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Probabilistic Analysis of Pressurized Tunnels against Face
Stability Using Collocation-Based Stochastic

Response Surface Method
Guilhem Mollon1; Daniel Dias2; and Abdul-Hamid Soubra, M.ASCE3

Abstract: A probabilistic analysis of the face stability of a tunnel driven by a compressed-air pressurized shield is presented. The collo-
cation-based stochastic response surface methodology (CSRSM) is used. The deterministic model employed in the probabilistic analysis is 
analytical. A translational multiblock collapse mechanism in the framework of the kinematic theorem of limit analysis forms the basis of the 
analysis. The soil friction angle and cohesion are considered as random variables. CSRSM was first validated by the comparison of the results 
obtained from the original analytical deterministic model. Then, the influence of the probabilistic characteristics of the uncertain variables was 
studied. Contrary to the correlation between c and φ and the coefficients of variation of these variables, which have a significant effect on the 
variability of the critical collapse pressure, the nonnormality of the distributions of the random variables was shown not to have a 
considerable effect on the distribution of the output.

Keywords: Tunnel; Face stability; Shield tunneling; Probabilistic methods; Reliability; Failure probability.

Introduction

The face stability analysis of a circular tunnel driven by a pressur-
ized shield is of considerable interest. It requires the determina-
tion of a so-called “critical collapse pressure” of the tunnel face
(denoted σc); that is, the smallest applied pressure necessary to
prevent soil collapse. This issue has been extensively studied by
several writers in the case of purely cohesive soils (Broms and
Bennermark 1967; Davis et al. 1980; Ellstein 1986; Augarde
et al. 2003; Klar et al. 2007; among others) and in the case of fric-
tional soils with or without cohesion (Leca and Dormieux 1990;
Chambon and Corté 1994; Eisenstein and Ezzeldine 1994;
Anagnostou and Kovari 1996; Mollon et al. 2009a, b, 2010; among
others). All studies cited except those by Mollon et al. (2009a, b)
were deterministic. A probabilistic approach would be an improve-
ment on the traditional deterministic methods because it would
account for the inherent uncertainties of the input parameters in
a rational way. In this paper, the uncertain parameters are modeled
as random variables.

The most robust probabilistic approach is the Monte Carlo-
(MC-) simulation method. This method requires a large number
of calls of the deterministic model, especially for small values
of the failure probability (e.g., approximately 1,000,000 samples
for a failure probability of 10�5). Although deterministic numerical
methods such as those derived from the FEM or the finite-
difference method (FDM) are appealing for determining the critical
collapse pressure because they do not require an assumption about
the shape of the collapse mechanism, these methods are difficult to
use in a probabilistic framework, particularly when using the
MC-simulation method. They require a long time to compute. This
issue is of great concern when dealing with three-dimensional (3D)
simulations. To overcome this shortcoming, the collocation-based
stochastic response surface method (CSRSM) may be used.
CSRSM replaces the complex numerical model with a metamo-
del—an analytical function of the input parameters—and performs
the Monte Carlo probabilistic analysis on this metamodel. This ana-
lytical function is called polynomial chaos expansion (PCE). For
this paper, a deterministic, not time-consuming, analytical model
presented extensively in Mollon et al. (2009a) was used to validate
CSRSM. This was done (1) by comparing the Monte Carlo prob-
abilistic results obtained by using the original analytical model with
the ones obtained by using the metamodel; and (2) by comparing
the response surfaces given by the original analytical model and the
metamodel. This validation allowed the use of CSRSM with con-
fidence in complex finite-element or finite-difference models for
which the model analytical equation was not available. After this
validation, a global sensitivity analysis was performed to determine
the variables that had a significant effect on the variability of the
system response. Also, a parametric study was performed to evalu-
ate the effect of the statistical parameters of the uncertain variables
[i.e., coefficient of variation (COV), correlation, and type of
probability distribution] on both (1) the distribution of the critical
collapse pressure; and (2) the failure probabilities corresponding to
different values of the tunnel applied pressure.
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CSRSM

CSRSM is a general and powerful method (Isukapalli et al. 1998;
Isukapalli 1999; Berveiller et al. 2006; Sudret et al. 2006; Sudret
2008; Phoon and Huang 2007; Huang et al. 2009) that determines a
single value for the failure probability of a system for a given value
of the applied load, as is the case in classical response surface meth-
odology (Mollon et al. 2009a, b; Youssef Abdel Massih and Soubra
2008; Youssef Abdel Massih et al. 2008). It also determines the full
probability distribution function (PDF) of the system response
(ultimate load) by accounting for the uncertainties of the input
of uncertain parameters by their probability distributions. The
PDF provides information on the mean, variance, and other statis-
tical moments (e.g., skewness and kurtosis) of the system response.
It also computes the failure probabilities for different values of the
applied load (i.e., at the distribution tail).

CSRSM determines the propagation of uncertainties from the
input data to the system output (i.e., the system response) for a
given mechanical model. In this method, the deterministic model
is considered a black box. It is not necessary to modify the existing
deterministic model, which may be derived from analytical equa-
tions or numerical simulations by using, for example, FEM or
FDM. Instead, determine the response of the mechanical model
at a given number of collocation points (i.e., for different values
of the input parameters). The primary assumption in CSRSM is
that the output is approximated in the standard space of random
variables by a PCE, whose unknown coefficients are determined
either by a regression approach or by a projection method. In this
paper, a regression approach was used. The determination of the
probability distribution of the system response may be summarized
by the following:
• Choose the order of the polynomial chaos and determine the

pattern (i.e., number and positions) of the collocation points.
The available number of collocation points and their positions
in the standard space of random variables depend on the chosen
order of the chaos and the number of the random variables. The
choice of the optimal chaos order is discussed subsequently in
this paper;

• Transform the collocation points from the standard to the phy-
sical space of random variables;

• Compute the output (i.e., system response) corresponding to
each collocation point in the physical space by using the deter-
ministic mechanical model;

• Determine the values of the unknown coefficients of the PCE by
using a linear system of equations; and

• Compute the PDF of the approximated system response by per-
forming the Monte Carlo-simulation method on the PCE deter-
mined previously, and deduce the statistical moments of this
distribution.
Although CSRSM is primarily devoted to the assessment of the

probability distribution function of the system response, the deter-
mination of PCE in CSRSM has another great practical advantage:
it determines the failure probabilities at the distribution tail by using
the obtained PCE.

Probabilistic Analysis of Tunnel Face Stability

A Monte Carlo probabilistic analysis of the face stability of a
circular tunnel driven by a compressed-air pressurized shield is
discussed in this section for the purposes of determining (1) the
probability distribution of the tunnel face collapse pressure σc
(i.e., system response); and (2) the failure probabilities for the prac-
tical values of the applied pressure (i.e., at the distribution tail).
CSRSM is used for performing the Monte Carlo probabilistic

analysis. A quite simple analytical model derived from the kin-
ematical approach of limit analysis is used to determine the values
of the tunnel face collapse pressure at different collocation points.
In this paper, only two input variables were considered as random:
the soil friction angle φ and the soil cohesion c. These two variables
were characterized by their respective probability distribution func-
tion: a normal or beta distribution was assumed for φ and a normal
or lognormal distribution was assumed for c. Their respective
means and standard deviations values are denoted μφ, μc and
σφ, σc, respectively. In the event of correlated random variables,
their correlation coefficient is denoted ρφc. In subsequent sections,
the deterministic model is first presented. It is followed by a brief
description of CSRSM as applied to the present problem of tunnel
face collapse pressure involving two random variables.

Deterministic Model

The problem of a computation of the tunnel face collapse pressure
σc can be idealized, as shown in Fig. 1, by considering a circular
rigid tunnel of diameter D driven under a depth of cover C. The
active collapse of the tunnel face is triggered by the application
of surcharge σs and soil unit weight γ, with the tunnel face pressure
σc providing resistance against failure. The critical collapse pres-
sure is a function of the strength parameters of the soil, namely the
cohesion c and the friction angle φ. The issue of the choice of the
correct values of the shear strength parameters for a soil is rather
complex. It has been stated (Chen 1975; Chen and Liu 1990) that
the failures involving large zones of a soil mass may not occur sud-
denly, but that an assumption of a progressive failure is probably
closer to reality. This is because of the possibility of the elastic de-
formation of the soil before global failure, which can lead some
zones of the soil to fail locally while the strain level of other zones
is not high enough for the soil to fail. This assumption implies that
the strain level is not constant over the discontinuity surfaces and it
should vary a lot on these surfaces depending on how the entire
failure develops. For materials that exhibit a postpeak strain soft-
ening behavior (e.g., dense sands and overconsolidated clays), the
perfectly plastic representation of its ultimate behavior is only
acceptable in an average sense. For this reason, the method for
idealizing the plastic behavior of such a material by using the peak
characteristic is incorrect and could lead to unconservative designs.
The average mobilized stress level over the discontinuity surfaces at
the instant of collapse therefore, should be somewhere among the

Fig. 1. Cross-section of the proposed multiblock failure mechanism for
the face stability analysis
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peak stress located on areas that fail the last, triggering the global
failure, and the residual stress located at the zones that failed earlier,
having a large strain level at the moment of global failure. The
choice of the correct values of φ and c in any large-scale stability
analysis is quite complex and left to the judgment of expert geo-
technical engineers.

Several theoretical models have been presented in literature for
the computation of the tunnel face collapse pressure. Mollon et al.
(2009a) have considered a three-dimensional multiblock failure
mechanism in the framework of the kinematical approach in limit
analysis. Their mechanism constitutes an improvement of the two-
block mechanism by Leca and Dormieux (1990) because it allows
the three-dimensional slip surface to develop more freely because
of its great degree of freedom. This mechanism will be used in this
paper for the probabilistic analysis. A brief description of this
failure mechanism is given subsequently. For more details, refer
to Mollon et al. (2009a).

The multiblock failure mechanism is composed of several
truncated rigid cones with circular cross sections and with opening
angles equal to 2φ. A mechanism with only five blocks is consid-
ered in this paper, as shown in Fig. 1, because the increase in the
number of blocks does not significantly improve the accuracy of
the solution. The upper rigid cone will or will not intersect the
ground surface depending on φ and C=D values. For simplicity,
only the case of a nonoutcropping mechanism is considered in this
paper. This corresponds to C=D > 2 and φ > 10°. The usual values
of φ and C=D belong to this category of nonoutcropping mecha-
nisms. The multiblock mechanism is a translational kinematically
admissible failure mechanism. The different truncated conical
blocks move as rigid bodies. These truncated rigid cones translate
with velocities of different directions, which are collinear with the
cones axes and make an angle φ with the conical discontinuity
surfaces to respect the normality condition required by the limit
analysis theory. This mechanism is completely defined by five an-
gular parameters: α, β1, β2, β3, and β4. By equating the total rate of
energy dissipation to the total rate of external work, it is possible to
compute the collapse pressure σc. Because the face pressure is
resisting collapse, it should be considered a negative load. The op-
timal solution that the mechanism can provide in the framework of
the kinematical approach is obtained by the minimization of (�σc)

to the five angular parameters of the failure mechanism. This is
equivalent to a maximization of σc.

A comparison of the deterministic results provided by the pro-
posed mechanism and the numerical model used in Mollon et al.
(2009b) was proposed in Mollon et al. (2009a) and showed a sat-
isfying agreement in the trends. More precisely, the present mecha-
nism underestimates the critical collapse pressure by 10–20% with
respect to the numerical model. The proposed mechanism is not the
one leading to the most critical collapse pressure in the framework
of the kinematical approach, as was demonstrated in Mollon et al.
(2010). Nevertheless, it was chosen for this study because its small
computational cost makes possible the validation of CSRSM. This
is done by comparison of a great number of Monte Carlo-simula-
tions with the original analytical model. CSRSM is not expected to
be used in the future with this model but with much more complex
and time-consuming numerical models. The question of whether
this model is very accurate or not for the determination of the
collapse pressure is of little interest in this paper.

PCE and Collocation Points

The two random variables adopted in this analysis (i.e., φ and c)
have to be represented in the PCE by two standard variables: ξ1 and
ξ2, respectively. For a prescribed PCE order, the available colloca-
tion points can be easily determined in the standard space of ran-
dom variables. Each standard variable (ξ1 or ξ2, in this case) can
take the values of the roots of the univariate Hermite polynomial of
order nþ 1 where n is the order of the polynomial chaos. Thus, the
available collocation points are those that result from all possible
combinations of the roots for each standard random variable. The
univariate Hermite polynomials are given in Appendix I. Table 1
provides the roots, the general shape of the PCE that will approxi-
mate the response of the model (i.e., σc in this paper), the number p
of unknown coefficients, and the numberM of available collocation
points, for the case of two random variables and for different values
of the order n of the polynomial chaos (n ¼ 2, 3, 4, 5). For a PCE of
order n, and for nv random variables, the number p of unknown
PCE coefficients and the number M of available collocation points
are given by (Isukapalli 1999)

p ¼ ðnþ nvÞ!
n!nv!

ð1Þ

M ¼ ðnþ 1Þnv þ
�
0 if one of the roots of the ðnþ 1Þth univariate Hermite polynomial is 0
1 otherwise

ð2Þ

As shown in Eq. (2), Isukapalli (1999) proposed to increase the
number of collocation points by one to include the origin of the
standard space in the event that the univariate Hermite polynomial
of order nþ 1 does not include a root equal to zero. This contin-
gency is necessary because the point is located in the region of
maximum probability (Phoon and Huang 2007). The Γ terms in
Table 1 are multidimensional Hermite polynomials. Their expres-
sions are given in Appendix I. In Table 1, the number of available
collocation points is greater than the number of unknown coeffi-
cients for all the orders. It is desirable, if possible, to compute
the value of the system response at a number of collocation points
equal to approximately twice the number of unknown coefficients
(Isukapalli 1999). A better approximation of the response is

obtained when using a regression approach. The choice of the dif-
ferent collocation points among those available should respect sym-
metry with respect to the origin of the standard space, and the
chosen collocation points should be located as close as possible
to the origin of the standard space (Isukapalli 1999). In this paper,
in cases for which only two random variables were used, the total
numberM of the available collocation points was considered in the
analysis because 2p > M whatever is the value of the chaos order.

Transformation of Collocation Points from Standard to
Physical Space

For each chosen point (i.e., ξ1;m; ξ2;m) for which m ¼ 1;…; 2p,
determine the corresponding point (i.e., φm; cm) to be introduced

3



in the deterministic model. If a correlation exists between the ran-
dom variables cm and φm, correlate the standard variables by multi-
plying the vector of standard uncorrelated variables by matrix H
which is the Cholesky transform of the correlation matrix Σ. In
the case of two random variables, we have

ξ1C;m
ξ2C;m

� �
¼ H ·

ξ1;m
ξ2;m

� �
ð3Þ

where ξ1C;m; ξ2C;m = standard correlated collocation point corre-
sponding to ξ1;m; ξ2;m. The standard correlated variables must be
transformed into the physical correlated variables in conformity
with the marginal distribution of each variable by using the
equation X ¼ F�1½ΦðξÞ� where X ¼ physical random variable;
ξ ¼ standard normal variable; and Fð·Þ, Φð·Þ ¼ corresponding
CDFs. In this case

�
φm ¼ F�1

φ ½Φðξ1C;mÞ�
cm ¼ F�1

c ½Φðξ2C;mÞ� ð4Þ

To conclude, for the chosen collocation points in the standard
space, it is possible to find the corresponding points in the physical
space and to call the deterministic model for each of these points to
determine the corresponding system responses. Fig. 2 shows the

effect of correlation or nonnormality of random variables on the
position of the available collocation points in the physical space.
For the reference case of normal uncorrelated variables, the non-
normality cancels the symmetry with respect to the mean value,
and the correlation creates a distortion of the entire pattern of
the collocation points.In the standard space, the position of the col-
locations points is unique regardless of the assumptions about cor-
relation or nonnormality.

Computation of PCE Coefficients

Because the multidimensional Hermite polynomials Γ form an
orthogonal basis, the p unknown coefficients of the polynomial
chaos could be determined by using only p calls of the deterministic
model and by solving a simple linear system of dimension p. In
practice, this method quite unstable, especially when using a high
order PCE (Isukapalli 1999). As previously mentioned, a numberm
of simulation results or collocation points that is not too far from
2p, (i.e., m ≅ 2p) was suggested by Isukapalli (1999). Write the
matrix N of dimensions (m × p) in which each column is relative
to a given coefficient and each line is relative to a call of the deter-
ministic model. As an illustration, the N matrix for a second order
PCE and two random variables is as follows (the matrix corre-
sponding to other PCE orders is straightforward):

N ¼

Γ0;0 Γ1;0ðξ1;1Þ Γ0;1ðξ2;1Þ Γ2;0ðξ1;1Þ Γ1;1ðξ1;1; ξ2;1Þ Γ0;2ðξ2;1Þ
Γ0;0 Γ1;0ðξ1;2Þ Γ0;1ðξ2;2Þ Γ2;0ðξ1;2Þ Γ1;1ðξ1;2; ξ2;2Þ Γ0;2ðξ2;2Þ
: : : : : :
: : : : : :
: : : : : :

Γ0;0 Γ1;0ðξ1;mÞ Γ0;1ðξ2;mÞ Γ2;0ðξ1;mÞ Γ1;1ðξ1;m; ξ2;mÞ Γ0;2ðξ2;mÞ

2
6666664

3
7777775

ð5Þ

If a is the column vector of the coefficients ai (p terms), and f is
the column vector of the model responses (i.e., m values of the criti-
cal collapse pressure), the coefficients of the PCE can be obtained
by solving the following linear system:

Nt · N · a ¼ Nt · f ð6Þ
For a simpler use of some mathematical formulas presented

subsequently in this paper, the multivariate Hermite polynomials
Γi;j are often called ψk where k is a single index corresponding

Table 1. Two-Variable PCEs Used for Different Values of the PCE Order

n
Roots of univariate Hermite
polynomials of order nþ 1 Expression of PCEs for different orders p M

2 f0;� ffiffiffi
3

p g U2 ¼ a0;0 · Γ0;0 þ a1;0 · Γ1;0ðξ1Þ þ a0;1 · Γ0;1ðξ2Þ þ a2;0 · Γ2;0ðξ1Þ
þ a1;1 · Γ1;1ðξ1; ξ2Þ þ a0;2 · Γ0;2ðξ2Þ

6 9

3 f�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� ffiffiffi

6
pp

g U3 ¼ a0;0 · Γ0;0 þ a1;0 · Γ1;0ðξ1Þ þ a0;1 · Γ0;1ðξ2Þ þ a2;0 · Γ2;0ðξ1Þ
þ a1;1 · Γ1;1ðξ1; ξ2Þ þ a0;2 · Γ0;2ðξ2Þ þ a3;0 · Γ3;0ðξ1Þ
þ a2;1 · Γ2;1ðξ1; ξ2Þ þ a1;2 · Γ1;2ðξ1; ξ2Þ þ a0;3 · Γ0;3ðξ2Þ

10 16þ 1

4 f0;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� ffiffiffiffiffi

10
pp

g U4 ¼ a0;0 · Γ0;0 þ a1;0 · Γ1;0ðξ1Þ þ a0;1 · Γ0;1ðξ2Þ þ a2;0 · Γ2;0ðξ1Þ
þ a1;1 · Γ1;1ðξ1; ξ2Þ þ a0;2 · Γ0;2ðξ2Þ þ a3;0 · Γ3;0ðξ1Þ
þ a2;1 · Γ2;1ðξ1; ξ2Þ þ a1;2 · Γ1;2ðξ1; ξ2Þ þ a0;3 · Γ0;3ðξ2Þ
þ a4;0 · Γ4;0ðξ1Þ þ a3;1 · Γ3;1ðξ1; ξ2Þ þ a2;2 · Γ2;2ðξ1; ξ2Þ
þ a1;3 · Γ1;3ðξ1; ξ2Þ þ a0;4 · Γ0;4ðξ2Þ

15 25

5 f�3:324257;�1:889176;�0:616707g U5 ¼ a0;0 · Γ0;0 þ a1;0 · Γ1;0ðξ1Þ þ a0;1 · Γ0;1ðξ2Þ þ a2;0 · Γ2;0ðξ1Þ
þ a1;1 · Γ1;1ðξ1; ξ2Þ þ a0;2 · Γ0;2ðξ2Þ þ a3;0 · Γ3;0ðξ1Þ
þ a2;1 · Γ2;1ðξ1; ξ2Þ þ a1;2 · Γ1;2ðξ1; ξ2Þ þ a0;3 · Γ0;3ðξ2Þ
þ a4;0 · Γ4;0ðξ1Þ þ a3;1 · Γ3;1ðξ1; ξ2Þ þ a2;2 · Γ2;2ðξ1; ξ2Þ
þ a1;3 · Γ1;3ðξ1; ξ2Þ þ a0;4 · Γ0;4ðξ2Þ þ a5;0 · Γ5;0ðξ1Þ
þ a4;1 · Γ4;1ðξ1; ξ2Þ þ a3;2 · Γ3;2ðξ1; ξ2Þ þ a2;3 · Γ2;3ðξ1; ξ2Þ
þ a1;4 · Γ1;4ðξ1; ξ2Þ þ a0;5 · Γ0;5ðξ2Þ

21 36þ 1

Note: n ¼ order of the PCE, p ¼ number of unknown PCE coefficients, and M ¼ number of available collocation points.
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to one vector in the PCE basis (see Appendix I for more
details).

Computation of Output Characteristics

Once the PCE coefficients have been determined, the Monte Carlo-
simulation method can be used to plot the histogram of the system
response and the corresponding PDF. Either generate a large
number [e.g., 106) of samples (ξ1; ξ2)] for the histogram to be regu-
lar and directly transformed into a PDF, or use a reduced number
(e.g., 100,000) of samples and the kernel smoothing technique to
directly plot the PDF. The kernel smoothing technique was used
for this paper. It states that an estimator of the PDF at a point x is
given by

f ðx; hÞ ¼ 1
Nsample · h

XNsample

i¼1

K

�
x� Xi

h

�
ð7Þ

where Xi = system response for sample i (i.e., the approximated
response given by the PCE for the ith sample); h = bandwidth;
and K = function called kernel. In this study, a Gaussian kernel
function was used. The Monte Carlo-simulation method employed
in this paper is not a highly time-consuming method because it does
not make use of the real deterministic model. Only its approxima-
tion by its PCE is used. From the Monte Carlo-simulation tech-
nique, it is also possible to obtain estimators of the first four
statistical moments of the response (i.e., mean �μ, variance �σ2,
skewness �δs, and kurtosis �κs) by using Matlab or any other com-
mercial software application. The resulting statistical moments are
only estimators, and it would be better to compute them analyti-
cally. This is possible when using CSRSM because formulas exist
that provide the statistical moments analytically from the PCE
coefficients as follows (Berveiller et al. 2006):

μ ¼ a0 ð8Þ

Fig. 2. Position of the collocation points in the standard space and their corresponding positions in the physical space depending on normality and
correlation of the variables for several PCE orders

5



σ2 ¼
Xp�1

i¼1

Eðψ2
i Þ · a2i ð9Þ

δs ¼
1
σ3
s

Xp�1

i¼1

Xp�1

j¼1

Xp�1

k¼1

Eðψi · ψj · ψkÞ · ai · aj · ak ð10Þ

κs ¼
1
σ4
s

Xp�1

i¼1

Xp�1

j¼1

Xp�1

k¼1

Xp�1

l¼1

Eðψi · ψj · ψk · ψlÞ · ai · aj · ak · al ð11Þ

In these equations, the method of computation of Eðψ2
i Þ,

Eðψi:ψj:ψkÞ, and Eðψi:ψj:ψk:ψlÞ is given in Appendix II,
Eqs. (8)–(11) provide very fast results for the moments if the num-
ber p of the unknown coefficients remains small (i.e., for a small
PCE order and for a small number of variables). On the contrary,
the analytical computation of the skewness and of the kurtosis
[Eqs. (10) and (11)] can become very time-consuming if the num-
ber p of coefficients is important because of the number of terms
involved in the summations [e.g., 160,000 terms, i.e., ðp� 1Þ4 ¼
ð21� 1Þ4 for the computation of κs in the case of two random var-
iables and a polynomial chaos of the fifth order]. In such cases, it is
more efficient to perform a Monte Carlo-sampling with a suffi-
ciently high number of samples for the estimators to be accurate
(e.g., 1,000,000 samples). In this paper, the statistical moments
were calculated analytically.

Finally, a global sensitivity analysis of the system response can
be performed analytically from PCE coefficients by computing
Sobol indexes of each random variable and group of random
variables (Sudret 2008). The Sobol index of a variable or a group
of variables provides the contribution of the uncertainty for this
variable or group of variables to the total variance of the response.
Subsequently, the sum of all the Sobol indexes of a model is equal
to 1. For the computation of the Sobol indexes, reorder the terms of
the PCE, and gather them into categories involving a unique ran-
dom variable such as ξ1 or ξ2 or a group of random variables such
as ξ1, ξ2, and so on. For example, for the fourth order PCE with two
random variables (cf. Table 1), by reordering the terms following
the three categories (ξ1, ξ2, and ξ1, ξ2), it is possible to obtain

U4 ¼ a0;0 · Γ0;0 þ ½a1;0 · Γ1;0ðξ1Þ þ a2;0 · Γ2;0ðξ1Þ
þ a3;0 · Γ3;0ðξ1Þ þ a4;0 · Γ4;0ðξ1Þ� þ ½a0;1 · Γ0;1ðξ2Þ
þ a0;2 · Γ0;2ðξ2Þ þ a0;3 · Γ0;3ðξ2Þ þ a0;4 · Γ0;4ðξ2Þ�
þ ½a1;1 · Γ1;1ðξ1; ξ2Þ þ a1;2 · Γ1;2ðξ1; ξ2Þ
þ a2;1 · Γ2;1ðξ1; ξ2Þ þ a3;1 · Γ3;1ðξ1; ξ2Þ
þ a1;3 · Γ1;3ðξ1; ξ2Þ þ a2;2 · Γ2;2ðξ1; ξ2Þ� ð12Þ

The Sobol indexes can then be computed for each variable or
group of variables as follows:

SUα ¼
P

a2α · Eðψ2
αÞ

σ2 ð13Þ

where

σ2 ¼
X

a2 · Eðψ2Þ ð14Þ

In Eqs. (13) and (14), the index α indicates that the sum is made
only for the terms including either (ξ1), (ξ2), or (ξ1, ξ2); that is, for
one of the three brackets that appear in Eq. (12). The computation

of Eðψ2Þ is detailed in Appendix II. It can be proved easily that the
sum of the Sobol indexes of all the variables and groups of
variables is equal to 1. Methods for computing Sobol indexes from
a Monte Carlo-sampling exist (Sudret 2008), but the proposed
analytical method provides exact values for an almost negligible
computation time, whatever the PCE order and the number of var-
iables are. This method is used in this paper for the study of the
effect of the uncertainties of the different random variables.

Validation of CSRSM

This section aims at validating CSRSM by comparing the Monte
Carlo probabilistic results provided by PCE with those obtained
with the original analytical model. The results given by the analyti-
cal model will be called analytical results because they make use of
the analytical equations of the mechanism and consider the exact
analytical limit state surfaces. Normal uncorrelated variables
are considered in this section. The illustrative values of the statis-
tical moments of the random variables considered in this section
will be referred to in this paper as the reference values. They
are given as follows: μφ ¼ 17° and COVðφÞ ¼ 10%; μc ¼ 7 kPa
and COVðcÞ ¼ 20%. The deterministic parameters used are γ ¼
18 kN=m3, D ¼ 10 m and C=D > 2. All these values are typical
of a stiff clay and a nonoutcropping mechanism.

The results of the Monte Carlo-simulations for both approaches
(i.e., the metamodel and the original analytical model) were ob-
tained by using 1,000,000 samples, although a significantly smaller
number of samples could be suitable to plot the PDF because of the
use of the kernel smoothing technique. These results are believed to
be more accurate than those that would be obtained by the first-
order reliability method (FORM) because the curved and not the
linearized limit state surfaces are used. In the following section,
the optimal PCE order is determined first. It is followed by a com-
parison of the metamodel and the original analytical model for both
failure probability and response surface. CSRSM validation is
made in the following subsections for the reference case of a stiff
clay corresponding to μφ ¼ 17° and μc=ðγ:DÞ ¼ 0:039 and the
critical collapse pressure is presented in the form of a dimensionless
parameter σc=ðγ:DÞ.

Optimal PCE Order in CSRSM

The PCEs used in this section are successively of orders 2, 3, 4, and
5. The obtained PCE coefficients are given in Table 2. The conver-
gence property of the PCE order is satisfied because the value of a
PCE coefficient corresponding to a given ψi tends to a constant
value when the PCE order increases (see for example the lines cor-
responding to ψ0;…;ψ5 in Table 2. Each new order nþ 1 brings
new terms in the PCE with respect to the previous order n, and the
coefficients corresponding to the new terms decrease when n in-
creases. For example, from Table 2, some of the coefficients of
the new terms brought by order 4 are much larger in absolute value
than the ones brought by order 5, which all are smaller than 10�3 in
absolute value. Therefore, when the PCE order increases from 4 to
5, the coefficients of the common terms remain stable because of
the convergence property, and the coefficients of the new terms are
very small. This indicates that the benefit of order 5 with respect to
order 4 is small, although the number of collocation points and the
computation time is 50% larger for order 5 than that of order 4.

Table 3 presents the first four statistical moments of the critical
collapse pressure computed analytically for different PCE orders.
Almost no differences exist between the PCEs of orders 4 and 5 for
the four moments, indicating that order 4 is sufficient to accurately
compute them. Concerning the Sobol indexes, it appears that their
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values are correctly evaluated for any order of the PCE. A PCE
of order 4 is recommended and it will be used for all subsequent
computations.

Comparison of Failure Probability between Metamodel
and Original Model

Fig. 3(a) shows the PDF of the critical collapse pressure expressed
by the nondimensional parameter σc=γD) as provided by the
analytical model and by the PCEs of orders 2, 3, 4, and 5. The
failure probability corresponding to different values of the applied
pressure σt=γD is then obtained from the simple formula
pf ¼ 1� CDF, where CDF is the cumulative density function ob-
tained by the integration of the PDF. The failure probability is
shown in Fig. 3(b) for the practical high values of the tunnel pres-
sure, and a log scale is used to emphasize the maximal difference
between the results of the different PCEs and the solution given by
the analytical model at the distribution tail. The difference between
the failure probabilities provided by PCEs of orders 4 and 5 is very
small (i.e., less than 4% for a pressure σt=γD of 0.4), and the
corresponding increase in the computation time is close to 50%,
according to the number of calls of the model. Thus, order 4 will
be used in all subsequent computations. The original analytical
model requires approximately 28 h with a Core2 Quad CPU
2.40 GHz PC for completing the whole sampling process. This time

is significant compared to the time required for using PCE (i.e., a
few seconds) because each computation of the critical pressure by
the original model requires a numerical optimization that takes
few seconds. This clearly shows the interest of the metamodel.
The failure probabilities obtained by Mollon et al. (2009a) by using
FORM with the same deterministic model are also shown in
Fig. 3(b). The results obtained by CSRSM with a fourth order
PCE are close to the ones obtained by FORM. This may be
explained by the linearity of the limit state surface in the neighbor-
hood of the design points.

Table 4 presents a comparison of the failure probabilities ob-
tained by the present fourth order PCE and the ones obtained

Table 2. PCE Coefficients for Several Orders

Term of the PCE

PCE coefficients

Order 2 Order 3 Order 4 Order 5

Γ0;0 ψ0 28,9212 28,9260 28,9220 28,9220

Γ1;0ðξ1Þ ψ1 �5; 0035 �4; 8585 �4; 8496 �4; 8496

Γ0;1ðξ2Þ ψ2 �4; 6766 �4; 6277 �4; 6253 �4; 6266

Γ2;0ðξ1Þ ψ3 0,6080 0,6335 0,6350 0,6353

Γ1;1ðξ1; ξ2Þ ψ4 0,5005 0,5111 0,4901 0,4896

Γ0;2ðξ2Þ ψ5 0,0002 �0; 0006 0,0000 0,0000

Γ3;0ðξ1Þ ψ6 �0; 0754 �0; 0792 �0; 0796

Γ2;1ðξ1; ξ2Þ ψ7 �0; 0502 �0; 0518 �0; 0502

Γ1;2ðξ1; ξ2Þ ψ8 0,0000 0,0000 0,0000

Γ0;3ðξ2Þ ψ9 �0; 0002 �0; 0002 �0; 0004

Γ4;0ðξ1Þ ψ10 0,0089 0,0093

Γ3;1ðξ1; ξ2Þ ψ11 0,0053 0,0055

Γ2;2ðξ1; ξ2Þ ψ12 0,0000 0,0000

Γ1;3ðξ1; ξ2Þ ψ13 0,0000 0,0000

Γ0;4ðξ2Þ ψ14 0,0000 0,0000

Γ5;0ðξ1Þ ψ15 �0; 0009

Γ4;1ðξ1; ξ2Þ ψ16 �0; 0006

Γ3;2ðξ1; ξ2Þ ψ17 0,0000

Γ2;3ðξ1; ξ2Þ ψ18 0,0000

Γ1;4ðξ1; ξ2Þ ψ19 0,0000

Γ0;5ðξ2Þ ψ20 0,0001

Table 3. Statistical Moments and Sobol Indexes by PCE for Several Orders

Order

Statistical moments Sobol indexes

Mean Variance Skewness Kurtosis Friction angle (ξ1) Cohesion (ξ2) Friction angle and cohesion (ξ1, ξ2)

2 28.92 47.90 0.496 0.409 0.538 0.457 0.005

3 28.93 46.12 0.555 0.703 0.530 0.464 0.006

4 28.92 46.00 0.552 0.744 0.530 0.465 0.005

5 28.92 46.02 0.552 0.749 0.530 0.465 0.005

Fig. 3. Influence of the PCE order on the probabilistic results from
CSRSM and comparison with the analytical results: (a) PDF of the cri-
tical collapse pressure; (b) failure probability for high values of the
critical collapse pressure (distribution tail)
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by Mollon et al. (2009b) by using a response surface methodology
(RSM) derived from a finite-difference numerical model. Signifi-
cant differences appear between the results obtained by RSM and
those obtained by the approach presented in this paper, although the
trends are correct. The difference among the deterministic values of
σc given by both models for the mean values of the parameters (i.e.,
φ ¼ 17° and c ¼ 7 kPa) is not significant. The analytical model
provides σc ¼ 28:3 kPa and the numerical model provides
σc ¼ 34:5 kPa, which leads to a relative difference of 18%. The
values of the failure probabilities should be used with care because
they are very dependent on the mechanical model error.

Comparison of Response Surface between Metamodel
and Original Model

Fig. 4 presents the response surfaces provided by the analytical
model, and by its PCEs for the orders 2, 3, 4, and 5 for the mean

values of the soil shear strength parameters. These response surfa-
ces are represented by lines of equal value of the critical collapse
pressure σc in the physical (φ, c) space. The response surfaces
given by PCEs of orders 2 and 3 seem to be quite different from
the analytical one, except in the central zone (i.e., in the zone where
the collocation points of these PCE are located). The orders 4 and 5
are much better, especially in the remote zones of the physical
space (i.e., corresponding to very high or low values of c and/or
φ). This is because the area covered by the collocation points of
these orders is more extended. This fact explains why orders 4
and 5 provide a better approximation of the analytical model at
the distribution tails.

Sensitivity Analysis

This section focuses on a sensitivity analysis showing the effect of
the probabilistic characteristics of the two random variables (i.e.,
COV, correlation, type of probability distribution) on both (1)
the distribution of the critical collapse pressure; and (2) the failure
probabilities corresponding to different practical values of the tun-
nel applied pressure (i.e., at the distribution tail). The reference case
extensively studied in the previous section is also considered. This
study will be performed with the help of CSRSM by using a
fourth order PCE as a metamodel. A Monte Carlo-simulation with

Table 4. Comparison of the Failure Probabilities Obtained for PCE from
an Analytical Model and for RSM from a Numerical Model

σt (kPa)
Pf for PCE order 4 from an

analytical model
Pf for RSM from a
numerical model

50 5:52 × 10�3 3:47 × 10�2

60 4:24 × 10�4 3:11 × 10�3

70 3:49 × 10�5 2:31 × 10�4

Fig. 4. Response surfaces of the critical collapse pressure (lines of equal value of σc in kPa) in the (φ, c) plane as given by the analytical mechanism
and the PCE for several orders
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Fig. 5. Influence of the coefficients of variation of the random variables on the PDF of the critical collapse pressure: (a) influence of COVðφÞ;
(b) influence of COVðcÞ

Fig. 6. Influence of the coefficients of variation of φ and c on the first four statistical moments of the critical collapse pressure: (a) influence of
COVðφÞ; (b) Influence of COVðcÞ
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1,000,000 samples was used in the subsequent sections for the
probabilistic analysis.

Effect of Coefficients of Variation of Random Variables

The influence of the coefficients of variation of φ and c was studied
in Fig. 5. In Figs. 5(a) and 5(c), an increase in the COVof one of the
random variables leads to a more widespread PDF curve, whereas a
small dispersion of a random variable increases the peak of the
PDF. A change in COVðφÞ modifies the value of the collapse pres-
sure corresponding to the maximal value of the PDF (i.e., the
mode), which is not true for COVðcÞ. Figs. 5(b) and 5(d) show
the effect of the coefficients of variation of the two variables on
the probabilities of failure for high values of the parameter
σt=ðγ:DÞ. It appears that a given variation (percent increase with
respect to the reference value) in COVðφÞ has a much larger effect
on the failure probability than a similar variation in COVðcÞ.

By using PCE coefficients, the values of the first four statistical
moments of the response were computed analytically by using
Eqs. (8)–(11). The effect of COVðφÞ and COVðcÞ on the mean,
variance, skewness, and kurtosis of the distribution of the critical
collapse pressure is shown in Fig. 6. Fig. 6 shows a very similar
influence of the two COVs on the mean and variance of the critical
collapse pressure: almost no effect exists on the mean, particularly
for COVðcÞ; however, the variance of the response increases with
the increase of COV. This is consistent with the observation of the
PDFs shown in Fig. 5. Although the variance of the response in-
creases with the COVof each of the random variables, this variance
is less sensitive to COVðcÞ than to COVðφÞ. For the practical case
in which COVðφÞ ¼ 10% and COVðcÞ ¼ 20%, the two random
variables seem to have an equal weight on the dispersion of the
response because of the large variability of c compared to that
of φ. Fig. 6 also show the effect of COVðφÞ and COVðcÞ on
the skewness and kurtosis of the response. The coefficient of varia-
tion of the friction angle appears to have a strong effect on these
two statistical moments. For a small value of COVðφÞ, the skew-
ness and kurtosis of the response are almost null, which indicates
that the probability distribution of the response is not far from a
Gaussian one. These moments however, take high values when
COVðφÞ increases, which indicates that the shape of the probability
distribution of the output changes (i.e., the point of maximum
density of probability; the mode moves to smaller values). On
the contrary, COVðcÞ only has a small effect on the skewness
and kurtosis of the probability distribution of the output, which in-
dicates that the shape of this distribution will not change a lot when
increasing COVðcÞ, except for its variance, of course. These re-
marks are consistent with the observation of the PDFs provided
in Fig. 5, in which the shape of the distribution changes with
the increase of COVðφÞ and remains quite the same with the
increase of COVðcÞ.

Fig. 7 presents the effect of COVðφÞ and COVðcÞ on the Sobol
indexes computed analytically from the PCE coefficients by using
Eq. (13). Because the sum of all the Sobol indexes is always equal
to 1, a convenient method was adopted to represent them on a sin-
gle graph: the upper part in light gray represents the Sobol index of
c [called SUðcÞ], the lower part in dark gray represents the Sobol
index of φ [called SUðφÞ], and the middle part in white represents
the Sobol index of the group of variables (c, φ) [called SUðc;φÞ].
The latter is almost equal to zero and can be neglected in this study.
Therefore, SUðφÞ þ SUðcÞ≈ 1. For the practical values of COVs
[i.e., COVðφÞ ¼ 10% and COVðcÞ ¼ 20%], the Sobol indexes of
the two variables (Fig. 7) are not far from 50%. This indicates
that the two random variables seem to have an equal weight on
the response. This result conforms with that obtained from Fig. 6.
Fig. 7 show that the increase of the COV of one of the variables

logically induces an increase in the Sobol index of this variable
and subsequently, its weight in the variability of the response.
For example, in the case of a high COV of the friction angle
(i.e., COVðφÞ ¼ 15%), its Sobol index reaches 70% and the one
of c decreases to 30%.

Effect of Nonnormality of Random Variables

To account for the nonnormal distributions of random variables, the
cohesion and the angle of internal friction are assumed to follow a
lognormal and a beta distribution, respectively. The parameters of
these probability distributions are determined from the means and
standard deviations of c and φ, respectively. Two sets of the coef-
ficients of variation are studied in this paper. The standard COVs
correspond to the reference case [i.e., COVðφÞ ¼ 10% and
COVðcÞ ¼ 20%], and the high COVs correspond to these values
increased by 50% [i.e., COVðφÞ ¼ 15% and COVðcÞ ¼ 30%].
Fig. 8(a) compares the PDFs corresponding to normal and nonnor-
mal variables for the two sets of the coefficients of variation, and
Fig. 8(b) compares the corresponding failure probabilities for high
values of σt=ðγ:DÞ; that is, at the distribution tail. For the two sets of
COVs, nonnormality of the probability distributions of the input
variables seems to have a small effect on the general shape of

Fig. 7. Influence of the coefficients of variation of φ and c on the Sobol
indexes: (a) influence of COVðφÞ; (b) influence of COVðcÞ
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the distribution of the response and on the failure probabilities at
the distribution tail.

Effect of Correlation among Random Variables

It is generally believed that a negative correlation exists between
the friction angle and the cohesion (Cherubini 2000). However, fur-
ther experimental tests are needed to confirm this statement. The
influence of the correlation coefficient in the range �0:6 ≤ ρcφ ≤
0:6 was studied in this paper. Fig. 9(a) shows the PDFs of the criti-
cal collapse pressure for several values of ρcφ. It appears that the
correlation has a strong influence on the dispersion of the response.
A negative correlation leads to an accentuated peak of the PDF; a
positive correlation leads to a widespread distribution. On the other
hand, Fig. 9(b) shows the probabilities of failure at the distribution
tail for different values of the correlation coefficient. A positive cor-
relation between c and φ increases the failure probability. Fig. 10
presents the first four statistical moments of the response against
ρcφ as computed analytically from the fourth-order PCE coeffi-
cients. The coefficient of correlation has a small effect on the mean
value of the response, but it has a significant effect on its variability.
The variance of the critical collapse pressure is, for example, four
times larger for ρcφ ¼ 0:6 than that of ρcφ ¼ �0:6. On the other
hand, both the skewness and the kurtosis of the response slightly
increase with the correlation of the input variables.

Fig. 8. Influence of the nonnormality of φ and c on the PDF of the
critical collapse pressure for two different sets of COVs

Fig. 9. Influence of the correlation coefficient between φ and c on the
PDF of the critical collapse pressure

Fig. 10. Influence of the correlation coefficient between φ and c on the
first four statistical moments of the critical collapse pressure
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Conclusion

The CSRSM was applied in this paper to resolve a probabilistic
analysis of the face stability of a circular tunnel driven by a pres-
surized shield. The uncertain parameters considered in the analysis
were the soil shear strength properties; namely, the friction angle φ
and the cohesion c. An analytical kinematical limit analysis model
was used as a deterministic model. For a given set of the probabi-
listic parameters of the input variables, CSRSM consisted of replac-
ing the deterministic model by an analytical metamodel, defined by
a polynomial chaos expansion (PCE). The unknown coefficients of
this PCE were obtained by regression after the computation of the
response of the model at a given number of collocation points. It
was shown that
• A fourth-order PCE is sufficient for the CSRSM metamodel to

simulate the system response with an acceptable accuracy;
• The coefficients of variation of c and φ have a great effect on the

distribution of the critical collapse pressure. An increase in the
COVof one of the random variables leads to a more widespread
PDF, whereas a small dispersion of a random variable increases
the peak of this PDF. The COVof φ has a much greater effect on
the failure probabilities than the one of c;

• For the practical case in which COVðφÞ ¼ 10% and COVðcÞ ¼
20%, both φ and c have a similar probabilistic effect on the
variability of the critical collapse pressure, although the variance
of the response is less sensitive to a variation in the cohesion.
This observation was explained by the high variability of c com-
pared to that of φ;

• The assumption of nonnormal distributions for the random
variables, which is necessary to more accurately simulate these
variables, does not have a great effect on the distribution of the
critical collapse pressure and on the failure probability;

• The correlation between c and φ has a great effect on the varia-
bility of the response. A negative correlation strongly reduces
the probability of failure of the tunnel face, whereas a positive
correlation is conservative and could lead to noneconomical
designs. Therefore, the characterization of a possible correlation
between c and φ should be carefully investigated; and

• Although the deterministic model used in this study is not per-
fectly accurate, its use in the framework of CSRSM provides a
satisfactory estimate of the probabilities of failure in terms of the
trends, for a very small time cost. However, a precise determi-
nation of the failure probabilities cannot be achieved without the
use of a very accurate deterministic model, such as a more com-
plex analytical model or a numerical model.

Appendix I. Multivariate Hermite Polynomials

The univariate Hermite polynomials are defined by the following
recurrence formula:

He0ðξÞ ¼ 1; Henþ1ðξÞ ¼ ξ · HenðξÞ � n · Hen�1ðξÞ ð15Þ
Thus, the first univariate Hermite polynomials are

He1ðξÞ ¼ ξ ð16Þ

He2ðξÞ ¼ ξ2 � 1 ð17Þ

He3ðξÞ ¼ ξ3 � 3ξ ð18Þ

He4ðξÞ ¼ ξ4 � 6ξ2 þ 3 ð19Þ

He5ðξÞ ¼ ξ5 � 10ξ3 þ 15ξ ð20Þ
A multivariate Hermite polynomial is defined as the product of

several univariate Hermite polynomials of different variables. For n
variables, its expression is given by

Γi1;i2;…;inðξ1; ξ2;…; ξnÞ ¼ Hei1ðξ1Þ · Hei2ðξ2Þ ·… · HeinðξnÞ
ð21Þ

In this paper, only two variables were used, and the expression
of the bivariate Hermite polynomials used in Table 1 is

Γi;jðξ1; ξ2Þ ¼ Heiðξ1Þ · Hejðξ2Þ ð22Þ
For a simple use in mathematical formulas, the multivariate

Hermite polynomials are often renamed and sorted by using only
one numerical index, for example

Γi;jðξ1; ξ2Þ ¼ ψk ð23Þ
The p polynomials ψk of order ðiþ jÞ ≤ n form the basis of the

bivariate PCE of order n. An example of the numbering of these
polynomials is given in Table 2.

Appendix II. Computation of the Expectation of
Products of Bivariate Hermite Polynomials

An analysis of bivariate Hermite polynomials is included in this
appendix. A complete development of this computation for
Hermite polynomials of more than two variables can be found
in Sudret et al. (2006). Each polynomial ψi of the basis of the
PCE of two variables ξ1 and ξ2 can be entirely defined by two
indexes i1 and i2 (see Table 2) such that

ψi ¼ Γi1;i2ðξ1; ξ2Þ ¼ Hei1ðξ1Þ · Hei2ðξ2Þ ð24Þ
With this notation, it can be proved that

Eðψ2
i Þ ¼ i1!i2! ð25Þ

Eðψi · ψj · ψkÞ ¼ Di1;j1;k1 · Di2;j2;k2 ð26Þ

Eðψi · ψj · ψk · ψlÞ ¼ Di1;j1;k1;l1 · Di2;j2;k2;l2 ð27Þ
In these expressions, the D terms are obtained by

Ci;j;k ¼
8<
: ði!j!Þ=f½ðiþ j� kÞ=2�!½ðjþ k � iÞ=2�!½ðk þ i� jÞ=2�!g if

� ðiþ jþ kÞ even
kϵ½ji� jj; iþ j�

0 otherwise
ð28Þ
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Di;j;k ¼ Ci;j;k · k! ð29Þ

Di;j;k;l ¼
X
q≥0

Di;j;q · Ck;l;q ð30Þ

References

Anagnostou, G., and Kovari, K. (1996). “Face stability conditions with
earth-pressure-balanced shields.” Tunnelling Underground Space Tech-
nol., 2(11), 165–173.

Augarde, C. E., Lyamin, A. V., and Sloan, S. W. (2003). “Stability of an
undrained plane strain heading revisited.” Comput. Geotech., 30(5),
419–430.

Berveiller, M., Sudret, B., and Lemaire, M. (2006). “Stochastic finite
elements: A non intrusive approach by regression.” Revue Européenne
de Mécanique Numérique, 1–2–3(15), 81–92.

Broms, B. B., and Bennermark, H. (1967). “Stability of clay at vertical
openings.” J. Soil Mech. and Found. Div., 193(SM1), 71–94.

Chambon, P., and Corté, J. F. (1994). “Shallow tunnels in cohesionless soil:
Stability of tunnel face.” J. Geotech. Eng., 120(7), 1148–1165.

Chen, W. F., (1975). Limit analysis and soil plasticity, Elsevier Scientific,
London, 637.

Chen, W. F., and Liu, X. L. (1990). Limit analysis in soil mechanics,
Elsevier Science, Amsterdam, The Netherlands.

Cherubini, C. (2000). “Reliability evaluation of shallow foundation bearing
capacity on C’, φ0 soils.” Can. Geotech. J., 37(1), 264–269.

Davis, E. H., Gunn, M. J., Mair, R. J., and Seneviratne, H. N. (1980). “The
stability of shallow tunnels and underground openings in cohesive
material.” Géotechnique, 30(4), 397–416.

Eisenstein, A. R., and Ezzeldine, O. (1994). “The role of face pressure for
shields with positive ground control.” Tunneling and ground condi-
tions, Balkema, Rotterdam, The Netherlands, 557–571.

Ellstein, A. R. (1986). “Heading failure of lined tunnels in soft soils.”
Tunnels Tunnelling, 18, 51–54.

Huang, S. P., Liang, B., and Phoon, K. K. (2009). “Geotechnical probabi-
listic analysis by collocation-based stochastic response surface method:
An Excel add-in implementation.” Georisk, 3(2), 75–86.

Isukapalli, S. S. (1999). “An uncertainty analysis of transport-transforma-
tion models.” Ph.D. thesis, The State Univ. of New Jersey, New Bruns-
wick, NJ.

Isukapalli, S. S., Roy, A., and Georgopoulos, P. G. (1998). “Stochastic
response surface methods (SRSMs) for uncertainty propagation: Appli-
cation to environmental and biological systems.” Risk Anal., 18(3),
351–363.

Klar, A., Osman, A. S., and Bolton, M. (2007). “2D and 3D upper
bound solutions for tunnel excavation using ‘elastic’ flow fields.”
Int. J. Numer. Anal. Meth. Geomech., 31(12), 1367–1374.

Leca, E., and Dormieux, L. (1990). “Upper and lower bound solutions
for the face stability of shallow circular tunnels in frictional material.”
Géotechnique, 40(4), 581–606.

Mollon, G., Dias, D., and Soubra, A.-H. (2009a). “Probabilistic analysis
and design of circular tunnels against face stability.” Int. J. Geomech.,
9(6), 237–249.

Mollon, G., Dias, D., and Soubra, A.-H. (2009b). “Probabilistic analysis of
circular tunnels in homogeneous soils using response surface method-
ology.” J. Geotech. Geoenviron. Eng., 135(9), 1314–1325.

Mollon, G., Dias, D., and Soubra, A.-H. (2010). “Face stability analysis
of circular tunnels driven by a pressurized shield.” J. Geotech. Geoen-
viron. Eng., 1(136), 215–229.

Phoon, K. K., and Huang, S. P. (2007). “Geotechnical probabilistic analysis
using collocation-based stochastic response surface method.” Applica-
tions of statistics and probability in civil engineering, J. Kanda,
T. Takada, and H. Furada, eds., Taylor and Francis, London.

Sudret, B. (2008). “Global sensitivity analysis using polynomial chaos
expansion.” Reliab. Eng. Syst. Saf., 93(7), 964–979.

Sudret, B., Berveiller, M., and Lemaire, M. (2006). “A stochastic finite
element procedure for moment and reliability analysis.” Eur. J. Comput.
Mech., 7–8(15), 825–866.

Youssef Abdel Massih, D. S., and Soubra, A.-H. (2008). “Reliability-based
analysis of strip footings using response surface methodology.” Int. J.
Geomech., 8(2), 134–143.

Youssef Abdel Massih, D. S., Soubra, A.-H., and Low, B. K. (2008).
“Reliability-based analysis and design of strip footings against
bearing capacity failure.” J. Geotech. Geoenviron. Eng., 134(7),
917–928.

13




