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Reliability-Based Analysis of Strip Footings Using Response 
Surface Methodology

Dalia S. Youssef Abdel Massih1 and Abdul-Hamid Soubra2

Abstract A reliability-based analysis of a strip foundation subjected to a central vertical load is presented. Both the ultimate and the
serviceability limit states are considered. Two deterministic models based on numerical simulations are used. The first one computes the 
ultimate bearing capacity of the foundation and the second one calculates the footing displacement due to an applied load. The response 
surface methodology is utilized for the assessment of the Hasofer–Lind reliability indexes. Only the soil shear strength parameters are
considered as random variables while studying the ultimate limit state. Also, the randomness of only the soil elastic properties is taken into 
account in the serviceability limit state. The assumption of uncorrelated variables was found to be conservative in comparison to the one 
of negatively correlated variables. The failure probability of the ultimate limit state was highly influenced by the variability of the angle 
of internal friction. However, for the serviceability limit state, the accurate determination of the uncertainties of the Young’s modulus was 
found to be very important in obtaining reliable probabilistic results. Finally, the computation of the system failure probability involving 
both ultimate and serviceability limit states was presented and discussed.

keywords Shallow foundations; Bearing capacity; Foundation settlement; Serviceability; Simulation models; System reliability; 
Footings.
Introduction

The commonly used approaches in the analysis and design of
foundations are deterministic. The average values of the input
parameters are usually considered and the uncertainties of the
different parameters are taken into account via a global factor of
safety which is essentially a “factor of ignorance.” A reliability-
based approach for the analysis of foundations is more rational
since it enables one to consider the inherent uncertainty of each
input parameter. Nowadays, this is possible because of the im-
provement in our knowledge of the statistical properties of soil
�Phoon and Kulhawy 1999�.

In this paper, a reliability-based analysis of a strip foundation
resting on a c−� soil and subjected to a central vertical load is
presented. Previous investigations on the reliability analysis of
foundations focused on either the ultimate or the serviceability
limit state �Bauer and Pula 2000; Cherubini 2000; Griffiths and
Fenton 2001; Griffiths et al. 2002; Low and Phoon 2002; Fenton
and Griffiths 2002, 2003, 2005; Popescu et al. 2005; Przewlocki
2005; Youssef Abdel Massih et al. 2007�. This paper considers
both limit states in the analysis of foundations. Two deterministic
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models based on the Lagrangian explicit finite difference code
FLAC3D are used. The first one computes the ultimate bearing
capacity of the foundation and the second one calculates the foot-
ing displacement due to an applied service load. The response
surface methodology is utilized to find an approximation of the
analytically unknown performance functions and the correspond-
ing reliability indexes. The random variables considered in the
analysis are the soil shear strength parameters c and � for the
ultimate limit state, and the soil elastic properties E and � for the
serviceability limit state. After a brief description of the basic
concepts of the theory of reliability, the two deterministic models
based on numerical FLAC3D simulations are presented. Then, the
probabilistic analysis and the corresponding numerical results are
presented and discussed.

Basic Reliability Concepts

Two different measures are commonly used in literature to de-
scribe the reliability of a structure: The reliability index and the
failure probability.

The reliability index of a geotechnical structure is a measure of
the safety that takes into account the inherent uncertainties of the
input variables. A widely used reliability index is the Hasofer and
Lind �1974� index defined as the shortest distance from the mean
value point of the random variables to the limit state surface
in units of directional standard deviations, namely �
=min�R��� /r���� �Fig. 1�. Its matrix formulation is �Ditlevsen
1981�

�HL = min
x�F

��x − ��TC−1�x − �� �1�

in which x�vector representing the n random variables;
��vector of their mean values; and C�their covariance matrix.

The minimization of Eq. �1� is performed subject to the constraint



G�x��0 where the limit state surface G�x�=0 separates the
n-dimensional domain of random variables into two regions: a
failure region F represented by G�x��0 and a safe region given
by G�x��0.

The classical approach for computing �HL by Eq. �1� is based
on the transformation of the limit state surface into the space of
standard normal uncorrelated variates. The shortest distance from
the transformed failure surface to the origin of the reduced vari-
ates is the reliability index �HL.

An intuitive interpretation of the reliability index was sug-
gested in Low and Tang �1997a, 2004� where the concept of an
expanding ellipse �Fig. 1� led to a simple method of computing
the Hasofer–Lind reliability index in the original space of the
random variables. When there are only two uncorrelated
nonnormal random variables x1 and x2, these variables span a
two-dimensional random space, with an equivalent one-sigma
dispersion ellipse �corresponding to �HL=1 in Eq. �1� without the
min� centered at the equivalent normal mean values ��1

N ,�2
N� and

whose axes are parallel to the coordinate axes of the original
space. For correlated variables, a tilted ellipse is obtained. Low
and Tang �1997a, 2004� reported that the Hasofer–Lind reliability
index �HL may be regarded as the codirectional axis ratio of the
smallest ellipse �which is either an expansion or a contraction of
the 1−	 ellipse� that just touches the limit state surface to the
1−	 dispersion ellipse. They also stated that finding the smallest
ellipsoid that is tangent to the limit state surface is equivalent to
finding the most probable failure point.

From the first-order reliability method FORM and the
Hasofer–Lind reliability index �HL, one can approximate the fail-
ure probability as follows

Pf � 
�− �HL� �2�

where 
�·��cumulative distribution function of a standard nor-
mal variable. In this method, the limit state function is approxi-
mated by a hyperplane tangent to the limit state surface at the
design point.

Ellipsoid Approach via Matlab

Low and Tang �1997a, 2004� showed that the minimization of the
Hasofer–Lind reliability index can be efficiently carried out in the
original space of the random variables. When the random vari-

Fig. 1. Design point and equivalent normal dispersion ellipses in
space of two random variables
ables are non-normal and correlated, the optimization approach
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uses the Rackwitz–Fiessler equations to compute the equivalent
normal mean �N and the equivalent normal standard deviation 	N

without the need to diagonalize the correlation matrix, as shown
in Low and Tang �2004� and Low �2005�. Furthermore, the itera-
tive computations of the equivalent normal mean �N and equiva-
lent normal standard deviation 	N for each trial design point are
automatic during the constrained optimization search.

In the present paper, by the Low and Tang method, one liter-
ally sets up a tilted ellipsoid in Matlab software and uses the
“fmincon” command, built in the optimization tool of this soft-
ware, to minimize the dispersion ellipsoid subject to the con-
straint that it be tangent to the limit state surface. Eq. �1� may be
rewritten as �Low and Tang 1997b, 2004�

� = min
x�F
�� x − �x

N

	x
N �T

�R�−1� x − �x
N

	x
N � �3�

in which �R�−1�inverse of the correlation matrix. This equation
will be used to set up the ellipsoid in Matlab since the correlation
matrix �R� displays the correlation structure more explicitly than
the covariance matrix �C�.

Deterministic Numerical Modeling of Bearing
Capacity and Displacement of Strip Footings Using
FLAC3D

FLAC3D �Fast Lagrangian Analysis of Continua 1993� is a com-
mercially available three-dimensional finite difference code in
which an explicit Lagrangian calculation scheme and a mixed
discretization zoning technique are used. This code includes an
internal programming option �FISH� which enables the user to
add his own subroutines.

In this software, although a static �i.e. nondynamic� mechani-
cal analysis is required, the equations of motion are used. The
solution to a static problem is obtained through the damping of a
dynamic process by including damping terms that gradually re-
move the kinetic energy from the system.

The calculation scheme invokes the equations of motion in
their discretized forms to derive new velocities and displacements
from stresses and forces. Then, strain rates are derived from ve-
locities, and new stresses from strain rates. The stresses and
deformations are calculated at several small timesteps �called
hereafter cycles� until a steady state of static equilibrium or plas-
tic flow is achieved. The convergence to this state may be con-
trolled by a maximal prescribed value of the unbalanced force for
all elements of the model. It should be mentioned that the appli-
cation of displacements or stresses on a system creates unbal-
anced forces in this system. Damping is introduced in order to
remove these forces or to reduce them to very small values com-
pared to the initial ones.

Numerical Simulations

This section focuses on the computation of the ultimate bearing
capacity of the soil �ultimate limit state �ULS�� and the footing
vertical displacement �serviceability limit state �SLS�� due to a
central vertical footing load. Although a random soil is studied in
this paper, a symmetrical velocity field is considered in both the
ULS and the SLS. This is because the soil properties are modeled
as random variables. Thus, each FLAC3D simulation considers a

homogeneous soil. The randomness of the soil is taken into ac-



count from one simulation to another. A nonsymmetrical velocity
field is necessary only for the computation of the reliability of a
foundation resting on a spatially variable soil �i.e., where c or �
are considered as random processes�.

Ultimate Limit State—Bearing Capacity

This section focuses on the determination of the ultimate bearing
capacity of a rough rigid strip footing, of breadth B=2 m, resting
on a c−� soil.

Because of symmetry, only half of the entire soil domain of
width 20B and depth 5B is considered. The bottom and right
vertical boundaries are placed far enough from the footing and
they do not disturb the soil mass in motion �i.e., velocity field� for
all the soil configurations studied in this paper. A nonuniform
mesh composed of 904 zones is used �Fig. 2�. The region under
the right half of the footing was divided horizontally into 15
zones, whose size gradually decreases from the center to the edge
of the footing where very high stress gradients are developed.
Beyond the edge of the footing, the domain was divided into 30
zones whose size increases gradually from the foundation edge to
the right vertical boundary. Vertically, the domain was divided
into 20 zones whose size decreases gradually from the bottom of
the domain to the ground surface.

Since this is a two-dimensional �2D� case, all displacements in
the direction parallel to the footing are fixed. For the displacement
boundary conditions, the bottom boundary was assumed to be
fixed and the vertical boundaries were constrained in motion in
the horizontal direction.

A conventional elastic-perfectly plastic model based on the
Mohr–Coulomb failure criterion is adopted to represent the soil.
The soil elastic properties employed are the shear modulus G
=23 MPa and the bulk modulus K=50 MPa �for which the
equivalent Young’s modulus and Poisson’s ratio are, respectively,
E=60 MPa and �=0.3�. The values of the soil shear strength
parameters used in the analysis are: �=30°, �=20°, and c
=20 kPa, where ��soil dilation angle. The soil unit weight was
taken equal to 18 kN /m3. Notice that the soil elastic properties
have a negligible effect on the failure load. A strip footing of half
width equal to 1 m and depth 0.5 m is used in the analysis. It is
divided horizontally into four zones. The footing is simulated by
a weightless elastic material. Its elastic properties are the Young’s
modulus E=25 GPa and the Poisson’s ratio �=0.4. Compared to
the soil elastic properties, these values are well in excess of those
of the soil and ensure a rigid behavior of the footing. The footing
is connected to the soil via interface elements that follow Cou-
lomb’s law. The interface is assumed to have a friction angle

Fig. 2. Soil domain and mesh used in FLAC3D
equal to the soil angle of internal friction, dilation equal to that of
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the soil, and cohesion equal to the soil cohesion in order to simu-
late a perfectly rough soil-footing interface. Normal stiffness Kn

=109 Pa /m and shear stiffness Ks=109 Pa /m are assigned to this
interface. These parameters do not have a major influence on the
failure load.

For the computation of the ultimate bearing capacity of a rigid
rough strip footing subjected to a central vertical load using
FLAC3D, a displacement control method is adopted in this paper.
The following procedure is performed before any simulation of
the foundation loading: Geostatic stresses are first applied to the
soil, then several cycles are run in order to arrive at a steady state
of static equilibrium, and finally the obtained displacements are
set to zero in order to obtain the footing displacement due to only
the footing load.

Displacement Control Method

In this method, a controlled downward vertical velocity �i.e., dis-
placement per timestep� is applied to the nodes of the footing.
Damping of the system is introduced by running several cycles
until a steady state of plastic flow is developed in the soil under-
neath the footing. This state is achieved when both conditions: �1�
a constant footing load and �2� small values of unbalanced forces,
were satisfied as the number of cycles increases. The number of
cycles required to reach this state depends on the value of the
applied velocity. At each cycle, the vertical footing load is ob-
tained by using a FISH function that calculates the integral of the
normal stress components for all elements in contact with the
footing. The value of the vertical footing load at the plastic steady
state is the ultimate footing load. The ultimate bearing capacity is
then obtained by dividing this load by the footing area.

Two control parameters �the intensity of the vertical velocity
and the mesh size� may greatly affect the value of the ultimate
footing load. They are examined in the following sections:

An optimal vertical velocity must be chosen in order to reach
a value of the ultimate bearing capacity close to the smallest most
critical one �corresponding to very small velocity� with a reason-
able computation time. A velocity of 2.5�10−6 m / timestep
downward was suggested by Yin et al. �2001� as a result of a
number of verification runs. This value was tested in the present
paper, and an ultimate load of 2 ,393.1 kN /m was obtained at the
plastic steady state after 215,000 cycles. This load corresponds to
a continuous increase of the footing displacement. A smaller ve-
locity of 10−6 m / timestep and a higher velocity of 5
�10−6 m / timestep were also tested. The value of the ultimate
load corresponding to the smaller velocity was found equal to
2 ,392.7 kN /m which is slightly smaller �i.e., more critical� than
the one obtained by applying the 2.5�10−6 m / timestep velocity.
However, 380,205 cycles were required to achieve this value �i.e.,
an increase in the calculation time by 76%�. For the higher veloc-
ity of 5�10−6 m / timestep, a slightly greater value of
2 ,394.48 kN /m was obtained �Fig. 3�. The difference is smaller
than 0.1% from the value obtained using the 10−6 m / timestep
velocity. The necessary number of cycles to reach this value was
about 107,743 which is significantly smaller than the 215,000 and
the 380,205 cycles required by the two smaller velocities. Thus,
the use of a vertical velocity of 5�10−6 m / timestep highly re-
duces the computation time with a negligible deterioration in the
accuracy of the solution. In this paper, this velocity is adopted for
all subsequent calculations.

The effect of the mesh size on the solution was also checked.
It was found that a more refined mesh under the footing does not

improve the value of the ultimate footing load and may cause



numerical instability. Also, a more refined mesh beyond the edge
of the footing �40 zones instead of 30 horizontally and 30 zones
instead of 20 in the vertical direction� improves the result �i.e.,
reduces the ultimate load� by only 0.24% with an increase in the
calculation time by 33%. Thus, the mesh presented above will be
used in all subsequent calculations.

In order to confirm the accuracy of the ultimate bearing capac-
ity obtained by the displacement control method, incremental ver-
tical stresses are applied to the nodes situated at the base of the
footing until failure is reached. For each stress increment, damp-
ing is introduced until a steady state is obtained. This method
called the load control method is found to give a closely similar
result of 2 ,394.44 kN /m �Fig. 4� in comparison to the value of
2 ,394.48 kN /m obtained by the displacement control method.
However, this approach is less efficient regarding the computation
time. In order to compare the number of cycles required by the
two methods for a given displacement of the footing, the total
number of cycles was found to be about 648,000 for a vertical

Fig. 3. Load-displacement curve from displacement control method

Fig. 4. Load-displacement curve from load control method
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footing displacement of 45 cm in the load control method. The
corresponding number of cycles was about 107,000 in the dis-
placement control method.

The contact normal and shear stress distributions along the
soil-footing interface as obtained by the two methods at failure
are presented in Figs. 5�a and b�. They show nearly identical
results. Except at the footing edge which is a singular point, a
quasi-uniform normal stress distribution was observed �Fig. 5�a��.
For the shear stress distribution, gradually increasing stress from
the center to the edge of the footing was noticed �Fig. 5�b��. As
for the normal stress distribution, high stresses were observed at
the footing edge due to the singularity at this point.

For computation of the ultimate bearing capacity of a rough
rigid footing, the displacement control method was found to be
the most simple and efficient one regarding the computation time.
It will be used in this paper for all subsequent calculations.

Serviceability Limit State—Vertical Displacement

For the computation of the vertical displacement of a rigid footing
under an applied vertical load, it would not be interesting to apply
uniform stresses directly to the surface nodes of the soil since this
approach corresponds to the simulation of a flexible footing.
Thus, as in the ultimate limit state, modeling the foundation by a
weightless elastic material is also adopted here. An elastic-
perfectly plastic model is used for the soil since it enables the
development of plastic zones that may occur near the footing
edges even at small service loads and it leads to more accurate
solutions than a purely elastic model. The same procedure de-

Fig. 5. �a� Normal �	�; �b� shear �� stresses at right half of footing
base as obtained from two methods
scribed before concerning the geostatic stresses is used here. A



uniform service stress is applied at the base of the footing. Damp-
ing of the system is introduced by running several cycles until a
steady state of static equilibrium is reached in the soil. This state
is achieved when both conditions: �1� a constant vertical displace-
ment of the footing �Fig. 6� and �2� small values of unbalanced
forces, were satisfied as the number of cycles increases.

Reliability Analysis of Strip Footings

The aim of this paper is to perform a reliability analysis of a strip
footing resting on a c−� soil and subjected to a central vertical
load. Two failure or unsatisfactory performance modes are con-
sidered in the analysis: The first one involves the ultimate limit
state and emphasizes the ultimate bearing capacity of the footing
and the second one considers the serviceability limit state and
focuses on the maximal footing displacement. The two determin-
istic models presented in the previous section are used. The
response surface methodology is employed to find an approxima-
tion of the analytically unknown performance functions. The co-
hesion c, the angle of internal friction �, the Young’s modulus E,
and the Poisson’s ratio � of the soil are considered as random
variables. Due to the relatively low effect of the elastic modulus E
and the Poisson’s ratio � on the ultimate bearing capacity, only c
and � will be considered as random variables while studying the
ultimate limit state. Similarly, only the randomness of E and �
will be taken into consideration in the analysis of the serviceabil-
ity limit state. After a brief description of the performance func-
tions used in the present analysis, the response surface methodol-
ogy and its numerical implementation are presented. Then, the
probabilistic numerical results based on this method are presented
and discussed.

Performance Functions

Two performance functions are used in this reliability analysis.
The first one is defined with respect to the ultimate bearing ca-

Fig. 6. Vertical footing displacement versus number of cycles due to
applied load PS=750 kN /m
pacity of the soil. It is given as follows
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G = Pu/PS − 1 �4�

where Pu�ultimate foundation load calculated by FLAC3D and
PS�applied footing load. The second performance function, de-
fined with respect to a prescribed admissible footing displace-
ment, is given as follows

G = umax − u �5�

where u�vertical displacement of the footing calculated by
FLAC3D due to a service load PS; and umax�maximal admissible
vertical displacement.

Response Surface Method

If the performance function is an explicit function of the random
variables, the reliability index can be calculated easily. In the
FLAC3D model, the closed form solution of the performance
function is not available. Thus, the determination of the reliability
index is not straightforward. An algorithm based on the response
surface methodology proposed by Tandjiria et al. �2000� is used
in this paper with the aim to calculate the reliability index and the
corresponding design point. The basic idea of this method is to
approximate the performance function by an explicit function of
the random variables, and to improve the approximation via itera-
tions. The approximate performance function used in this study
has a quadratic form. It uses a second-order polynomial with
squared terms but no cross terms. The expression of this approxi-
mation is given by

G�x� = a0 + 	
i=1

n

ai . xi + 	
i=1

n

bi . xi
2 �6�

where xi�random variables; n�number of the random variables;
and �ai ,bi��coefficients to be determined. In this paper, two ran-
dom variables are considered for each limit state �i.e., n=2�. They
are characterized by their mean values �i and their coefficients
of variation 	i. A brief explanation of the algorithm used is as
follows:
1. Evaluate the performance function G�x� at the mean value

point � and the 2n points each at �±k	 where k=1in this
paper;

2. The above 2n+1 values of G�x� can be used to solve Eq. �6�
for the coefficients �ai ,bi�. This obtains a tentative response
surface function;

3. Solve Eq. �1� to obtain a tentative design point and a tenta-
tive �HL subject to the constraint that the tentative response
surface function of step 2 be equal to zero; and

4. Repeat steps 1–3 until convergence. Each time step 1 is re-
peated, the 2n+1 sampled points are centered at the new
tentative design point of step 3.

Numerical Implementation of Response Surface
Method

As described in the previous section, the determination of the
Hasofer–Lind reliability index requires: �1� the determination of
the coefficients �ai ,bi� of the tentative response surface via the
resolution of Eq. �6� for the 2n+1 sampled points; and �2� the
minimization of the Hasofer–Lind reliability index subject to the
constraint that the tentative response surface function be equal to

zero. These two operations which constitute a single iteration



were done using the optimization toolbox available in Matlab 7.0
software. Several iterations were performed until convergence of
the Hasofer–Lind reliability index.

Notice that the determination of the performance function at
the 2n+1 sampled points was performed using deterministic
FLAC3D calculations. The results of these computations constitute
input parameters for the determination of the coefficients �ai ,bi�
of the tentative response surface using Matlab 7.0. Also, the value
of the design point determined using the minimization procedure
in Matlab 7.0 is an input parameter for the determination of the
performance function at the 2n+1 sampled points in FLAC3D.
Therefore, an exchange of data between FLAC3D and Matlab 7.0
in both directions was necessary to enable an automatic resolution
of the iterative algorithm for the determination of the Hasofer–
Lind reliability index. The link between FLAC3D and Matlab 7.0
was performed using text files and FISH commands.

Numerical Results

For the ultimate limit state, different values of the coefficients of
variation of the angle of internal friction and cohesion are pre-
sented in the literature. For most soils, the mean value of the
effective angle of internal friction is typically between 20 and
40°. Within this range, the corresponding coefficient of variation
as proposed by Phoon and Kulhawy �1999� is essentially between
5 and 15%. For the effective cohesion, the coefficient of variation
�COV� varies between 10 and 70% �Cherubini 2000�. For the
coefficient of correlation, Harr �1987� has shown that a correla-
tion exists between the effective cohesion c and the effective
angle of internal friction �. The results of Wolff �1985� ��c,�

=−0.47�, Yuceman et al. �1973� �−0.49��c,��−0.24�, Lumb
�1970� �−0.7��c,��−0.37�, and Cherubini �2000� ��c,�=−0.61�
are among the ones cited in the literature. In this paper, the illus-
trative values used for the statistical moments of the shear
strength parameters and their coefficient of correlation �c,� are
given as follows: �c=20 kPa, ��=30°, COVc=20%, COV�

=10%, and �c,�=−0.5. These values are within the range of val-
ues cited above. For the probability distribution of the random
variables, c is assumed to be lognormally distributed while � is
assumed to be bounded and a beta distribution is used �Fenton
and Griffiths 2003�. The parameters of the beta distribution are
determined from the mean value and standard deviation of �. It
should be mentioned that the soil elastic properties �i.e., K and G
or E and �� considered as deterministic in the present ultimate
limit state have no effect on the value of the ultimate bearing
capacity. Higher values of these properties, G=100 MPa and K
=133 MPa �for which E=240 MPa and �=0.2�, were checked.
No change was observed in the value of the ultimate bearing
capacity. Furthermore, a reduction by 50% in the number of
cycles necessary to reach failure was noticed �i.e., a reduction in
the computation time by half�. Consequently, these values will be
used in all subsequent calculations when studying the ultimate
limit state. The CPU time required for each simulation was found
to be about 15 min on a Centrino 2.0 GHz PC.

For the serviceability limit state, soils with small values of
Young’s modulus are used in this paper. In such soils, the vari-
ability of the compressibility characteristics is very large �Bauer
and Pula 2000�. A lognormal distribution is used for E with a
mean value of 60 MPa �Nour et al. 2002�. For the coefficient of
variation, some values proposed and used by several authors are
listed in Table 1. A value of 15% is used in this paper. Regarding

the Poisson’s ratio, there is no available information about its
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random variation. Some authors have suggested that the random-
ness can be neglected in an analysis of settlement taking place in
the case of elastic soil. Others have stated that � changes with a
relatively narrow interval. In this paper, � is considered as a log-
normally distributed variable with a coefficient of variation of
5%. Its mean value is taken equal to 0.3. For the correlation
coefficient of these two parameters, there is no information avail-
able. The results reported by some researchers �Bauer and Pula
2000� lead to the conclusion that this correlation is negative. In
this paper, the cases of uncorrelated and correlated soil elastic
properties with �E,�=−0.5 are considered. The CPU time required
for each serviceability limit state simulation was found to be
about 10 min on a Centrino 2.0 GHz PC.

Ultimate Limit State

Graphical Representation of Successive Tentative
Response Surfaces

Fig. 7 shows the evolution of the tentative response surface in the
standard space �u1 ,u2� for a footing applied load equal to
775 kN /m �i.e., a safety factor of 3.1�. The two equations used
for the transformation of each �c ,�� of the limit state surface
from the physical space to the standardized normal uncorrelated
space �u1 ,u2� are �e.g., Lemaire 2005�

Table 1. Values of Coefficient of Variation �COV� of Young’s Modulus
Proposed by Several Authors

Authors
COV of Young’s modulus

�%�

Phoon and Kulhawy �1999� 30

Bauer and Pula �2000� 15

Nour et al. �2002� 40–50

Baecher and Christian �2003� 2–42

Fig. 7. Evolution of tentative response surface



u1 = 
 c − �c
N

	c
N � �7�

u2 =
1

�1 − �2�
� − ��
N

	�
N � − �
 c − �c

N

	c
N �� �8�

where ��coefficient of correlation of c and �; and �c
N, ��

N, 	c
N,

and 	�
N�equivalent normal means and standard deviations of the

random variables c and �. They are determined from the transla-
tion approach using the following equations

c − �c
N

	c
N = 
−1�Fc�c�� �9�

� − ��
N

	�
N = 
−1�F����� �10�

where Fc and F��non-Gaussian cumulative distribution functions
of c and �; and 
−1�·��inverse of the standard normal cumula-
tive distribution.

A convergence criterion on the reliability index was adopted. It
considers that convergence is reached when a difference smaller
than 10−2 between two successive reliability indexes is achieved.
One can notice that this criterion is reached after only four itera-
tions. Thus, only 20 numerical simulations by FLAC3D were nec-
essary. The corresponding CPU time required is about 20�15
=300 min �i.e., 5 h�. A value of 4.35 was found for the reliability
index. This value corresponds to a failure probability of 6.84
�10−6 calculated by the FORM approximation.

Reliability Index and Design Point

Table 2 presents the Hasofer–Lind reliability index and the cor-
responding design point for different values of the vertical applied
load PS �i.e., safety factor F=Pu / PS� varying from small values
up to the deterministic ultimate load. The cases of correlated
��c,�=−0.5� and uncorrelated ��c,�=0� shear strength parameters
are considered.

The reliability index decreases with the increase of the applied
load PS �i.e., the decrease of the safety factor F=Pu / PS� until it
vanishes for an applied load equal to the deterministic ultimate
load. This case corresponds to a deterministic state of failure for
which F=1 using the mean values of the random variables and
the failure probability is equal to 50%. The comparison of the
results of correlated variables with those of uncorrelated variables
shows that the reliability index corresponding to uncorrelated
variables is smaller than the one of negatively correlated vari-
ables. One can conclude that the hypothesis of uncorrelated shear
strength parameters is conservative in comparison to the one of

Table 2. Reliability Index and Design Point for Uncorrelated and Correl

�c,�=0.0

PS

�kN/m� F
c*

�kPa�
�*

�°� �HL Fc

750 3.19 14.12 20.86 3.49 1.42

1,150 2.08 16.30 24.27 2.12 1.23

1,550 1.54 17.90 26.61 1.21 1.12

1,780 1.35 18.52 27.71 0.81 1.08

1,950 1.23 18.89 28.45 0.55 1.06

2,395 1.00 19.61 30.00 0.00 1.01
negatively correlated parameters. For instance, when the safety

7

factor is equal to 3.2 �i.e., PS=750 kN /m�, the reliability index
increases by 32% if the variables c and � are considered as nega-
tively correlated.

The values of the design points corresponding to different val-
ues of the vertical applied load can give an idea about the partial
safety factors of each of the strength parameters c and tan � as
follows

Fc =
�c

c* �11�

F� =
tan����
tan �* �12�

Table 2 shows that for uncorrelated shear strength parameters, the
values of c* and �* at the design point are smaller than their
respective mean values and increase with the increase of the ap-
plied load. Consequently, the partial safety factors Fc and F� de-
crease with the increase of the applied load. They tend to 1 when
PS=Pu. For negatively correlated shear strength parameters, c*

slightly exceeds the mean for some values of the applied load.
This can be explained by the counterclockwise rotation of the
dispersion ellipse due to the negative correlation �Fig. 8�. The
position of the design point, which is the point of tangency be-
tween the ellipse and the limit state surface, changes from that
found for uncorrelated soil shear strength parameters. A higher c*

�respectively, a lower �*� is found. Consequently, c* can become
greater than the mean value for a negative correlation. This con-

hear Strength Parameters

�c,�=−0.5

F�

c*

�kPa�
�*

�°� �HL Fc F�

1.52 17.08 19.34 4.62 1.17 1.64

1.28 18.26 23.08 2.71 1.10 1.35

1.15 18.64 26.43 1.53 1.07 1.16

1.10 20.04 27.22 1.00 0.99 1.12

1.07 19.92 28.14 0.67 1.00 1.08

1.00 19.61 30.00 0.00 1.01 1.00

Fig. 8. General layout of dispersion ellipse for different correlation
coefficients
ated S



clusion is similar to that found by Youssef Abdel Massih et al.
�2008�.

Sensitivity of Failure Probability to Variability of Soil
Shear Strength Parameters

In order to study the effect of the variability of the soil shear
strength parameters on the failure probability, Fig. 9 shows the
FORM failure probability versus the coefficient of variation of c
and �. For each curve, the coefficient of variation of a parameter
is held to the same constant value given in the introduction of the
section “Numerical Results” and the coefficient of variation of the
second parameter is varied over the range 10–40%. The results
show that the failure probability is highly influenced by the coef-
ficient of variation of the angle of internal friction; the greater the
scatter in � the higher the failure probability of the foundation.
This means that the accurate determination of the distribution of
this parameter is very important in obtaining reliable probabilistic
results. In contrast, the coefficient of variation of c does not sig-
nificantly affect the failure probability.

Serviceability Limit State

Reliability Index and Design Point

The threshold value of the settlement is umax=0.1 m. Table 3 pre-
sents the Hasofer–Lind reliability index and the corresponding
design point for different values of the vertical applied load PS.
The cases of correlated and uncorrelated soil elastic properties are
considered. The reliability index decreases with the increase of
the applied load PS. A comparison of the results of correlated soil
elastic properties with those of uncorrelated ones shows that, as in

Fig. 9. Effect of variability of soil shear strength parameters on fail-
ure probability

Table 3. Reliability Index and Design Point for Uncorrelated and Correl

�E,�=0.0

PS

�kN/m�
E*

�MPa� �* �HL FE

750 19.42 0.280 7.60 3.10

1,150 33.71 0.288 3.87 1.78

1,550 49.75 0.296 1.21 1.21

1,780 59.33 0.300 0.00 1.01
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the ultimate limit state, the hypothesis of uncorrelated soil elastic
properties is conservative in comparison to the one of negatively
correlated properties.

By comparing Tables 2 and 3, one can notice that for small
values of the applied load, the reliability index of the ultimate
limit state is significantly smaller than that of the serviceability
limit state. Thus, for small values of the applied load, the ultimate
failure mode is predominant and will have the highest contribu-
tion in the determination of the system failure probability. The
difference between the reliability indexes of the two failure
modes becomes smaller for higher values of the applied load.
Consequently, when the applied load increases, the two failure
modes �i.e., the ultimate and the serviceability ones� will have
nearly similar contributions in the computation of the system fail-
ure probability �see another interpretation in the section “System
Failure Probability”�.

As for the ultimate limit state, the values of the design point
allow us to calculate the partial safety factors of E and � as
follows

FE =
�E

E* �13�

F� =
��

�* �14�

Table 3 shows that for uncorrelated soil elastic properties, the
partial safety factors FE and F� decrease with the increase of PS.
They become equal to 1 when PS is equal to the load that leads to
the maximal prescribed foundation settlement umax for the mean
values of the soil elastic properties. For negatively correlated soil
elastic properties, F� is found smaller than 1. The same interpre-
tation given in the ultimate limit state for negatively correlated
variables remains valid in the present case.

Sensitivity of Failure Probability to Variability of Soil
Elastic Properties

As for the ultimate limit state, the effect of the variability of the
soil elastic properties on the failure probability is shown in Fig.
10 where FORM failure probability is plotted versus the coeffi-
cient of variation of E and �. For each curve, the coefficient of
variation of a parameter is held to the same constant value given
in the introduction of the section “Numerical Results” and the
coefficient of variation of the second parameter is varied over the
range 5–35%. The results show that the failure probability of the
serviceability limit state is highly influenced by the coefficient of
variation of the Young’s modulus; the greater the scatter in E the
higher the failure probability of the foundation. This means that
an accurate determination of the distribution of this parameter is
very important in obtaining reliable probabilistic results. In con-

oil Elastic Properties

�E,�=−0.5

E*

�MPa� �* �HL FE F�

16.57 0.337 8.80 3.62 0.89

31.06 0.319 4.46 1.93 0.94

48.37 0.306 1.41 1.24 0.98

59.33 0.300 0.00 1.01 1.00
ated S

F�

1.07

1.04

1.01

1.00



trast, compared to E, the uncertainties in � have a minor effect on
the failure probability.

System Failure Probability

The system failure probability under the two failure modes in-
volving the ultimate and the serviceability limit states of the foot-
ing is given by

Pfsys
= Pf�U � S� = Pf�U� + Pf�S� − Pf�U � S� �15�

where Pf�U�S��failure probability under the ultimate and the
serviceability failure modes; Pf�U��failure probability under
only the ultimate failure mode; and Pf�S��failure probability
under only the serviceability failure mode. The failure probability
of the intersection is given as follows �Lemaire 2005�

max�P�A�,P�B�� � Pf�P � S� � P�A� + P�B� �16�

where

P�A� = 
�− �U�

−
�S − �US�U

�1 − �US
2 � �17�

P�B� = 
�− �S�

−
�U − �US�S

�1 − �US
2 � �18�

�US = ��U��S� �19�

�U and �S�reliability indexes corresponding to the ultimate and
the serviceability failure modes, respectively, and �US�cor-

Fig. 10. Effect of variability of soil elastic properties on failure
probability

Table 4. System Failure Probability and Reliability Index

�c,�=0.0
�E,�=0.0

�c,�=−0.5
�E,�=−0.5

PS

�kN/m�
Pfsys

�%� �sys

Pfsys
�%�

750 0.02 3.49 2.00�10−4

1,150 1.70 2.12 0.34

1,550 21.30 0.79 13.70

1,780 60.45 −0.26 57.93
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relation between the two failure modes. �U and �S for both modes
are given by

�Ui
= − � ��U

�uUi

�
�uui

* �

= −
uUi

*

�U
�20�

�Si
= − � ��S

�uSi

�
�usi

*�

= −
uSi

*

�S
�21�

where uUi

* and uSi

*�standard uncorrelated normal variables at the
design points �see Eqs. �7� and �8��. Here, it was found that �US

=0 since the two failure modes are independent.
The probability of the intersection Pf�U�S� is set equal to its

lower limit �i.e., max�P�A� ,P�B��� in order to obtain the higher
limit of the system failure probability Pfsys

.
The system reliability index can be approximated using the

FORM approximation as follows

�sys = − 
−1�Pfsys� �22�

Table 4 presents the system failure probability Pfsys and the cor-
responding reliability index �sys for different values of the applied
load. Four cases are considered: They are the combinations of
correlated and uncorrelated shear strength parameters with corre-
lated and uncorrelated soil elastic properties. From this table, it
can be seen that even for the system reliability, the assumption of
uncorrelated parameters is conservative in comparison to the one
of negatively correlated variables. For small values of the applied
load, where the ultimate failure mode is predominant, one can
notice that the system reliability index is equal to the reliability
index of the ultimate failure mode. When the applied load in-
creases, the system reliability depends on both failure modes and
the system reliability index is smaller than the ones corresponding
to a single failure mode. Finally, one can notice that a negative
system reliability index is found for an applied load of
1,780 kN /m corresponding to the deterministic failure state of the
serviceability mode. This corresponds to a system failure prob-
ability higher than 50% �i.e., higher than the one corresponding to
a zero reliability index�. This value is due to the combination of
the failure probability of the serviceability limit state �i.e., 50%�
and the one of the ultimate limit sate. In this case, the system
reliability index is meaningless.

Conclusions

A reliability-based analysis of a strip footing resting on a c−�
soil and subjected to a central vertical load is presented. Both the
ultimate and the serviceability limit states are used to characterize
the footing behavior. Two deterministic models based on numeri-

�c,�=−0.5
�E,�=0.0

�c,�=0.0
�E,�=−0.5

Pfsys
�%� �sys

Pfsys
�%� �sys

2.00�10−4 4.62 0.02 3.49

0.34 2.70 1.70 2.12

16.90 0.96 18.30 0.90

57.93 −0.20 60.45 −0.26
�sys

4.62

2.71

1.09

−0.20



cal simulations using the Lagrangian explicit finite difference
code FLAC3D are employed. The first one computes the ultimate
bearing capacity of the foundation and the second one calculates
the footing displacement due to an applied service load. The
Hasofer–Lind reliability index is adopted here for the assessment
of the foundation reliability. The response surface methodology is
used to find an approximation of the analytically unknown limit
state surfaces and the corresponding reliability indexes. Only the
soil shear strength parameters are considered as random variables
while studying the ultimate limit state. Also, the randomness of
only the soil elastic properties is taken into account in the service-
ability limit state. The main conclusions of this paper can be
summarized as follows:
1. The hypothesis of uncorrelated parameters was found to be

conservative in comparison to the one of negatively corre-
lated variables;

2. For uncorrelated shear strength parameters, the values of c*

and �* at the design point are found smaller than their re-
spective mean values and increase with the increase of the
applied load PS. Consequently, the partial safety factors Fc

and F� decrease with the increase of the applied load. They
tend to 1 when PS=Pu. For negatively correlated shear
strength parameters, c* slightly exceeds the mean for some
values of the applied load;

3. For uncorrelated soil elastic properties, the partial safety fac-
tors FE and F� decrease with the increase of PS. They tend to
1 when PS is equal to the load that leads to the maximal
prescribed foundation settlement umax for the mean values of
the soil elastic properties. For negatively correlated soil elas-
tic properties, F� is found smaller than 1;

4. The failure probability is found to be highly influenced by
the uncertainties of the angle of internal friction for the ulti-
mate limit state and by those of the Young’s modulus for the
serviceability limit state; and

5. For small values of the applied load, the ultimate limit state
is predominant in the computation of the system failure prob-
ability. Consequently, the system reliability index is found
equal to that of the ultimate limit state. For higher values of
the applied load, the system reliability index depends on both
limit states. It is smaller than the ones corresponding to a
single failure mode. Thus, both failure modes have to be
considered in the reliability analysis of foundations for high
values of the applied load.
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