are used for QRS calibration (Section 4.3).

Fig. 6. Distributions of the water level measurements during the 2 years.

1 For interpretation of colour in Fig. 9, the reader is referred to the web version o
this article.
[35]. They highlight the following key points: (i) 1/E and cunsat ex-
hibit similar behaviour in the response (Fig. 7 for the two phases of
Fig. 5); thus, it is difficult to identify each variable from a single
measurement. This study focusses on the frictional angle and the
correlation between cunsat and E, which can then be considered a
single random variable X1 = cunsat/E; and (ii) m has no influence on
the response and can be considered a deterministic parameter. Ta-
ble 6 shows the results and the conclusions concerning the se-
lected basic random variables (BRV). Four BRVs are selected,
which require 15 coefficients, bk, to be calibrated for a full qua-
dratic response surface.

4.3. QRS calibration and selection

Table 7 shows the 15 coefficients, bk, obtained from fitting QRS
to the numerical data base using the BRV in Table 6.

Table 8 shows the values of the residuals computed for the four
QRS described in Section 3.3 using different criteria: the mean
residual, R, from Eq. (3); the mean relative deviation of the resid-
ual, DrF, from Eq. (4); and the likelihood of the parameters in the
interval [�10 kN, +10 kN], corresponding to the uncertainty in
the measurement of the loads. Fig. 8 shows the distribution of
residuals for each response surface.

R ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
R2

i

r
ð3Þ

DrF ¼
1
N

XN

i¼1

Ri

FPli

ð4Þ
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where Ri and FPli denote the ith residual and the load value for the N
numerical experiments, respectively, and N = 450.

The full quadratic response surface fit the residuals the best. An
example of the simulation results obtained from the Plaxis model
(Fpl) and full quadratic and linear response surfaces (Fsr) is shown
in Fig. 9. Each plot represents the computed value of loading in one
of the tie rods as a function of the RV X1. The other BRVs are as-
sumed as follows:

� X2 (internal frictional angle): three values are analysed (25�, 30�
and 35�, according to the variation interval of Table 5); and
� X3 (tide-river level) and X4 (water level in the embankment):

the six couples of water level corresponding to the six phases
of the considered tide (Table 3) are analysed.

The plots in Fig. 9 correspond to the minimum water level of the
tide from the river side. The blue1-coloured points represent the re-
sponse surface data (the squares, labelled Fsr) and the Plaxis simula-
tion results (the crosses, labelled Fpl) for an internal frictional angle
of 25�. The red and the magenta-coloured points represent the re-
sponse surface data (the squares, labelled Fsr) and the Plaxis simula-
tion results (the ics and stars respectively) for internal frictional
angles of 30� and 35�.

The comparison between the full quadratic (left) and the linear
(right) response surfaces shows that better agreement with the
Plaxis simulations is obtained using the full quadratic model.
5. Identification of basic random variables

5.1. Identification methodology

Because the water levels in the river and in the embankment
are monitored, the BRVs X3 and X4 are known; thus, the identifica-
tion procedure focusses on X1 and X2. A zero-order method (sim-
plex) [36] is used. This method is based on the least squares
method: for each tie rod, one instance of the couple of random
variables (X1, X2) is computed from the data of five rising and fall-
ing tides (M1–M5) with CMAR = 69, corresponding to a total of 29
phases. Because of the cyclic evolution of tides with time, several
tides of the same CMAR occur during the same year. They are de-
noted as Mj (j 2 [1,5]) in the following analysis.

The objective function Ferr(h) of the identification method is
written as follows:

FerrðhÞ ¼
X

i

F2
erri
ðhÞ ¼

X
i

ðFmesi
� ðfiðFsri

; hÞÞÞ2i ¼
X

i

r2
i ðhÞ ð5Þ

where Ferri
denotes the deviation between the measured loadings in

the ith tie rod ðFmesi
Þ and the corresponding loading prediction cal-
f



Fig. 7. The influence of the density, cunsat, (left) and Young’s modulus, E, (right) on the response of the tie rods.

Table 6
Selection of the random input variables for the calibration of the response surface.

Initial random variables Studies Relationship Name of selected BRV

cunsat:Unsaturated density Variable change X1 ¼ cunsat
E

[X1]: RV
E: Young’s modulus Variable change
u: Internal frictional angle – X2 = u [X2]: BRV
csat: Saturate density Functional relationship with cunsat csat = f(cunsat) or csat = cunsat + e
m( Sensitivity analysis m = 0.27 mD
Tide-river level Measured data from CMAR = 69 – [X3]: BRV
Water level in the embankment Measured data from CMAR = 69 – [X4]: BRV

Table 7
Coefficients for each QRS after fitting.

Full quadratic Linear Pure quadratic Linear with interactions

Coeff. b Value Coeff. b Value Coeff. b Value Coeff. b Value

b0 1078.497 b0 413.9227 b0 1119.846 b0 105.9889
b1 415392.2 b1 187489.7 b1 233947.5 b1 368934.4
b2 �52.9327 b2 �12.5576 b2 �61.1056 b2 �4.38475
b3 �57.1674 b3 �41.1804 b3 �21.1729 b3 �92.6383
b4 28.75112 b4 54.71852 b4 51.93122 b4 167.327
b12 �5041.22 b12 �5041.22
b13 �9538.02 b13 �9538.02
b14 2315.487 b14 2315.487
b23 2.594443 b23 2.594443
b24 �3.49643 b24 �3.49643
b34 �11.9983 b34 �4.10185
b11 �4.8E + 07 b11 �4.8E + 07
b22 0.809133 b22 0.809133
b33 0.476507 b33 �1.76462
b44 17.31634 b44 �1.58927

Table 8
Residual criteria for each type of QRS.

Criteria Full quadratic Linear Pure quadratic Linear with interaction

Residuals Eq. (3) 0.343 0.732 0.574 0.566
Residuals Eq. (4) 0.031 0.067 0.051 0.049
Likelihood 0.83 0.48 0.58 0.59
culated by the RS numerical model, f ðFsri
; hÞ, and h is the set of un-

known variables to be identified and i is the phase number (e.g.,
i 2 [1,6] for the tide in Table 3, Fig. 5).

The prediction f ðFsri
; hÞ can be written as follows:

fiðFsri
; hÞ ¼ F0 þ Fsri

ð6Þ

where F0 is the pre-loading during the installation of the tie rod and
Fsri

is the loading in the tie rod calculated by RS. The value of F0 is
7

different for each tie rod and is calculated in the identification pro-
cess of the variables. By definition, it is assumed to be constant with
time and deterministic for a given tie rod. As different values of F0

can be obtained for tides Mj, a two-stage procedure is selected.
Stage (1) calculates the values of Fj0, Xð1Þj1 and Xð1Þj2 using Eq. (5) for
each tide Mj. For example, for tie rod T4, Fj0 varies between
F10 = 98 kN (tide M1) and F20 = 280.5 kN (tide M2). During stage (2)
the average value F0 is computed and the identification is repeated
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Table 9
Identification of F0 for tie rods T4 and T21.

T4 T21

Tide Fj0 (kN) Tide F0 (kN)

M1 98.0 M1 3.37e�8
M2 280.5 M2 2.12e�13
M3 143.0 M3 2.42e�10
M4 198.0 M4 4.42e�14
M5 115.0 M5 4.61e�13

Average 167.00 Average �0
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Fig. 10. Distributions of X1 and X2 for the two groups identified (CMAR = 69).
for X1 and X2 to calculate the next iteration of Xð2Þj1 and Xð2Þj2 . For
example, for tie rod T4, F0 = 167 kN. Only the values computed dur-
ing stage (2) are taken as solutions of the identification process. Ta-
ble 9 shows the computed values of Fj0 and the average F0 for two
tie rods, T4 and T21, selected as examples of the current section
of the quay that does not have disturbing boundary effects. The
mean values of pre-loading at these locations give an indication of
the variability of the loads along the quay as measured during con-
struction. Table 10, right, presents the results of the identification of
Xj1 and Xj2 for tie rod T4 and 5 values of tides M1, . . . , M5, with
F0 = 167 kN. Table 10, left, shows the evolution of the loading com-
puted for M1 from the identified values at each tide phase and the
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measured loading. The comparison shows that the model fits the
measured values extremely well. The results also show that the
loading in tie rod T4 after identification is approximately 370 kN.
The same procedure applied to the tie rod T21 results in a loading
of approximately 120 kN. Results for the other tie rods are available
in [35].

Results for X1 and X2 for all the tie rods and the 5 tides Mj are
shown in Fig. 10. Considering (Section 2.3) that only 6 tie rods
are instrumented and that 5 tides with CMAR = 69 were recorded,
a total of 30 (X1, X2) couples are available for analysis. One result is
that two different groups of tie rods emerge. The reason is still cur-
rently under discussion and should be found in the building meth-
ods. No specific algorithm has been used to sort them, and they
appeared from two separate clouds of data. Therefore, in the fol-
lowing, two separate probability density functions (pdfs) have
been fitted to the data.

The Pearson correlation coefficient between the two BRVs X1

and X2 for the two families of tie rods is calculated at 0.1252 and
�0.423 for group 1 and group 2, respectively. Both of these corre-
lation coefficients are low; thus the random variables can be as-
sumed independent. Then, the probabilistic model can be
selected based on polynomial chaos [15] or parametric distribu-
tions. There are not sufficient data available to implement the
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Table 10
Identification of variables X1 and X2 for tie rod T4.

Tide X1 (c/E) X2 (u (�)) Objective function (Ferr)

1 1.5 2 2.5 3 3.5 4 4.5 5
366

368

370

372

374

376

378

TIE ROD T4 (M1)

Phase of the tide

Lo
ad

in
g 

(k
N

)

Measure
Numeric

M1 0.000736 39.717 0.917
M2 0.000748 41.631 37.8
M3 0.000748 40.847 2.85
M4 0.000789 41.337 1.607
M5 0.000632 42.959 1.56

Table 11
Parameters of the X1 and X2 distributions.

Type and parameters of pdf X1 X2

Group 1 Group 2 Group 1 Group 2

Normal Log-normal Normal Log-normal Normal Log-normal Normal Log-normal

l 1.75e�4 �8.84 7.72e�4 �7.18 38.97 3.66 41.67 3.73
r 8.6e�5 0.738 1.43e�4 0.1774 1.42 0.037 1.23 0.03
Likelihood 119.67 116.308 112.02 113.11 �26.04 �26.26 �23.89 �24.02
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Fig. 11. Distribution of X2, group 1 (left) and group 2 (right).
polynomial chaos approach; therefore, the parametric distribu-
tions approach is used in this study. To retrieve the best distribu-
tion fit for each group of tie rods, a combination of three
parameters is used. The parameters are the mean, l, the standard
deviation, r, and the maximum likelihood estimation. Table 11
presents the values of these parameters for the two BRVs using
the assumptions of normal and log–normal probability density
functions. The results are plotted in Fig. 11 for the variable X2.
The distribution can be well-fitted by both normal and log–normal
pdfs. The distributions contain acceptable values in comparison to
the literature, with reasonable scatter (Table 11).

5.2. Verification and validation

Using the fitted distributions above, a direct Monte Carlo
simulation is used to verify and validate the results. The simu-
9

lation is used to compute the bounds of a confidence interval.
In this study, a 90% confidence interval with percentiles 5%
and 95% is selected. That is, 10% of the measurements are ac-
cepted to be outside the interval. Other tide levels (CMAR = 89
and 100) at different dates are used to validate the accuracy
of the response surface model. Fig. 12 presents the loading evo-
lution in tie rod T4 during the 2-year period (2004–2005). This
period includes three tides with CMAR = 69 used for the identi-
fication. The tides with CMAR = 89 and 100 are selected for
verification.

To demonstrate the validity of the proposed model, it must be
tested for a generic tide, independent of its CMAR. Fig. 12 shows
that the loading in tie rod T4 undergoes a significant change with
time between approximately 275–370 kN; this has been noted by
[8] and is because of external factors and a global stabilisation of
the wharf. Using a simple moving average of the three tides sam-
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Fig. 13. Evolution of measured and modelled loading with time for T4 for a tide with: (a) CMAR = 69, (b) CMAR = 89 and (c) CMAR = 100.
pled (corresponding to CMAR = 100 and 89 for the first and second
periods, and CMAR = 69 for the last period), a substantial loading
stability is calculated (Fig. 12). To validate the results obtained
for the tide with CMAR = 69 (registered on 2/3/2005) for other
tides (e.g., with CMAR = 89, registered on 29/10/2004, and with
10
CMAR = 100, registered on 07/5/2004), the values of the moving
average in Eq. (7) are used to simulate the loading in tie rod T4
at CMAR = 89 and 100 as follows:

FTðtÞ ¼ FsrðtÞ � DFMM ð7Þ



where FT(t) is the loading in the tie rod at generic time t, Fsr(t) is the
loading in the tie rod calculated by QRS and DFMM is the loading
deviation between the moving average values at the instant t and
tref, where tref corresponds to the same instant but during the refer-
ence tide (where CMAR = 69).

A simple moving average can be calculated using Eq. (8) as
follows:

�xn ¼
1
N

XN�1

k¼0

xk�N or �xn ¼ �xn�1 þ
xn � xn�N

N
ð8Þ

where N denotes the number of values selected for the moving
average. N = 48 has been shown to fit the medium trend (season)
and corresponds to the number of measurements during a day.
The value of the loading deviation, FMM, in Eq. (9), can be written
as follows:

FMM ¼ FMMC þ FLn ð9Þ

where FMMC denotes the central moving average of the loading
around the linear trend loading, FLn.

Fig. 13a shows the load in tie rod T4 (CMAR = 69) and it shows
that the model fits the measured loads well, i.e., the measurements
are close to the measured mean value and remain in the 5–95%
fractile of the output distribution of the model. Fig. 13b and c
shows the loading in tie rod T4 for tides with CMAR = 89 and
100. In these cases, the plots show a good agreement between
measurements and the proposed model; i.e., the measurements re-
main in the 5–95% fractile of the output distribution of the model.
6. Conclusions

The monitoring of infrastructures is currently used for damage
detection. This study focuses on another challenge, namely, the
identification of a model’s characteristics from measured data.
The method is applied to the geotechnical parameters of an
embankment of a wharf. Because of the intrinsic uncertainties in
the model and hazardous physical parameters, probabilistic mod-
elling is used. A surrogate is initially provided to the original mod-
el, with a numerical database. This study uses a quadratic response
surface. The full quadratic response surface is shown to be the
most efficient approximation to fit the finite element model. A
reduction in the number of random variables of the numerical
model is suggested and the response surface is used to identify dis-
tributions of parameters. Two groups of tie rods are then identified
and the corresponding empirical distributions are provided. It is
shown that both normal and log–normal probability distribution
functions fit the frictional angle values. Verification and validation
of the response surface model show that both the QRS and the dis-
tribution of identified parameters can be used to model the inher-
ent uncertainties.
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