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ABSTRACT

This work is a continuation of a previous study that investi-
gated sub-surface damage in silica glass due to surface polish-
ing. In this previous study, discrete element models have shown
qualitatively good agreement with experiments. The presented
work propose a model allowing quantitative results by focusing
on the continuous part of the problem. Special attemption was
given to the discrete element model of silica glass considered as
perfectly isotropic, elastic and brittle. To validate this approach,
numerical results are compared to experimental data from liter-
ature.

Introduction

When fused silica optics are submitted to high-power laser
(such as megajoule laser or National Ignition Facility) at the
wavelength of 351 nm, fused silica optics can exhibit damage, in-
duced by the high amount of energy traversing the part [1]. Cur-
rent researches have shown that this damage could be initiated

Ivan lordanoff
Second Coauthor
Arts & Métiers ParisTech,
12M-DuUMAS, UMR 5295 CNRS,
F-33405, Talence, France
Email; ivan.iordanoff@ensam.eu

Jérome Néauport
fourth Coauthor
Commissariat a I’Energie Atomique,

Centre d’Etudes Scientif ques et Techniques d’Aquitaine,

F-33114 Le Barp, France
Email: jerome.neauport@projet-Imj.org

on pre-existing Sub-Surface Damages (SSD) created during the
polishing processes [2—7]. The discrete element method (DEM)
is proposed to simulate the polishing process and its impact on
sub-surface damage creation.

Discrete element model is well adapted to simulate a media
that has a great number of interfaces. It has been widely used to
study tribological problems like wear phenomena [§—14]. In this
kind of problem, the material has a continuous part (the volume
above the surface that is not yet affected by the wear), a continu-
ous part with cracks (called sub-surface damage in abrasion pro-
cess terminology) and a discontinuous part (the interfacial media,
called third body, that is a mixture of abrasive particles and wear
particles). Discrete element model must be able to simulate with
accuracy all these parts of the material.

This work is a continuation of a previous study that inves-
tigated sub-surface damage in silica glass due to surface polish-
ing [15]. In this previous study, discrete element models have
shown qualitatively good agreement with experiments. The pre-
sented work propose a model allowing quantitative results by fo-
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FIGURE 1: Loose abrasive grinding principle

cusing on the continuous part of the problem. Special attemption
was given to the discrete element model of silica glass consid-
ered as perfectly isotropic, elastic and brittle. To validate this
approach, numerical results are compared to experimental data
from literature.

Loose abrasive grinding

This work focuses on the polishing step called loose abra-
sive grinding. Figure 1 shows the principle of loose abrasive
grinding. The silica is subjected to a vertical pressure and the tool
moves horizontally. The grinding interface is composed by abra-
sive particle in suspension into a water solution : the slurry. This
process causes scratches and digs inside the silica layer. These
cracks take part in the abrasion process but some of them subsist
in a thin layer and give the subsurface damage zone.

Numerical model
Integration scheme

The numerical resolution is based on an explicit integra-
tion scheme well adapted to massive DEM simulation [16] and
high velocity phenomena such as fracturing or impact simula-
tion. Many explicit schemes can be used : the Verlet velocity,
Runge-Kutta, leapfrog or gear’s method... [17, §13]. In refer-
ence [16], the authors have compared these algorithms “in terms
of accuracy, stability and CPU eff ciency”. 1t appears that all of
them give approximately the same eff ciency.

Velocity Verlet scheme is chosen for its simplicity . Discrete
element position and velocity are estimated by:

B B " dr?
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where :

Periodical boundary

FIGURE 2: The silica cube

t is the current time and dt is the integration time step.
p(t), p(t) and p(¢) is the discrete element linear position,
velocity and acceleration.

The discrete element orientations are described by quater-
nions, noted ¢(7), that allow an eff ciency way to compute the ro-
tation of the local frames associated with discrete elements [18,
§2.5]. The velocity Verlet scheme is also applied to quaternion
q(1), with:

oy A
q(r +dt) = q(t) +drq(t) + —-§(r) ©)
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Geometrical description

According to f gure 2, the silica piece to be surfaced is con-
stituted by spheres linked together by elastic solid joints. This
cluster form a cube with a dimension of 150 ym. This dimension
is chosen according to the maximal SSD length experimentally
observed. The average silica discrete element radius is around
4.7 um to keep reasonable computational duration. The radius
of a given sphere is chosen randomly around this mean value.
The tool is simply def ned by an elastic plane. The abrasive par-
ticles are placed between the silica cube and the tool (see f gure
3).

Boundary conditions

The upper wall have a single degree of freedom that allows
translation on the ¥ axis. An unidirectional condition is also im-
posed. The upper wall can only go down. Additionally, a normal
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FIGURE 3: Global view of model

pressure along —Y axis is applied on the upper wall. A veloc-
ity condition is imposed to the abrasive particles : they are con-
strained to move along the X axis with a velocity equal to the
tool velocity. Periodical boundary conditions are applied on the
sides in order to mimic an inf nite f ow feld along X and Z.

The silica model

The silica is considered as a brittle elastic material. The
discrete element belonged to the silica cube are linked by elas-
tic Euler-Bernouilli beams which produce more realistic crack
pattern than the simple spring model or the dual spring model
[19,20, §3].

Cohesive beam bond model The cylindrical geome-
try is chosen because it’s dimensional description requires only
two independent parameters: a length L, and a radius rul. The
mechanical properties are also linked to the cohesive beams: a
Young’s modulus £}, and a Poisson’s ratio v,,. These four geo-
metric and mechanical parameters suff ce to describe the cohe-
sive beam. Note that the cohesive beams are mass-less; mass
properties are assigned only to the discrete elements.

For the sake of clarity fgure 4 shows a conf guration in
which the discrete elements have been moved away. The cohe-
sive beam is symbolized by its median line. Both cohesive bond
ends are fxed to the discrete element centers O and O,. Figure
4b shows the cohesive beam in a loading state induced by the
discrete element movement relatively to the initial conf guration.

I'To distinguish micro from macro properties, micro parameters are denoted
by 1’ and macro parameters by *M’.

The analytic model of Euler-Bernoulli beam is well known
[21]. In reference [22, §6.2], the author describe a stiffness ma-
trix expressed in the beam local frame for a f nite element appli-
cation. Consequently, the force and torque reactions acting on
discrete elements 1 and 2 are:
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where:

ITH} and ITE; are the beam force reactions acting on dis-
crete elements 1 and 2.

Tpr1 and Tpg; are the beam torque reactions acting on dis-
crete elements 1 and 2.

[y, and Al are the initial beam length and the longitudinal
extension. N

61 (01x,01,,012) and 6,(6ay,6,,,6,.) are the rotations of
beam cross section at the points O and O, expressed in the
beam local frame.

Su, oy and I, are the beam cross section area, polar moment

of inertia and moment of inertia along 7 and
E, and Gy, are the Young and shear modulus.

Note that reaction force and torque are expressed in the beam
local frame F. The four parameters that def ne the micro beam,
Ly, vy, E; and vy, have only an infuence on the elastic behavior
of the assembly. These microscopic parameters are calibrated
thanks to tensile tests to produce at the macroscopic level the
silica Young modulus and Poisson ratio.

A failure criterion is introduce to mimic cracks inside the sil-
ica. This criterion is based on material strength theory of brittle
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FIGURE 4: Cohesive beam bond conf guration

material :

1 /
O-/Jf Z E (Glimax + o-/~2lmwc + 4Tﬁmax) (9)

The stress criterion oy, ; is also calibrated thanks to tensile failure
tests.

The silica contact model After a beam failure, the dis-
crete elements linked by a broken beam could interact by elas-
tic contact. To deduce the contact stiffness, virtual semi-cubic
shapes, 4] and 6, are associated to discrete elements (see f g-
ure 5). This process allows to correct the residual void between
spherical discrete element. The contact stiffness is :

RiR»
Ri+Ry

K =4F

(10)

Where E is the silica Young modulus and R| and R; are the dis-
crete element radii.

Hertzian contact

Except the silica discrete elements that model a single body,
all the other discrete elements, that model distinct body, could
interact by contacts. The shape of these discrete elements are
supposed representative of their real morphology. The contact
law between distinct body are deduced from the hertzian contact
model between two spheres:

= 4 R[RZ =
f 3 04/ 1 25}1 (11

FIGURE 5: The contact model between two discrete element sil-
ica

With:

Ei(1=v3)+Ey(1—v?
Ef— 1( V2)+ 2( vl) (12)
E©\E>

Where f is the reaction force, E1, E», V2, V> the body’s Young
modulus and Poisson ratio, § the sphere interpenetration, and 7
a unit vector along the contact normal direction.

The f uid model

The water solution during the grinding process is considered
as a Couette fow. The fuid velocity is characterized by a linear
gradient inside its thickness. At the interface, the maximal and
minimal velocity are equal to the tool velocity and the silica ve-
locity (considered as null) (see f gure 6). The action of the fuid
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FIGURE 6: 2D illustration of the fuid model

acting on submerged discrete element are given by [23, §7.4]:

f'=8rnR(vy— ) (13)
i = 8TNR* (@f — @y) (14)

Where:

n is the fuid viscosity.

R is the discrete element radius.

vy and @y are linear and angular fuid velocities computed
at the discrete element altitude.

vy and @y are linear and angular discrete element velocities.

The linear and angular f uid velocities for a given altitude y, are
given by:

v =[5 ] (1 y—d>)? (15)
ef
ef

Subsurface damage measurement method

For optic manufacturers the main interesting value is the
maximal SSD length that characterize their process. In the DEM
model, it is considered that a broken beam inside the silica cube
model a SSD. The length of this SSD is given by the altitude of
the broken beam in relation to the ”abraded surface” of the silica.

The abraded surface is considered as the last silica discrete
element layer (in contact with the slurry). During the simulation,
the morphology of this layer changes. An algorithm is used to
update and save the positions of discrete elements belonging to
this layer. This position set is treated by linear interpolation to
reach a 3D map of the abraded surface .7 (see f gure 7).

The SSD length is computed by projected the broken beam
position (red circle points on the f gure) on the interpolated sur-
face . along the —Y axis (blue square points on the fgure).

SSD number

0 10 15 20 05 30
SSD length (um) €90%

FIGURE 8: SSD distribution as a function of their length

Finally, the SSD length, noted cgssp, is given by the distance be-
tween these two positions.

This numerical treatment allows to plot an histogram of the
SSD number as a function of their lengths (see f gure 8). This
distribution shows good agreement with experimental observa-
tions [24] and could be approximated by a decreasing exponen-
tial function :

fx)=ae ™™  with 5>0 (17)

The a and b coeff cient are ftted by a least square method (see
red curve on f gure 8). They allow to compute a criterion based
on statistical assumption. It is considered that the maximal SSD
length is the length where 90% of SSD are below this value. This
value is noted cggos,.

The f gure 9 shows the evolution of cgge, during the simula-
tion. It is observed that, after a delay, the value becomes stable.
This converged value is considered as representative of the max-
imal length of SSD for a given numerical experience.

Numerical experiences

The experimental observation given by ref. [25] are taken as
reference of this study. The numerical boundary conditions and
loading are calibrated to f't with the experimental process. The
infuence of abrasive particle size, tool velocity and concentra-
tion are studied.

To reach this goal an experience with average values of these
parameters is taken as reference. For a given experience only one
parameter is studied. The table 1 summarizes the numerical ex-
periences and their parameter values. The values are expressed
in two ways : the experimental way (column exp) and the nu-
merical model way (column dem). In this table, the ’-’ character
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FIGURE 7: 3D map of the abraded surface and SSD length

Exp. Name Parameters
pressure tool velocity | abrasive size | concentration

exp dem | exp dem | exp dem | exp dem

Kg mN | rpm ms™' | um  um % *)
reference 1.6 0.18 | 15 0.24 10 10 6 7
velocity! - - - 5 0.08 - - - -
velocity! + - - 25 0.40 - - - -
radius? - - - - - 5 5 - _
radius? + - - - - 15 15 - -
concentration’ + - - - - - - 12 13
concentration’ ++ - - - - - - 18 19

(*): abrasive number
1: more precisely the tool velocity
2: more precisely the abrasive radius

3: more precisely the abrasive concentration of the slurry

TABLE 1: Summary of numerical experiences with their parameter values
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FIGURE 9: SSD max evolution

means that the given parameter have the same value that the ref-
erence numerical experience.

Results and discussion

The table 2 summarizes the experimental and numerical ten-
dencies. This table show similar tendency concerning the infu-
ence of abrasive size. Therefore, the numerical and the experi-
mental inf uences of tool velocity seem to be in contradiction. A
possible explanation is that the numerical model of the fuid is
too simple. Probably, during the grinding, lift phenomena could
happen. If the tool velocity increases, the lift force may increase
also and could affect the effect of the normal pressure. The in-
teractions between fuid and silica could be improved by using
more realistic fuid model. A possible way is to couple the DEM
model to mesh-free description of fuid like the Smoothed Parti-
cle Hydrodynamics (SPH) method [26].

Concerning the abrasive concentration, only the decreasing
effect is numerically observed. A global explanation of these
divergences is that the parameters, at the macroscopic scale (ex-
perimental) could be coupled. For example, the velocity could
affect the pressure, and the concentration could affect the rela-
tive velocity between tool and silica part.

The table 3 shows a detailed view of numerical results. This
table shows the maximal SSD length, the Rough Mean Square
(RMS) roughness and the ratio between this two parameters.
The maximal SSD values show accordance with those observed
in [25]. In addition, if the “velocity -” numerical experience is
excluded, it is observed that the ratio is quite stable (around 1.5-
1.9). This proportionality between roughness and maximal SSD
length has been experimentally observed [27]. This empirical
law is intensively exploited to do non-destructive measures of
SSD.

Maximal SSD length
Parameter Exp. Dem.
Abrasive size Ve Ve Ve
Tool velocity s AW N
Abrasive concentration " || N\ N\

TABLE 2: Experimental and numerical tendency

Exp. name c90y,  Roughness Ratio
C90% rms €90,/ Fms
um um
reference 17 10.5 1.6
velocity - 7 9 0.77
velocity + 18 9.5 1.9
radius - 11 7.5 1.5
radius + 22 13 1.7
concentration + 14 8.5 1.6
concentration ++ 14 9 1.5

TABLE 3: Detail of numerical results

Conclusion

The presented work used a discrete element model to in-
vestigate the sub-surface damage due to loose abrasive grinding.
Original numerical methods has been developed to fnely char-
acterize the abraded surface and sub surface damage layer. The
numerical results show agreement with some experimentally ob-
served tendencies. Additionally, the maximal SSD length has the
same order of magnitude as those observed experimentally. Fi-
nally, the empirical between maximal SSD length and roughness
has been regained. Therefore some efforts must be done to model
more precisely the abrasion interface and, particularly, the fuid
interaction by using more realistic fuid model like SPH method.
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