
HAL Id: hal-01007066
https://hal.science/hal-01007066

Submitted on 8 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Modeling of a semi-real injection test in sand
Olivier Chupin, Nadia Saiyouri, Pierre-Yves Hicher

To cite this version:
Olivier Chupin, Nadia Saiyouri, Pierre-Yves Hicher. Modeling of a semi-real injection test in sand.
Computers and Geotechnics, 2009, 36 (6), pp.1039-1048. �10.1016/j.compgeo.2009.03.014�. �hal-
01007066�

https://hal.science/hal-01007066
https://hal.archives-ouvertes.fr


Modeling of a semi-real injection test in sand

O. Chupin, N. Saiyouri, P.-Y. Hicher
Research Institute in Civil and Mechanical Engineering (GeM), UMR CNRS 6183, Ecole Centrale de Nantes, BP 92101, Nantes cedex 3, France
Filtration
Porous media
Balance equations
Finite element method

transp
based

is paid
the propagation patterns associated to the injection of cement-
cular features that characterize field injections, the experiments
tte and a patented grout. Finally, the role of filtration during the
This article presents a model of flow and
lyze large-scale grouting tests. A program
model equations; a particular attention
these tests aims at providing insights on
based grouts in sand. To apprehend parti
are performed by using a tube-a-manche
tests is discussed.
Keywords:
Grouting

ort with filtration in porous media which is used to ana-
on the finite element method is developed to solve the

to inherent issues of transport problems. The analysis of
1. Introduction

This paper presents the modeling of a semi-real injection test in
sand. The technique of permeation grouting is used and the effects
of filtration on the grout transport are studied. Large scale or in-
situ experiments are well suited to examine grouting patterns
encountered in fieldworks. However, only few articles in the liter-
ature analyze this kind of test. Moreover, articles that deal with in-
situ injection tests [35,37] do not focus on the flow and transport
phenomena occurring during the grout propagation. On one hand,
Tamura and Goto [35] have presented tests in a fine sand layer as-
sumed homogeneous. Typical results concern the injection pres-
sure and the shape of the solidified bodies. Other comments, for
instance on the concentration in cement particles (or mechanical
properties), are provided but they rely on forensic observations.
On the other hand, Tarumi and Sekine [37] have described grouting
experiments in sandy soil using long gel time solution type chem-
icals. The influence of grouting speed on the grouting patterns ob-
served during a test is exposed as well as a method based on
pressure charts to control grouting. However, the aforementioned
works do not aim at studying filtration and neither conclusion on
the importance of this phenomenon during grouting nor simula-
tions of the experiments are discussed. Since cement-based grouts
have a particulate nature, the question of filtration during grouting
patently arises. Recent studies have focused on the role of filtration
during soil injections and a systematical description of fundamen-
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tal phenomena involved in grouting was first addressed in [6]. In
addition, large-scale injection tests in sand are presented in [7]
and [9]. Abundant and valuable information about injection pres-
sure, interstitial pressure, grout concentration or displacements
of the solid skeleton are provided for these tests which are simu-
lated with a model that includes filtration. Nevertheless, these
experiments are not utterly representative of in-situ injections
partly because of the injection device used to propagate grout into
the soil. In the continuity of existing works, a large-scale experi-
ment performed close to in-situ conditions is presented herein. A
sleeved grout pipe and a double packer are used to inject grout into
sand. A patented cement-based grout, similar to those manufac-
tured for fieldworks, is utilized. Successive injections are per-
formed from the bottom to the top of the sand specimen. An
acoustic method is employed to detect the grout front during the
tests and several pressure measurements are recorded. The vol-
umes of injected grout, the injection speeds and dimensions of a
solidified bulb are also reported. A model is developed to simulate
the tests; its ability to forecast site injections in homogeneous
media is evaluated. The analysis of these experiments endeavors
to give insights on the importance and the effects of filtration dur-
ing grouting.

Filtration has a cross-disciplinary interest which has also been
manifested in chemical and biological sciences (e.g. [12]). Different
kinds of filtration can be distinguished [1,31]; herein the deep bed
filtration is considered. It involves particles of small dimensions
that are able to propagate within the porous material; some of
them are just retained in the medium under mechanical or physi-
cochemical forces [23]. Two distinct mechanisms of filtration are
often envisaged. According to Sharma and Yortsos [34], the first



one corresponds to the trapping of particles by pore throats
whereas the second mechanism reflects the uniform deposit of
particles over pore bodies and pore throats causing a gradual
reduction of the pore radii. The present article does neither aim
to quantify the importance of each local mechanism of particle
capture nor to investigate the deposition modes at the microscopic
level. Apropos, Kim and Whittle [27,28] have presented a simula-
tion of pore-scale particle deposition and clogging. In the literature,
four categories of filtration models can be discerned. These are cat-
egorized in [33] as follows: the phenomenological models [23] or
continuum models, the trajectory analysis models (e.g. [32]), the
stochastic models (e.g. [36]), and the network models (e.g. [19]).
A continuum approach is selected in this article. In the context of
grouting, the most recent works in this class of methods were pro-
posed by [6] and [33]. Other works on the modeling of the propa-
gation of grouting in soils are presented in [15,24] and [26]; they
do not systematically integrate filtration or they deal with chemi-
cal grouts. The model developed in [6] considers a single fluid
phase transporting miscible components. The filtration is included
by considering the adsorption of grout onto the solid matrix. The
medium permeability is estimated via a generalized Kozeny–Car-
man equation. This model depends on four phenomenological
equations. One of these is related to filtration and it depends on
several coefficients. Among them, the initial deposition rate can
be determined only once different evolution laws have been postu-
lated. Beside, the model developed by Saada et al. [33] considers a
three phase system where the hydrodynamic dispersion is ne-
glected. The filtration is accounted through mass exchanges be-
tween the cement and the skeleton particles. The permeability
variation is modeled by a hyperbolic law that depends on the
porosity. This law is more appropriate than a Kozeny–Carman type
law since it can predict high variations of permeability for low vari-
ations of porosity. Capitalizing on the aforementioned works, the
model presented in this article extends the continuum methods
that express the rate of accumulation of the filtered mass by a
kinetics equation [25]. It considers a two phase system; the fluid
phase is composed of miscible species. The dispersion flux is thus
taken into account for components of this phase. Furthermore,
the permeability is estimated through a relation that depends on
the concentration of the filtered species [4]. The model depends
on two filtration parameters that can be determined from one-
dimensional injection tests [14]. It also treats the viscosity and
the density variations of the fluid phase.

The mathematical formulation of the presented model is a cou-
pled system of nonlinear partial differential equations. This system
is solved by the finite element method with a particular attention
to the usual numerical issues inherent to flow and transport prob-
lems [17]. Particularly, a smoothing procedure is used to obtain a
consistent velocity field and the Streamline Upwind Petrov/Galer-
kin method [10] enables to avoid numerical diffusion and oscilla-
tions in the transport equation. These methods are embedded in
iterative procedures used to tackle the coupling between equations
of the problem and nonlinearity. Based on the techniques men-
tioned above, a numerical program is developed by using the Diff-
pack libraries [30].

2. Mathematical model

The system in consideration is a two-phase porous medium
composed of a rigid skeleton and a fluid phase where miscible spe-
cies are present. Initially, the fluid phase fills the whole pore space
such that the medium is saturated. The description of transport
phenomena occurring in this system can be obtained from mass
balance equations using averaging procedures [2,20]. Starting form
the macroscopic balance equations derived by either [2] or [21], a
model of transport including filtration is presented herein. For the
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mathematical purpose, the porous medium is denoted
X 2 Rd; d ¼ 1;2;3; it has a smooth boundary @X. The problem is
studied over a time period J = [0, T]. In this section, the superscript
a denotes quantities referring to components of the fluid phase.
The superscripts w, c and v stand for water, transported species
(the injected grout in the application to injection) and filtrated spe-
cies, respectively. The superscript f corresponds to fluid properties.

Let us consider a component transported within the fluid phase.
This component is composed of particles and its transport in a por-
ous material is featured by filtration phenomena. From a general
point of view, the macroscopic mass balance equation (in the ab-
sence of mass transfer across surfaces that delineate system’s
phases) for a component a of the fluid phase is [21]:

@

@t
ð/hqaif Þ þ r � ð/hqaif vaÞ ¼ /hqaif ra; ðx; tÞ 2 X� J: ð1Þ

Eq. (1) must satisfy the following condition:
X

a
/hqaif ra ¼ 0: ð2Þ

In the equations above, h�if represents the volume-weighted
average operator applied to the fluid phase and ð�Þa is the mass
average operator for fluid species. The definition of these operators
can be found in [20]. va represents the velocity vector of species a,
qa the mass density function of species a, ra the rate of net produc-
tion of mass of species a as a result of chemical reactions with
other species and also due to decay/production processes. Eq. (1)
applied to the aforementioned transported component yields

/
@c
@t
þr � ðcqÞ � r � ðDcrcÞ ¼ /crc ¼ �kjqjc; ðx; tÞ 2 X� J; ð3Þ

where c is the concentration of the transported component (average
signs omitted, c is a macroscopic quantity) and q is the specific dis-
charge given by the generalized Darcy law (momentum balance
equation),

q ¼ /ðv f Þ ¼ � k
lf
ðrp� hqif gÞ; ðx; tÞ 2 X� J: ð4Þ

v f represents the fluid velocity with respect to a fixed coordinate
system, k is the permeability tensor, lf is the fluid viscosity, and
qf is the fluid density. Dc is the hydrodynamic dispersion tensor that
characterizes the spreading of particles at the macroscopic level
resulting from mechanical dispersion and molecular diffusion.
According to the relation proposed by Bear [2],

Dc ¼ /ðDc
m þ Dc

dÞ ¼ aT jqjI þ ðaL � aTÞ
q� q
jqj þ /Dc

dT;

ðx; tÞ 2 X� J; ð5Þ

this tensor is a function of the specific discharge in the medium and
it depends on two parameters: aL and aT are the longitudinal and
the transversal dispersion coefficients, respectively. Dc

d is the molec-
ular diffusion coefficient and T is the tortuosity.

Filtration is introduced in Eq. (3) through the degradation term
(r.h.s. of Eq. (1)). A common relation for this term is [3]:

/hqaif ra ¼ �/kcf c ¼ �kjqjc; ðx; tÞ 2 X� J: ð6Þ

This sink term expresses the rate of disappearance of the compo-
nent a. The withdrawn component is at concentration c which cor-
responds to the concentration of the transported species at this
location. kcf [T�1] is a degradation rate parameter for the component
in the fluid phase. The later parameter is expressed as the product of
the filtration coefficient, k [L�1], and the specific discharge of the
fluid phase. The rate of accumulation of the filtered mass is ex-
pressed by the kinetic equation,
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¼ kjqjc; ðx; tÞ 2 X� J: ð7Þ

v is the concentration of the filtrated species. Eq. (7) can also be
interpreted as a mass balance equation for the filtered species.
According to Sharma and Yortsos [34], the species to be considered
when referring to filtration mechanisms are the suspended parti-
cles, the attached particles and the trapped particles. Let us assume
that the filtrated particles are not attached to the solid matrix but
rather trapped within the pore space. A filtrated component is then
defined; it is expressed as a mass per pore volume. This component
acts as it belongs to the fluid phase but resting in a stagnant state.
According to Bear [3], part of a liquid phase may be immobile or
stagnant. This part is in direct contact with the mobile portion en-
abling the transfer of mass from one to the other. Here, the stagnant
part is not treated as a separated phase but as a component of the
global fluid phase. This component is nothing but v. As a conse-
quence the porosity of the medium can be taken constant as long
as the solid skeleton is rigid. The r.h.s term of Eq. (1) becomes a
source term for the filtrated component and must be equal (abso-
lute value) to the sink term of Eq. (3) according to Eq. (2). The veloc-
ity of a component of the fluid phase is the sum of a macroscopic
dispersion velocity and the mean velocity of the fluid phase [21].
As long as the filtrated component is considered, the dispersion
velocity is assumed to balance the average fluid motion. The null
velocity for the filtered species is thus ensured.

The pore pressure (p) can be determined from the total mass
balance of the fluid phase,

/bp
df p
dt
þ /

X
i

bi
df ci

dt
þr � q ¼ 0; ðx; tÞ 2 X� J; ð8Þ

which is also called flow equation. d(�)/dt is the material derivative
defined by: dðÞ=dt ¼ @ðÞ=@t þ v f � rðÞ. Since mass exchanges involve
only the transported and the filtrated components of the fluid
phase, additional terms due to filtration do not appear in Eq. (8).
The equation of state for the fluid phase density,

hqif ðx; tÞ ¼ qf
0 expðbpðp� p0Þ þ

X
i

biðci � c0
i ÞÞ;

ðx; tÞ 2 X� J; ð9Þ

used to obtain the flow equation depends on the pore pressure and
on the concentration of the components that belong to this phase.
Temperature effects are neglected. The summations in Eq. (8) and
Eq. (9) are performed over the number of components within the
fluid phase. Thus, ci represents either the transported (c) or the fil-
trated (v) concentration depending on i. bp is the coefficient of com-
pressibility at constant concentration. bi denotes the coefficient of
concentration that introduces the effect of hqif change as a result
of a change in concentration of either the transported or the fil-
trated component at constant pressure.

As mentioned earlier, the filtration phenomenon is responsible
for a decrease of the medium permeability. This reduction is mod-
eled by a hyperbolic law,

kðx; tÞ ¼ k0

1þ bv ; ðx; tÞ 2 X� J; ð10Þ

which depends on the concentration of the filtrated component. Eq.
(10) was already utilized by Bedrikovetsky et al. in the analysis of
filtration in seawater core-flood experiments. In the context of gro-
uting, Saada et al. [33] used a similar function of the filtration-in-
duced porosity change to model variations of permeability. b is a
filtration coefficient referred as the damage coefficient; it can be
determined experimentally. k0 represents the initial permeability
of the medium.
3

Finally, the evolution of the dynamic viscosity,

lf ðx; tÞ ¼ 1� l0

lc

� �
c
qc
þ l0; ðx; tÞ 2 X� J; ð11Þ

is assumed to vary linearly with the concentration of the trans-
ported component. l0 is the initial viscosity of the fluid phase and
lc is the viscosity of the invading fluid. qc represents the density
of the transported component.

If the Oberbeck–Boussinesq assumption is made (density
dependencies are considered only in the buoyancy term of Darcy’s
law), the dispersion and the viscosity variations are neglected, then
the presented model reduce to a classical filtration model as pre-
sented in [4].

3. Numerical approach

The mathematical model is represented by a system of nonlin-
ear partial differential equations (PDE’s). The coupled set of initial-
value PDE’s is expressed in the general form:

LðuÞ ¼ mT @ðgT uÞ
@t

þr � ðf Þ � b ¼ 0; ðx; tÞ 2 X� J; ð12Þ

where L(u) is a differential system written in terms of the state vari-
ables u(x,t). Appropriate boundary conditions along oX and an ini-
tial condition on X [ @X are required to compute a solution. In Eq.
(12) the following definitions are used:

u ¼
p
c

v

8><
>:

9>=
>;; g ¼

1
1
1
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9>=
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/bphqi
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/
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8><
>:

9>=
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hqif q

cq� Dcrc

0

8><
>:

9>=
>;;
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�/hqif

P
i

bi
@ci
@t

�kjqjc
kjqjc

8>><
>>:

9>>=
>>;
: ð13Þ

The problem is discretized in time by finite differences using the
classical trapezoidal rule (or h-rule) and discretized in space by
the finite element method. The h-rule applied to Eq. (12) reads:

mT ðgT uÞnþ1 � ðgT uÞn
Dt

¼ �ðhr � ðfnþ1Þ þ ð1� hÞr � ðfnÞÞ

þ hbnþ1 þ ð1� hÞbn: ð14Þ

h = 1 yields the implicit scheme (first order accurate in time), h = 1/2
is the Crank–Nicolson scheme (second order accurate in time) and
h = 0 is the explicit scheme (first order accurate in time). In the fol-
lowing h, is set to 0.5. n represents the time level and Dt is the time
step increment. The finite element formulation of Eq. (14) leads to a
discrete coupled system of nonlinear equations that can be written
as follows:

Fnþ1 ¼ AðUnþ1ÞUnþ1 � B ¼ 0; Unþ1 ¼
pnþ1

cnþ1

vnþ1

8><
>:

9>=
>;: ð15Þ

Un+1 is the vector that contains the discrete state variables.
Two basic strategies can be applied for the resolution of such a

system: either one solves Eq. (15) in sequence with an outer itera-
tion or one applies a standard nonlinear method (e.g. Newton–
Raphson method) to the compound system. In the second case,
the solution is searched for all the variables, pn+1, cnþ1 and vnþ1,
simultaneously. The convergence of the Newton–Raphson method
is quadratic. However, a decoupled strategy is chosen instead of a
fully implicit method herein for its computationally efficiency and
appropriateness for large scale problems. Moreover, the system to
be solved can be ill-conditioned by using fully implicit methods if
the scales of phenomena involved in the problem are significantly



different [17]. The Gauss–Seidel-type and the Jacobi-type algo-
rithms for systems of nonlinear PDE’s are selected. The attractive
feature of these iterative approaches is that only standard PDE’s
needs to be solved. If the transport equation is denoted Fc, the pres-
sure equation Fp and the filtration equation Fv, then the Gauss–Sei-
del-type algorithm can be expressed as in Fig. 1 where k represents
the iterative index. First, the flow equation is solved with respect to
p by considering the other state variables at the previous iteration,
k � 1. Thereafter, the concentration and the filtration equations are
solved according to c and v, respectively, by using the most re-
cently computed state variables (i.e. at iteration k). The Jacobi
method is comparable to the Gauss–Seidel approach except for
the solving of the transport and the filtration equations: these
are solved by considering the main variable at iteration k but the
other variables at the previous iteration, k � 1.

The decoupled equations obtained after application of the
Gauss–Seidel-type or the Jacobi-type methods can be still nonlin-
ear with respect to their own main variables. In that case, the Pi-
card iterations [38] are preferred again to the Newton–Raphson
method because the quadratic convergence for the global system
is lost since the decoupled strategy has been utilized to handle
Eq. (15). In the following, the Picard method is exemplified on
the flow equation but it can be applied in the same way to other
equations. The Picard iterative scheme for the decoupled pressure
equation is:

pk;i
nþ1 ¼ ½A

pðpk;i�1
nþ1 Þ�

�1ðBpÞk;i�1
nþ1 : ð16Þ

In Eq. (16), superscript i denotes the current iterative index of the
Picard iterations and subscript n + 1 stands for the current stage
of the global system. A given initial guess p0 is needed to launch
the Picard method. This guess is set equal to the pressure field com-
puted at the previous time. The iteration procedure is terminated
once a convergence criterion is satisfied. A deviatoric error measure
in form of

kUk
nþ1 � Uk�1

nþ1kLp
< d; ð17Þ

is adopted. d is a chosen error tolerance and Lp identifies the error
norm.

Note that the transport equation requires specific solving meth-
ods when advection is dominant over diffusion (i.e. for high Peclet
numbers). In point of fact, the use of the classical Galerkin discret-
ization in that particular case corrupts the solution with spurious
oscillations and numerical diffusion. This issue is overcome by uti-
lizing the Streamline Upwind/Petrov–Galerkin (SUPG) method [10]
that consists in selecting weighting functions apart from the basis
functions in the variational formulation of the problem.

Another important point concerns the velocity approximation.
Indeed quoting [17], ‘‘in Darcy’s law the discretization of the fluxes
q is nontrivial if the density effects become important. Specifically,
a lower-order approximation attainable for the pressure gradient
rp can conflict with a higher-order spatial variation in the gravity
term qg. This situation can be encountered when the pressure and
the concentration are approximated based on the same order of
Fig. 1. Gauss–Seidel-type algorithm for the coupled system.
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polynomials”. Consequently, the Moving Least-Squares (MLS)
smoothing technique is applied to velocities in order to obtain a
consistent field free of numerical artifacts. It turned out that this
procedure was essential to recover the solution of the Elder bench-
mark (see below) used to validate the developed program. The MLS
technique consists in fitting a linear or quadratic polynomial to the
discrete values of a finite element field.

The methods stated above constitute the basis of a global solv-
ing process which involves different embedded iterative proce-
dures occurring at the coupling level and at the nonlinear level
of the decoupled system. The global algorithm is programmed
by using the Diffpack libraries [30] which provide numerous
modules (e.g. mapping of FE problems) so that the developer
can essentially focus on the variational formulation of a problem,
the solving strategy, etc. As recommended in [30], different C++
classes are built to represent each physical phenomenon. Basi-
cally, the transport, the flow and the filtration equations are
implemented in separated classes. These classes take advantage
of the inheritance properties of the C++ language to derive sub-
classes relative to the implementation of the nonlinear and the
coupled aspects of the problem. The coupling between the equa-
tions of the problem is managed by another class as well as the
common constitutive relations. The Diffpack libraries were also
used by Bouchelaghem [8]. The developed program was validated
on the Henry [22] and the Elder [18] benchmarks which deal with
variable density flow and transport in aquifers. They enable to
verify the coupling between the equations and the nonlinear sol-
ver on a 2D problem. The analysis of these benchmarks proved
that the program is robust and that it can accurately handle the
bifurcation in the Elder problem. To recover the bifurcated solu-
tion of the Elder problem, the velocity field of the fluid phase
must be computed accurately. The MLS technique turns out to
be essential to achieve such a result. Moreover, the Elder problem
is a large scale problem (domain: 600 m by 150 m) studied over a
long time period (20 years). To obtain a solution in a reasonable
time limit, iterative methods for solving the linear systems are re-
quired. As long as the system into consideration is symmetric and
positive definite the conjugate gradient (CG) method associated
to a Relaxed Incomplete LU factorization (RILU) preconditioner
is convenient. For nonsymmetric systems, the choice is not
straightforward. Several methods have been tested before select-
ing the BIConjugate Gradient Stabilized (BICGS) procedure joined
together with a RILU preconditioner. The resolution time obtained
for the Elder problem meshed with a very fine grid (9900 ele-
ments) and studied over a period of 20 years was 4996 min while
using a Pentium III 864 MHz computer. As an indication, the res-
olution time for the simulation presented in Section 4 is about
16 min. Once the global algorithm was verified, the program part
that deals with filtration was tested on an analytical solution
computed in a simplified case. More details on the validation pro-
cedure are presented in [13].

4. Analysis of large-scale injection tests

The details of the large-scale injection tests are presented in this
section. The tests are performed under conditions close to in-situ
conditions; particularly, a sleeved grout pipe (or tube-a-man-
chette) is used to inject the grout into the soil. On site injections
are performed by utilizing this engineering device [29] and accord-
ing to Cambefort [11] this is the only way to easily achieve injec-
tion of gravels and sands. The experiment is conducted in
collaboration with VSL-Intrafor Soletanche and EuroPhysical
Acoustic companies. It aims at studying a three-dimensional injec-
tion case and grouting patterns inherent to fieldwork injections. A
simulation of the test is also described in this section and the influ-
ence of filtration is discussed.



Fig. 2. Grading curve for the Loire river sand.
The experiment consists of injecting cement grout in a cylindri-
cal tank of height 6.0 m and 3.0 m in diameter filled with Loire riv-
er sand whose properties are given in [16]. The grading curve of
this sand is plotted in Fig. 2. The Loire river sand is composed of
sub-rounded particles and elongated shell fragments. The sand is
deposited in the tank by successive layers and a fixed density is ob-
tained by tamping each layer. A pluviation technique cannot be
used because of the initial moisture content of the sand. The dry
density of the sand after tamping is 1.6 (measurements in several
layers using calibrated cupels) and a calculation performed, a pos-
teriori, on the whole sand sample evaluates the density at a value
of 1.65. The porosity of the resulting specimen is estimated at 0.3.
During the filling phase, a cylindrical tube (0.1 m in diameter) lo-
cated in the center of the tank enables to maintain a volume free
of sand for the positioning of the sleeved grout pipe. The latter
(17 tube elements of length 0.33 m) is inserted in this aperture
after the tank is entirely filled up with sand. The sleeved grout pipe
is sealed to soil by pouring casing grout (cement bentonite) in the
aperture. The cylindrical tube is removed before the casing grout
has hardened. By reserving space into the specimen, no drilling
operation is needed to set up the sleeved grout pipe. Note that
Fig. 3. Description of the
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the casing grout (or sleeve grout) has a low C/W ratio so it can
be fractured easily under the injection pressure; then, the grout
can propagate through the cracks.

The patented grout formulated for the test is composed of very
fine cement (Spinor A12), water, a plasticizer additive and an inert
charge in order to increase the fluidity and the stability of the grout
[5]. The diameter of cement particles is lower than 12 lm and
media with permeability below 10�4 m/s can be injected with this
grout. The grout density is equal to 1.36 and its viscosity, which
has been measured with a rheometer, is equal to 4.15 � 10�3 Pa s.

In order to measure the pore pressure in the sample during
injection, six piezometers are vertically placed into the soil at dif-
ferent depths and radial distances from the tube-a-manchette
(Fig. 3). The piezometric levels are transcribed by an electric probe
that indicates on a ruler the height of water in a piezometer tube.
The overpressure due to grouting is deducted from the piezometric
statements. In fact, the static piezometric level can be estimated
from the starting level (prior to injection) and the volume of in-
jected grout. Then, the overpressure is obtained by subtracting
the static level to the measured piezometric level during grouting.
The injection pressure at the pump outlet, the volume of injected
grout and the injection rate are also recorded during a test.

Measurements of acoustic emission (AE) are performed. They
aim to follow the grout propagation during the injection process
by recording acoustic activity within the soil specimen. The acous-
tic activity is sensed through wave guides connected to transduc-
ers (type R15 with a maximum frequency resonance of 150 kHz).
The wave guides are cylindrical aluminum rods. Two of them,
WG2 and WG3, are horizontally inserted into the sand specimen
through windows 2 (z = 1.3 m) and 3 (z = 2.1 m) (Fig. 3). The radial
distance from the sleeved grout pipe to WG3 and WG2 is 0.4 m and
0.6 m, respectively. An increase of the acoustic emission is ex-
pected when the grout reaches a wave guide. This behavior was
notably noticed during preliminary tests in columns and small
tanks conducted to calibrate the method.

Five injections are performed through five sleeves: S3, S4, S6,
S12, S14; the experimental set up is illustrated in Fig. 3. Prior to
the grouting phase, the sand is saturated with water. This is accom-
plished in two times and the water level before injections through
S3, S4 and S6 is about 2.55 m (from the bottom of the tank). This
experimental set-up.



level is at 4.9 m prior to injecting grout through S12 and S14. The
volume of injected grout and the injection rates are given in Table
1. During injections through S12 and S14, grout resurgences ap-
peared at the ground surface. Therefore, the injections were
stopped prematurely (see Table 1).

During the injection of S3, S4 and S6, the pressure measured at
the outlet of the pump (Fig. 4a) exhibits few brutal drops whereas
an increase or at least constant values are expected. Indeed, the
pressure is supposed to continuously increases as a function of
the injected volume. After a drop, the pressure comes back to a
normal level. The low pressure regime observed during these tests
is assumed to occur when the fluid pressure is higher than the sta-
bility limit of the soil. The soil structure locally collapses and as a
result the grout can propagate at low pressure. Moreover, it has
been proposed in the past that fracturing pattern is correlated to
a pressure reduction during injection. According to Tarumi and
Sekine [37], fracturing grouting and permeation grouting can coex-
ist at the same time. Herein, the pressure measured before a signif-
icant drop is about 110 kPa and the injection rate is lower than 6 L/
min. Concerning the injection through S3, a pressure drop is no-
ticed 125 min after the injection has started. A drop appears after
15 min in the case of S4 and S6.
Table 1
Characteristics of the different injections.

S3 S4 S6 S12 S14

Volume of injected grout (L) 553 350 344 98 18 58
Injection rate (L/min) 3.52 4.67 5.92 4.25 1.92 5.92
Injection duration (min) 157 75 58 23 9 10

Table 2
Parameter values used in the simulation.

Sand density 18.16 kN/m3

Porosity 0.3—————
Permeability 1.75E�11 m2

Grout C/W ratio 0.36
Grout density 1360 kg/m3

Grout viscosity (rheometer) 4.15E�3 Pa s
Specific discharge 7.15E�4 m/s
Longitudinal dispersion coefficient 1.0E�2 m
Transversal dispersion coefficient 1.0E�3 m
Molecular dispersion coefficient 1.0E�10 m2/s
Transported concentration coefficient (bc) 2.65E�4———
Filtrated concentration coefficient (bv) 6.59E�4———
Coefficients of filtration: (k, b) (0.0252 m�1, 3.66E�2 m3/kg)

Fig. 4. Pressure at the outlet of the pump versus time for injections S1, S2 and
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The pressure needed to break the casing grout is usually an
instantaneous value that decreases rapidly once the casing is
cracked. Herein, no peak is observed during the water injection
(saturation phase). The pressure recorded behind the sleeve during
the saturation phase is nearly constant and equal to 75 kPa. Con-
cerning the grout injections, the pressure raise is not instantaneous
but is spread over 2–3 min. This pressure is then defined as a start-
ing injection pressure rather than a fracturing pressure required to
cracking the casing grout.

The evolution of the hydraulic head during the experiments is
measured by piezometers. Fig. 4b shows this evolution with time
for the injections through S3, S4 and S6. The overpressures result-
ing from these measurements are small (less than 2 kPa) and al-
most the same for all the piezometers, independently of the
distance from the injection source. Bouchelaghem [9] noticed a
similar trend, i.e. that most of overpressures occur in the vicinity
of the injection tube.

Fig. 5 displays the acoustic activity recorded for WG3 and WG4
during the injection through S6. Expectedly, WG3 exhibits first an
increase of the AE activity since it is located closer to the injection
source than WG2. WG3 and WG2 detect successively a modifica-
tion of the AE activity in the soil specimen at times t = 200 s and
t = 250 s. Note that the AE activity must be correlated to the grout
arrival upon a wave guide. Consequently, the position of the grout
front for injection S6 is supposedly known at times t = 200 s and
t = 250 s. However, WG4 is at a radial distance of approximately
0.84 m from S6 so it is unlikely that the grout reach WG4’s end
after 250 s. For instance, a simple calculation that considers a
spherical injected area without dispersion or dilution (spherical
model) predicts the arrival of the grout on WG4 after 125 min
(for an injection rate equal to 5.92 L/min). Two main reasons are
advanced to explain the early increase of AE activity experienced
by WG4: (i) grout propagates through a preferential path possibly
created during the previous injections (S3 and S4) as a result of the
fracturing patterns observed. (ii) Grout interacts with the injected
area stemming from the injection through S4. More generally, AE
measurements can also be disrupted by external noises. The detec-
tion through WG3 seems more plausible and is discussed in the
comparison with the simulation.

Once the five injections are performed and the grout has hard-
ened (more than 28 days after the injections), the solidified bodies
resulting from injections S12 and S14 are removed from the soil
specimen. All the solidified bulbs are not dug up because of the dif-
ficulty to reach the injected aggregates located at the bottom of the
tank. The dimensions of the bulb formed during the injection
S3 (left). Piezometric level versus time for injections S1, S2 and S3 (right).



Fig. 5. Acoustic activity recorded by WG2 (up) and WG3 (down) for the injection
through S6.
through S12 are drawn in Fig. 7. The grouted bulb is asymmetric
essentially because of the grout flow that was observed along pie-
zometer PZ4 during the grouting phase. However, the part of the
solidified bulb on the ‘‘left” of the tube-a-manchette has a regular
shape (Fig. 7). The soil has been permeated without anomaly in this
area. This shape is almost spherical; the dimensions of the horizon-
Fig. 6. Concentration of the transported com
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tal cross section are just slightly different in the r and normal to r
directions. This part of the bulb is considered to be representative
of the injection through S12. As an indication, the volume of grout
injected through S12 corresponds to a soil volume of 0.39 m3.
Assuming a spherical volume, the radius of the grouted soil is equal
to 0.45 m which is close to the dimensions of the ‘‘left” part of the
bulb displayed in Fig. 6. The difference may be explained by disper-
sion (and diffusion) effects that causes the dilution of the grout
front during the propagation stage or by small a small anisotropy
of the soil characteristics.

The simulation of injection S6 is presented below. This experi-
ment is selected for the comparison with the numerical model be-
cause it allows the confrontation with AE measurements. The
simulation is performed considering axisymmetric conditions. A
constant inflow rate is imposed on a segment of height approxi-
mately a sleeve height which matches the mesh element size, i.e.
0.11 m. The z-coordinate of this segment is 1.87 m. The domain
is discretized by 50 � 15 elements of equal dimensions and the
time step is set to 100 s. Table 2 summarizes values of the param-
eters used in the simulation. Boundaries of the domain are en-
forced with no flux conditions except on the upper boundary
where the relative pressure is imposed to zero and on the segment
subjected to a constant inflow rate (injection source). The filtration
parameters are determined from one-dimensional injection tests
which were performed considering the same materials and an ana-
lytical solution of the 1D problem under some assumptions [14].
The results are analyzed regarding to the pore pressure and the
concentration of the transported and the filtrated components.
The numerical results are compared to the experimental data in
terms of pressure and AE measurements.

Fig. 6 shows the concentration of the transported grout at times
t = 200 s, t = 300 s and t = 3500 s which corresponds approximately
to the end of the experiment. The time t = 3500 s can be used to
ponent (kg/m3) at different times (s).



Fig. 7. Longitudinal and transversal views of a solidified bulb (injection S12).
estimate the dimensions of the solidified bulb obtained after hard-
ening of the grouted mass. The regions of the injected mass where
the concentration is low do not harden properly and do not con-
tribute to the formation of a solidified bulb. Besides, Bouchelaghem
[9] considered that only the domain with a concentration at least
equal to half the density of the injected grout can be retained in
the determination of the bulb dimensions. The grouted region ob-
tained numerically is quasi spherical, and by making the same
assumption as Bouchelaghem [9] the radius of the solidified bulb
is estimated at about 0.7 m. The same simple calculation as done
previously (spherical injected mass plus no dispersion) predicts a
Fig. 8. Concentration of the filtrated com
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radius of 0.65 m. The difference between these two values is small
and can be explained by the dispersion effects which are included
in the model. A similar difference was noticed above between this
simple calculation and the excavated bulb stemming from injec-
tion S12. The concentration at time t = 200 s is confronted to the
AE measurement obtained from WG3. This wave guide detects an
increase of the AE activity 200 s after the injection has started.
Numerically, the grout front (limit between zero and nonzero con-
centrations) is in r = 0.3 m at this time. WG3 is located at r = 0.4 m
and hence catches an increase of the acoustic activity before the
numerical concentration reaches the wave guide. A precision has
ponent (kg/m3) at different times (s).



Fig. 10. Evolution of the pore pressure versus time at different locations (C/
W = 0.42).

Fig. 9. Evolution of the pore pressure versus time at different locations (exper-
imental and numerical results).
to be given at this point: the distance between the end of WG3 and
the central axis of the tank is 0.4 m but it includes a part of the
tube-a-manchette and the casing grout (approximately 5 cm). This
remark tends to minimize the difference between the numerical
and the AE statements. However, the AE method seems to detect
the grout front in advance compared to the numerical results. An
explanation could be that the collision of cement particles onto soil
grains during injection engenders waves which are felt by the
wave guides. In this case, the AE detection would not occur exactly
at the arrival of grout upon the waves guides. Concerning the order
of magnitude of the dispersion coefficients used in the simulation,
they are inspired from the literature; they may not reflect perfectly
the reality. The increase of AE activity detected by WG4 has been
discussed previously.

Fig. 8 shows the concentration of the filtrated grout at times
t = 1500 s, t = 2500 s and t = 3500 s. The concentration of the fil-
tered species logically increases with time. Its evolution depends
on the concentration of the transported grout which continuously
spreads out within the medium during injection. Consequently, the
region that contains filtered grout persistently extends but the
concentration of filtrated grout remains relatively small even at
t = 3500 s. The overpressure caused by filtration depends on the
concentration of the filtrated species. Even if the Oberbeck–Bous-
sinesq assumption is made, Darcy’s law includes the permeability
relation [Eq. (10)] that depends on v.

The computed pore pressures for different r-coordinates (corre-
sponding to the piezometer locations) at the altitude of the injec-
tion source are shown in Fig. 9. They continuously increase with
time whatever the radial distance to the injection source. However,
the pressure variations are very small for r = 0.33 m and r = 0.66 m.
The difference of pressure between the beginning and the end of
the injection is lower than 5 kPa for these two curves which are
close to each other. This result matches the experimental observa-
tion since the overpressures measured by the piezometers range
within 2 kPa. The experimental pressures measured by PZ1 and
PZ2 during the injection through S6 are also displayed in Fig. 9.
Note that during this injection the whole sand specimen is not sat-
urated with water. In order to allow the comparison with the
numerical results, the static piezometric level is consequently ad-
justed to represent the fully saturated condition used in the simu-
lation. The experimental pressures are close to the computed
values. The evolution of the pressure at the injection source (in
r = 0) is largely more important. The amount of grout injected into
soil is constantly increasing during the experiment. Thus, the injec-
tion pressure is expected to rise during the test (permeation grout-
ing) aside from filtration effects that can also contribute to this
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trend. Note that the pore pressure is also influenced by variations
of the fluid phase viscosity according to Eq. (11). The pressure mea-
sured at the outlet of the pump during injection S6 is plotted in
Fig. 9 more as an indication than for a direct comparison with
the injection pressure computed numerically. The experimental
pressure in the tube-a-manchette, right behind a rubber sleeve, re-
mains certainly difficult to correlate to the pressure computed in
the medium at the injection source location.

The results presented in this paragraph tend to indicate that fil-
tration has a relatively moderate impact on injection especially for
radial distances greater than 0.33 m away from the injection
source. This statement is supported by the low concentration of
the filtered grout computed in the medium (Fig. 8) slightly away
from the injection source. It does not mean that filtration is not
occurring during the test but that either filtration is not a predom-
inant phenomenon or its effect is limited to a region close to the
injection source. As mentioned in [14], the C/W ratio of the grout
has a major involvement in filtration processes. Therefore, to see
whether the aforementioned statement can be accredited to the
specific grout used during the tests, a simulation with a greater
C/W ratio (C/W = 0.42) is performed. The overpressure only due
to filtration is also regarded by comparing results obtained with
and without filtration. Fig. 10 displays the pressure at different ra-
dial distances from the injection source as a function of time. The
consequences of filtration on pore pressures are more important
for regions near to the source. At a distance of 0.5 m, a slender dif-
ference between the curves with and without filtration is notice-
able; this difference is large at the injection source. At the end of
the experiment, the pore pressure in r = 0 is twice bigger than
the pressure computed for C/W = 0.36 which by the way is approx-
imately the same as the pressure without filtration for C/W = 0.42.
According to the numerical results, the pressure in r = 0 is doubled
as a results of filtration.

5. Conclusion

This article has presented experimental and numerical results
about grouting of sandy soils. Successive injections were per-
formed close to in-situ conditions by using a tube-a-manchette.
They exposed fracturing patterns appearing at low injection
speeds. These patterns were correlated to a drop of the injection
pressure. The overpressures measured at different radial distances
away from the injection source came out to be very small, i.e. infe-
rior to 2 kPa. In the absence of anomalies during injection, the
shape of a solidified bulb obtained after hardening of the grout



was quasi spherical. A slight difference in the volume of solidified
soil was noticed between an excavated bulb and a computation
performed with a simple spherical model.

A simulation of the test was performed by using a model based
on flow and transport in porous media equations that include fil-
tration. This model depends on two filtration parameters that
can be determined from one-dimensional injection tests. It also ac-
counts for dispersion phenomena as well as density and viscosity
effects. A finite element program was developed to solve the model
equations. Special features of this program concern: (i) the MLS
technique used to obtain a consistent velocity field (ii) the SUPG
method that contributed to obtain a stable solution of the trans-
port equation and (iii) the iterative methods (CG or BICCGS meth-
ods associated to a RILU preconditioner) utilized to accelerate the
solving time. The program has been successfully tested on bench-
marks and turned out to be suitable for the analysis of large scale
problems over long time periods (coupled and nonlinear
problems).

Despite of the difficulty to model in-situ injections, agreements
between the simulation and the tests were observed on several
points. The interstitial pressures away from the injection source
were similar and the numerical results also showed low overpres-
sures. An estimate of the size of a solidified bulb obtained numer-
ically showed a small difference with the spherical model as
previously noticed between the spherical model and an experi-
mental bulb. The concentration of the filtered species remained
relatively small during the simulation, especially away from the
injection source. This observation combined to the low overpres-
sures mentioned above tends to indicate that maybe the filtration
was not a dominant phenomenon during this experiment or that
its influence was restricted to a region near the injection source.
To appraise the role of the grout composition on the filtration im-
pact during injection, a simulation corresponding to a higher ce-
ment-to-water ratio was run. The overpressures computed away
from the source were still small but the injection pressure was
doubled at the end of the simulation as a result of filtration.
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