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Model for Granular Materials with Surface Energy Forces
C. S. Chang1 and P.-Y. Hicher2

In light of environmental differences � such as gravitational fields, surface temperatures, atmospheric pressures, etc.�, the mechanical
behavior of the subsurface soil on the Moon is expected to be different from that on the Earth. Before any construction on the Moon can be
envisaged, a proper understanding of soil properties and its mechanical behavior in these different environmental conditions is essential
This paper investigates the possible effect of surface-energy forces on the shear strength of lunar soil. All materials, with or without a net
surface charge, exhibit surface-energy forces, which act at a very short range. Although, these forces are negligible for usual sand or silty
sand on Earth, they may be important for surface activated particles under extremely low lunar atmospheric pressure. This paper describes
a constitutive modeling method for granular material considering particle level interactions. Comparisons of numerical simulations and
experimental results on Hostun sand show that the model can accurately reproduce the overall mechanical behavior of soils under
terrestrial conditions. The model is then extended to include surface-energy forces between particles in order to describe the possible
behavior of lunar soil under extremely low atmospheric pressure conditions. Under these conditions, the model shows that soil has an
increase of shear strength due to the effect of surface-energy forces. The magnitude of increased shear strength is in reasonable agreement
with the observations of lunar soil made on the Moon’s surface.

Granular material; Stress-strain relations; Anisotropy; Elastoplasticity; Moon.
Introduction

The soil on the Moon formed by space weathering processes and
dynamic impacts of micrometeorites is composed of aggregates
of minerals, rocklets, and glasses, welded together into aggluti-
nates. The glass, which is abundant in lunar soil, is present in the
form of sharp, abrasive, interlocking, fragile shards and frag-
ments. The lunar subsurface soil can be classified as dry silty sand
�Perko et al. 2001�. However, observations and measurements
conducted during Surveyor �1966–1968�, Apollo �1968–1972�,
and Luna �1959–1976� missions indicate that lunar soil has an
unusually high cohesion in comparison to the same type of soils
tested under the Earth’s conditions. According to Buzz Aldrin,
astronaut on Apollo 11, the soil on the Moon ‘‘has the cohesive
property that wet sand would have’’ �Costes et al. 1970�. A stable
vertical trench excavated during the Surveyor 7 mission is shown
in Fig. 1�a� and a footprint left by Surveyor 3 demonstrates the
fineness and cohesiveness of the lunar soil �Fig. 1�b��.

The fine particles of lunar soil are the products of the continual
impact on the surface by meteoroids, which smash and grind
rocks into soil and weld soil into new rocks. The writers we are
interested in the behavior of soils in a typical regolith of the
Moon—a surface layer that consists of loose sand and rock frag-
ments, which overlies the solid rock. The range of grain size
distribution is summarized in a soil gradation curve given in Fig.
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2 �Costes et al. 1970; Mitchell 1972; Scott 1973� based on the
core samples obtained from the surface layer of the Moon �Apollo
11 and 12�. According to the particle size distribution, the lunar
soil can be classified as silty sand following the Unified Soil
Classification System, ASTM standards.

The writers’ knowledge on engineering properties of lunar soil
are derived mainly from operation performed during the Surveyor
and Appolo programs, including bulk and core samples returned
to the Earth, trench excavation, ground penetration, and some
simple physical experiments. In laboratory studies, it was found
that soils tested under a chamber with ultrahigh vacuum and high
temperature had an increase up to 13° in angle of internal friction
and 1.1 kPa in cohesion �Bromwell 1966; Nelson 1967; Perko et
al. 2001�. This increase of soil strength is consistent with the
observed stable vertical trend excavation in dry silty sand on the
Moon.

For soil on the Earth, cohesion is originated from electrostatic
forces and surface-energy forces, which includes van der Waals
forces �intermolecular potential energy�. The surface-energy
forces act at very short range. Comparing to the gravitational
forces, the surface-energy forces are negligible on the Earth for
soils with particle sizes larger than around 0.06 mm. Thus, terres-
trially, the forces are negligible for sand or silty sand. However,
as particle size decreases to the size of clay, the surface-energy
forces have a greater influence on its strength. The effect of
surface-energy forces on friction and adhesion properties of small
particles can be found in the literature of powder technology,
particulate technology, and interface sciences �Derjaguin 1934;
Derjaguin et al. 1975; Johnson 1971; Molerus 1978; Thorton and
Ning 1998; Tomas 2001�.

Due to various environmental differences on the Moon �such
as the gravitational fields, temperature extremes, low to practi-
cally nonexistent atmospheric pressure, plus the space weather-
ingm, which includes surface activating effects like UV radiation,

the solar wind and galactic particle fluxes�, it seems plausible to



consider surface-energy forces as a dominant cause for altering
the mechanical behavior of lunar soil with the size of silty sand.
An issue that may be addressed is to what order of magnitudes the
surface-energy forces can influence the strength and deformation
of lunar soils.

In this paper, a model is developed that accounts for the
surface-energy forces between particles and is capable of model-
ing its effect on the shear strength of the soil assembly. For this
purpose, a microstructural modeling approach is adopted �Chang
and Hicher 2005; Hicher and Chang 2005�. Models using this
approach can also be found in the work by Jenkins �1988�, Walton
�1987�, Rothenburg and Selvadurai �1981�, Chang �1988�, Eme-
riault and Cambou �1996�, Liao et al. �2000�, Kruyt and Rothern-
burg �2002�, among others. Elastoplastic models using this
approach can be found in Chang et al. �1992a,b�, Suiker and
Chang �2004�.

It is noted that the above-mentioned microstructural con-
tinuum approach �Chang and Hicher 2005� is not a “complete”
micromechanical approach. As the complete microstructural de-
tails for a particle assembly are not known, the complex deforma-
tion behavior of the particle assembly cannot be derived directly
from the first-principles theory based solely on particle-level
properties. Two major simplified assumptions have been applied.
1. Besides the parameters of particle-level properties, the

present model adopts some macroscale parameters, which
are related to the degree of interlocking and porosity for the
soil assembly. These macroscale parameters are adopted be-
cause interparticle behavior is not exclusively a local phe-
nomenon; it is considerably influenced by the degree of
interlocking and porosity for a soil assembly. In the present
model, these parameters are based on the critical void ratio
concept, and are empirically determined from testing on soil
specimens.

2. Particle rotation is neglected in the model derivation. Particle

(a) Trench excavated by Surveyor 7 Spacecraft in Lunar subsurface soil (adapted from Perko et
al., 2001).

(b) The footprint of Spacecraft Surveyor 3 –Apollo 12 (adapted from NASA Image ID number:
AS12-H-48-7110).

Fig. 1. �a� Trench excavated by Surveyor 7 Spacecraft in Lunar
subsurface soil �Perko et al. 2001, ASCE�; �b� the footprint of Space-
craft �Surveyor 3–Apollo 12� �NASA Image ID number AS12-H-48-
7110�
rotation is a significant factor that influences the stress–strain

2

behavior of assembly. A model considering particle rotation
would result in the use of higher-order stresses and strain
such as micropolar strain and couple/Cosserat stress �Chang
and Liao 1990; Chang and Ma 1992; Chang and Gao 1996,
Luding et al. 2001; Chang and Kuhn 2005; Tejchman and
Bauer 2005�. Currently, there is no stress–strain model with
explicit consideration of particle rotation that can success-
fully simulate complex behavior of soil. The difficulties of
establishing such a continuum model mainly arise from the
lack of experimental results on measured particle rotation
field and related couple stress for an assembly of soil
particles.

With the previous discussion on restrictions and simplified as-
sumptions, the present model should be regarded as a model of
semiempirical nature. It is necessary to calibrate parameters from
soil tests in order to predict complex behavior with good quanti-
tative agreement. The main advantage of the present model over
conventional continuum constitutive models is its microscale con-
sideration, which allows one to conveniently extend the model for
new phenomenon at the particle level, such as the surface-energy
forces.

However, adding the surface-energy term from first-principle
physics into an otherwise semiempirical model may elicit the fol-
lowing concern: how can one part of the physics be treated from
first principles if the other parts of the physics are treated only
empirically? The answer is that even though the surface-energy
forces are added from first principle physics, it does not alter the
empirical nature of the model. The model is aimed to predict the
“order of magnitude” of the surface-energy effect.

In what follows, we first describe the formulation of this
model, which takes account of the surface-energy forces between
particles. The model performance is then demonstrated through
the results of a simulation of fine Hostun sand tested under ter-
restrial conditions �i.e., without surface-energy forces�. The fine
sand has a mean particle diameter of 0.5 mm, loaded to failure in
triaxial testing cells under different confining stresses. Finally, the
effect of surface-energy forces between particles is introduced to
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Fig. 2. Approximated gradation range for Apollo 11 and 12 soil core
samples
predict the stress–strain–strength behavior of lunar soil.



Stress–Strain Model

In this model, we envision a granular material as a collection of
particles. The deformation of a representative volume of the ma-
terial is generated by the mobilization of contact particles in all
contacts. Thus, the stress–strain relationship can be derived as an
average of the mobilization behavior of local contact planes in all
contacts. For a contact plane in the �th orientation, the local
forces f i

� and the local movements �i
� can be denoted as follows:

f i
�= �fn

� , fs
� , f t

�� and �i
�= ��n

� ,�s
� ,�t

��, where the subscripts n, s, and
t represent the components in the three directions of the local
coordinate system. The direction normal to the plane is denoted as
n; the other two orthogonal directions, s and t, are tangential to
the plane. Rotation of particles is not considered here.

The forces and movements at contact planes of all contacts are
suitably superimposed to obtain the macroscopic stress strain ten-
sors. The macroscopic stiffness tensor is obtained on the condi-
tion that the rate of energy dissipation expressed in terms of the
macrostress and strain must be equivalent to that expressed in
terms of microforces and movements. In such formulation, it has
usually been assumed that the microstructure is statically con-
strained, which means that the forces on each contact plane are
assumed equal to the resolve components of the macroscopic
stress tensor. Another equally simple possibility is to assume a
kinematically constrained microstructure, in which the move-
ments, rather than the forces on a contact plane, are the resolved
components of the macroscopic strain tensor.

The kinematically constrained models are more popularly used
in concrete models. The overriding reason for using this approach
is that, in case of strain softening, it is easier to construct a stable
model using a kinematic rather than a static constraint. However,
the kinematic constraint gives a more restrictive deformation pat-
tern, thus providing a stiffer result, especially when granular ma-
terials are subjected to high deviatoric stresses �Chang and Misra
1990�. Further discussion on this issue can be found in the work
by Chang and Gao �1996�, Kruyt and Rothenburg �2002�, and
Kruyt �2003�.

Interparticle Behavior

van der Waals Forces

The surface-energy forces pull soil particles together, thus in-
crease the shear strength of soil. The physics of the surface-
energy force between two particles is reviewed in this section.
The adhesive forces between two solid grains mainly result from
electrostatic force and van der Waals forces. The electrostatic
component in lunar soil is assumed to be negligible �Perko et al.
2001�. Therefore, in this paper, the surface-energy forces are cal-
culated from van der Waals energy fields. There are several situ-
ations that can alter the surface properties and surface energy,
such as monolayers of water or passivation layers. For simplicity,
lunar soil grains are represented by spheres of equal radii that are
separated by thin layers of adsorbed air molecules.

van der Waals forces between two bodies are derived from the
dispersion interaction energy between two identical atoms or mol-
ecules �Israelachvili 1992�:

W�r� = −
C

r6 �1�

where r=distance between the two atoms and C=London disper-

sion coefficient.
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Then, with the assumption of additivity of these attractive
forces, the interaction energy of a molecule located at a distance
D of the planar surface of a solid made up of like molecules is the
sum of its interaction with all the molecules in the body:

W�D� = −
�C�

6D3 �2�

Where �=number of atoms per unit volume. The corresponding
van der Waals force is

F =
�W�D�

�D
=

�C�

2D4 �3�

It is then possible to calculate the interaction energy between two
solids as, e.g., two spheres:

W = −
AR1R2

6D�R1 + R2�
�4�

D=distance between two spheres; R1 and R2=radii of the two
spheres; A=�2C�1�2=Hamaker constant; and �1 and �2

=number of atoms per unit volume for the two bodies. For two
flat surfaces, one obtains the interaction energy per unit area:

W = −
A

12�D2 �5�

The van der Waals force between two solids in contact can then
be computed from the interaction energy. One obtains the follow-
ing two cases;

Between two spheres:

f = 2�W�D�
R1R2

R1 + R2
�6�

Eq. �6� is called the Derjaguin approximation �Israelachvili 1992�.
In the case of two identical spheres, Eq. �6� becomes

f =
AR

12D2 �7�

Between two flat surfaces, per unit area:

f =
A

6�D3 �8�

Let us now consider two soil grains as two identical elastic
spheres. If subjected to an external force f , the two spheres will
deform and create a flat circular contact area with a radius a

a = �3�1 − �p
2�R

4Ep
�1/3

f1/3 �9�

where Ep and �p=Young’s modulus and Poisson’s ratio of the
particles, respectively. The derivation of Eq. �8� can be found in
Derjaguin et al. �1975�, Johnson �1971�, Dahneke �1972�, and
Valverde et al. �2001�. It is noted that for simplicity, we consider
only the case of elastic contact flattening �Eq. �9��. For the case of
elastic–plastic flattening, refer to Molerus �1978�, Thornton and
Ning �1998�, and Tomas �2001�.

Under these simplified conditions, van der Waals forces acting
on the two particles can be considered as the sum of two terms,
one due to the interaction between two flat surfaces of area S
=�a2 and one along the remaining surface of the two spheres.
Using the Derjaguin approximation for the second term, we ob-
tain the expression of the van der Waals force between two

particles:



f =
A

6D3a2 +
AR

12D2 �10�

where A=Hamaker coefficient; D=thickness of molecules layer
between two particles; and R=radius of particles. Hamaker con-
stant A was estimated to be 4.3�10−20 J for lunar soil and 1.5
�10−20 J for terrestrial quartz sand �Perko et al. 2001�.

The thickness of molecules layer between two particles D are
highly dependent on the atmospheric pressure and composition.
On the Moon, the atmospheric pressure is nearly zero, which can
lead to a very thin layer of molecules between two particles com-
pared to that under a terrestrial environment. Therefore, according
to Eq. �10�, it is reasonable to expect that the surface-energy
forces between particles are much higher than those between par-
ticles under a terrestrial environment.

It is noted that if the radius a of the contact area in Eq. �10�
increases with confining stress of a specimen. Thus, the surface-
energy force also increseases with confining stress, which indi-
cates that the surface-energy force will contribute to the shear
strength not only on the cohesive component but also on the
frictional component.

The orientation of a contact plane between two particles is
defined by the vector perpendicular to this plane. On each contact
plane, an auxiliary local coordinate can be established as shown
in Fig. 3. The surface-energy force f given in Eq. �10� represents
only the force magnitude. Its direction is normal to the interpar-
ticle contact plane given by ni

�. Thus in a vector form, the
surface-energy force f i

��SE�= fni
�.

Between two particles, the interparticle force f i
� can be decom-

posed into two components: �1� due to applied load on the bound-
ary of the soil assembly f i

��A�, and �2� due to surface-energy forces
between particles f i

��SE�. Thus,

f i
� = f i

��A� + f i
��SE� �11�

The surface-energy force is a function of contact area as
shown in Eq. �10�. However, the contact area is, in turn, a func-
tion of interparticle force f i

� �see Eq. �9��, thus the expression of
Eq. �11� is implicit and nonlinear in nature.

Interparticle Force–Displacement Relationship

Elastic Part

The contact stiffness of a contact plane includes normal stiffness,
kn

�, and shear stiffness, kr
� �assuming kr

�=kt
�=ks

��. The elastic stiff-
ness tensor is defined by

f i
� = kij

�e� j
�e �12�

which can be related to the contact normal and shear stiffness

kij
�e = kn

�ni
�nj

� + kr
��si

�sj
� + ti

�tj
�� �13�

where n, s, and t=three orthogonal unit vectors that form the local
coordinate system �see Fig. 3�. The vector n is outward normal to
the contact plane. Vectors s and t are on the contact plane.

The value of the stiffness for two elastic spheres can be esti-
mated from Hertz–Mindlin’s formulation �Mindlin 1969�. For
sand grains, a revised form was adopted �Chang et al., 1989�,

given by
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kn = kn0� fn

Ggl2�n

, kr = kr0� fn

Ggl2�n

�14�

where Gg=elastic modulus for the grains; fn=contact force in
normal direction; l=branch length between the two particles;
kn0 ,kr0, and n=material constants. For two spherical particles, the
branch length is the same as the particle size l=d. If the Hertz–
Mindlin’s contact formulation is used, the value of kn0 in Eq. �14�
can be expressed as

kn0 = Gg

d

2
� �12

1 − �g
�2/3

�15�

Plastic Part
The elastic sliding behavior between two particles does not have
a coupling effect �i.e., the sliding direction is on the contact plane;
no movement component is in the normal direction.�. However,
the plastic sliding often occurs with an upward or downward
movement, thus the shear dilation/contraction takes place. The
stress dilatancy is a well-recognized phenomenon in sand �see
discussions in the work by Taylor �1948�, Rowe �1962�, and God-
dard and Bashir �1990��, and should be correctly modeled. The
dilatancy effect has been described by �Chang and Hicher 2005�

�̇n
p

�̇p
=

fr

fn
− tan �0 �16�

where �0=material constant which, in most cases, can be consid-
ered equal to the interparticle friction angle �	. Note that the

shear force T and the rate of plastic sliding �̇p are defined as

fr = �fs
2 + f t

2, �̇p = ���̇s
p�2 + ��̇t

p�2 �17�

The yield function is assumed to be of Mohr–Coulomb type,

F�f i,
� = fr − fn
��p� = 0 �18�

where 
��P�=isotropic hardening/softening parameter. When F
�0, it indicates loading, otherwise unloading. The hardening
function, defined as a hyperbolic relationship between 
 and �p,
involves two material constants: �p and kp0 �Chang and Hicher
2005�.


 =
kp0 tan �p�p

�fn�tan �p + kp0�p �19�

The value of 
 asymptotically approaches tan �p. The initial
slope of the hyperbolic curve is kp0. On the contact plane, under a

yield condition, the direction of plastic shear sliding �̇p follows
the associated flow rule, thus, it is perpendicular to the yield

Fig. 3. Local coordinate at interparticle contact
surface. However, the plastic movement in the direction normal to



the contact plane is governed by the stress-dilatancy equation
shown in Eq. �16�. Thus the overall flow rule is nonassociated.

Interlocking Influence
One of the important elements to be adopted in granular modeling
is the critical state concept. Under critical state, the granular ma-
terial remains at a constant volume whereas it is subjected to a
continuous distortion. The void ratio corresponding to this state is
denoted as ec.

The critical void ratio ec is a function of the mean stress. The
relationship has traditionally been written as follows:

ec = � −  log�p�� or ec = eref −  log� p�

pref
� �20�

where � and =two material constants; p�=mean stress of the
packing, and �eref , pref�=reference point on the critical state line.

The interparticle friction angle �	 is a constant for the mate-
rial. However, the peak friction angle, �p, on a contact plane
between two particles is dependent on the degree of interlocking
of neighboring particles, which can be related to the state of pack-
ing void ratio e by

tan �p = � ec

e
�m

tan �	 �21�

where m=material constant �Biarez and Hicher 1994�.
For dense packing, the peak frictional angle �p is greater than

�	. When the packing structure dilates, the degree of interlocking
and the peak frictional angle are reduced, which results in a
strain-softening phenomenon.

Elastoplastic Force–Displacement Relationship

With the elements discussed previously, the relations between the
rate of force displacement for two particles can be derived that
includes both elastic and plastic behavior, given by

ḟ i
� = kij

�p�̇ j
� �22�

The detailed expression of kij
�p can be found in Chang and

Hicher �2005�.

Stress–Strain Relationship

Macro- and Microrelationships

The stress–strain relationship for an assembly can be determined
from integrating the behavior of all interparticle contacts. During
the integration process, a relationship is required to link the
macro- and microvariables. Using the static hypotheses proposed
by Liao et al. �2000�, we obtain the relation between the macros-
train rate and interparticle displacement rate �here, we do not
consider the finite-strain condition�

u̇j,i = Aik
−1	

�=1

N

�̇ j
�lk

� �23�

where �̇ j =relative displacement rate between two contact par-
ticles and the branch vector lk=vector joining the centers of two
contact particles. It is noted that contact particles include both
direct contact and indirect contact of neighboring particles asso-
ciate with a Voronoi polyhedron as discussed by Cambou et al.

�2000�. For convenience, we let N be the total number of contacts.
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The variables �̇ j
� and lk

� are defined, respectively, as the values of

�̇ j and lk associated with the �th contact. The fabric tensor Aik in
Eq. �23� is defined as

Aik = 	
�=1

N

li
�lk

� �24�

Using the principle of energy balance and using Eq. �23�, the
mean force rate on the �th contact is

ḟ j
� = �̇ijAik

−1lk
�V �25�

In Eq. �25�, the stress increment �̇ij can be obtained by the
contact forces and branch vectors for all contacts �Christofferson
et al. 1981; Rothenburg and Selvadurai 1981�:

�̇ij =
1

V	
�=1

N

ḟ j
�li

� �26�

Applying the defined contact force in Eq. �25�, Eq. �26� is uncon-
ditionally satisfied. Because of its approximation nature, Eq. �25�
can be viewed as an averaged solution, in which the interparticle
force can be regarded as the mean value for forces on all contact
planes of the same orientation. For convenience, we also regard
the branch length as the mean value for all contact planes of the
same orientation.

The interparticle force in of Eq. �26� consists of two parts:
f i

��A� due to applied load on the boundary of the soil assembly, and
f i

��SE� due to surface-energy forces between particles �see Eq.
�11��. Thus the stress can be separated into two parts:

�̇ij =
1

V	
�=1

N

ḟ j
��A�li

� +
1

V	
�=1

N

ḟ j
��SE�li

� �27�

The second part of Eq. �27� represents the stress induced by
surface-energy forces denoted as

��̇ij�SE =
1

V	
�=1

N

ḟ j
��SE�li

� �28�

It is noted that this term is not analogous to the usual concept
of cohesion for bulk material. In the present model, the surface-
energy stress depends on the packing structure and is a tensor
rather than a scalar. Only for an isotropic distribution of the
branch lengths l�, the surface-energy stress can be reduced to an
isotropic tensor.

As mentioned earlier, the surface-energy force is a function of
contact area, which is in turn a function of interparticle force.
Thus all equations in the second section are nonlinear in nature.
The set of nonlinear equations for the stress–strain relationship is
discussed in next section.

Computation Scheme

The problem is defined by the following. Initially, we know the
global variables ��ij and �ij� for the assembly and the local vari-
ables �f j

� and � j
�� for each contact orientation. For a given loading

increment, which can be stress control, strain control, or mixed
mode, out of the 12 variables ��̇ij and �̇ij�, 6 of them are un-
known. The objective is to determine all global variables ��ij and
�ij� and local variables �f j

� and � j
�� at the end of load increment.

For a system with N interparticle orientations, the number of un-

known is 3N for ḟ j
� and 3N for �̇ j

�. The total number of unknown

is 3N+3N+6.



The following constraints must be satisfied:
1. The local constitutive equation, i.e., Eq. �22�. As there are

three equations for each contact plane orientation, the total
number of equations is 3N, N being the total number of in-
terparticle orientations.

2. Static hypothesis between global stress and local forces, i.e.,
Eq. �25�: the number of equations is 3N.

3. Strain definition between global strain and local displace-
ment, i.e., Eq. �23�. The number of equations is 6 �strain is
symmetric�.

The total number of unknowns is the same as the total number of
equations. Therefore, the solution can be determined.

Using Eqs. �22�, �23�, and �25�, the following relationship be-
tween stress and strain can be obtained:

u̇i,j = Cijmp�̇mp �29�

where

Cijmp = Aik
−1Amn

−1 V	
�=1

N

�kjp
ep�−1lk

�ln
�

The summation in Eq. �29� can be replaced by an integral over
orientations. The integral can lead to a closed-form solution for
the elastic modulus of randomly packed equal-size particles
�Chang et al. 1995�. However, in the elastic plastic behavior, due
to the nonlinearity nature of the local constitutive equations, a
numerical calculation with iterative process is necessary to carry
out the summation in Eq. �29�. In order to facilitate the numerical
calculation, the orientations are selected to coincide with the lo-
cations of Gauss integration points in a spherical coordinate.
Summation over these orientations with the Gauss weighting fac-
tor for each orientation is equivalent to determining the integral
over orientations. Results were found to be more accurate by
using a set of fully symmetric integration points. From a study of
the performance of using different numbers of orientations, we
found N�74 to be adequate �Chang and Hicher 2005�.

For a strain-controlled test, Eq. �29� is not useful especially at
the after-peak range of strain softening. In this case, a method of
“elastic predictor-plastic corrector” was adopted to obtain the so-
lution. For a mix-mode loading condition, an additional process
of distributing the unbalance stresses was also needed �Chang and
Hicher 2005�.

Summary of Parameters

One can summarize the material parameters as:
1. Normalized contact number per unit volume: Nl3 /V.
2. Mean particle size, d:

• Interparticle elastic constants: kn0, kr0, and n;
• Interparticle friction angle: �	 and m;
• Interparticle hardening rule: kp0 and �0; and
• Critical state for the packing:  and � or eref and pref.
Besides critical state parameters, all other parameters are for

interparticles. Standard values for kp0 and �0 are the following:
kp0=kn0 and �0=�	 and a typical ratio kr0 /kn0=0.4 can be gen-
erally assumed. Therefore, only six parameters have to be derived
from experimental results and they can all be determined from the
stress–strain curves obtained from drained compression triaxial
tests.

Regarding the effect of the particle size, Eq. �15� shows that
the interparticle stiffness kn0 is influenced by the mean particle
size. As in this model, the tangential stiffness kr0 and the plastic

stiffness kp0 are directly related to kn0, they are also particle size
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dependent. Considering an assembly of particles under an exter-
nally applied stress, according to Eqs. �14� and �15� and using the
expression of contact force in terms of external stress, the inter-
particle stiffness is proportional to the mean particle size �see
Liao et al. 2000�:

kn � Gg
1−nd�Nl3

V
�−n

�n �30�

Although the magnitude of the interparticle stiffness is depen-
dent on the particle size, the elastic shear modulus of a packing is
not particle-size dependent. This can be derived by the fact that
the shear modulus of a packing is proportional to kn /d, thus it
leads to �Liao et al. 2000�

G � Gg
1−n���n�Nl3

V
�1−n

�31�

Note that the dimensionless density factor Nl3 /V is a function
of the void ratio only. Thus, the shear modulus of the packing is
not particle-size dependent.

Results of Numerical Simulation

Triaxial Tests on Terrestrial Soil without Surface
Energy Forces

A series of drained triaxial tests on fine Hostun Sand were per-
formed by Al Mahmoud �1999�. The gradation curve tested sand
is shown in Fig. 4. The mean size of the particles for fine Hostun
sand is d=0.5 mm. It is classified as uniform fine sand. The mini-
mum and maximum void ratio for this sand is emin=0.575 and
emax=0.943, respectively.

It is assumed here that surface-energy forces can be neglected
under terrestrial conditions. This assumption will be discussed in
the next section. The model needs a small number of input pa-
rameters, such as mean particle size, particle stiffness, interpar-
ticle friction, initial porosity tensor, and an initial degree of
interlocking. The interparticle elastic constant kn0 is assumed as
61,000 N /mm. Considering the grain size distribution curve, the
contact numbers per volume Nl3 /V are 2 for dense sand and 0.9
for loose sand �Hicher and Chang 2005�. The evolution of Nl3 /V
due to new contact generation with neighboring particles was not
considered.

The value of kr0 /kn0 is commonly about 0.4, corresponding to
a Poisson’s ratio for Hostun Sand �=0.2 and the exponent n
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Fig. 4. Gradation curve for fine Hostun sand
=0.5 �Biarez and Hicher 1994�. From test results, we were able to



derive the values of the two parameters corresponding to the po-
sition of the critical state in the e– p� plane: =0.14 and pref

=0.01 MPa for eref=1.05. The friction angle �	 was also deter-
mined from the stress state corresponding to the critical state:
�	=34°. The equation governing the dilatancy rate requires the
determination of the parameter �0. This parameter represents the
concept of “phase transformation” as defined by Ishihara and
Towhata �1983� or “characteristic state” as defined by Luong
�1980�. A value of �0=�	 was retained.

The peak friction angle is not an intrinsic parameter, but varies
with the void ratio according to Eq. �21�. A value of m=1.5 was
determined from the test results. The values of kp0 are directly
connected to the elastic properties through the relation: kp0=kn.
The set of parameters for fine Hostun sand is presented in Table 1.

The tests were performed at different confining pressures on
samples prepared at different initial void ratios. Typical results are
presented in Figs. 5 and 6, which show the triaxial testing results
for both dense and loose specimens made of Hostun sand. The
stress–strain curves are plotted for dense sand in Fig. 5, and loose
sand in Fig. 6. The model performance can be demonstrated by
comparing the predicted and measured macrobehavior.

One can see the combined influence of the initial void ratio
and of the mean effective stress on the stress–strain curves and
the volumetric change. The stress–strain curve has a peak, which
increases with confining stress. For dilatant materials, the devia-

Table 1. Model Parameters for Fine Hostun Sand

eref

pref

�MPa�  �	 �deg� �0 �deg� m kp0 /kn

1.05 0.01 0.14 34 34 1.5 0.02
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Fig. 5. Stress–strain curves for dense Hostun sand
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toric stress reduces after peak and converges toward a constant
state of stress corresponding to the critical state. In practice, it is
difficult to reach this state because of strain localization, espe-
cially in dense materials. The critical state was estimated from the
results on loose specimens.

Triaxial Tests with Consideration of Surface Energy
Forces

In order to evaluate the possible effect of lunar environmental
conditions on the stress–strain response of soils, the influence of
the surface-energy forces for different values of interparticle dis-
tance D was examined. The stress–strain curves were predicted
using the same soil parameters given in Table 1. Given the intro-
duction of van der Waals forces, shear strength is expected to be
higher. Fig. 7 shows the influence of the distance D between the
particles on the shear strength for soil specimens under 20 kPa
confining stress, where q0 represents the shear strength for soil
without surface-energy forces and q represents the shear strength
with the effect of these forces.

It is noted that when the distance D is greater than 2 nm, the
effect of the van der Waals forces is practically negligible. This
distance D is a function of the amount of molecules, which can be
adsorbed on the solid surface. The adsorbate thickness may be
estimated by means of potential theory �Adamson 1990; Perko
et al. 2001�. Molecule adsorption on a solid surface is conditioned
by temperature, gas pressure, and atmospheric composition. On
Earth, adsorption conditions are easily fulfilled due to the pres-
ence of a high atmospheric pressure. Therefore, the distance D
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Fig. 6. Stress–strain curves for loose Hostun sand
can easily exceed several nanometers such that the effect of the



van der Waals force is negligible. Under lunar atmospheric con-
dition, the thickness of the adsorbed molecule layer is likely to be
very thin. For the case of 0.3 nm thickness �D=0.6 nm�, the com-
parisons of the stress–strain curves in the Earth’s and the Moon is
atmosphere environments are given in Fig. 8 for dense soil and
Fig. 9 for loose soil under a 20 kPa confining stress. Assuming
the thickness D is 0.3–0.6 nm, the computed shear strength for
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Fig. 7. Effect of distance between particles on shear strength
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lunar soils is 12–15% higher than that of the Earth’s soil. The
stiffness of the lunar soil is also higher. By plotting the maximum
shear strength envelope in the Mohr plane for specimens under
different confining stresses, the effect of van der Waals forces for
the dense sand would result in an increase of 2–3 kPa in cohe-
sion, whereas an increase of 0.5 kPa in cohesion is sufficient to
hold a 1 m trench cut in lunar gravity condition.

Summary and Conclusion

In the present study we introduce surface-energy forces between
particles and estimate its effect on the shear strength of soil. The
microstructural approach is adopted because it allows us to model
interactions at particle level.

In the model, a simple elastic-plastic behavior was assumed on
each contact plane. The elastic part is based on the Hertz–
Mindlin’s contact formulation, whereas the plastic part is based
on a Mohr–Coulomb friction law with an isotropic hardening as-
sumption and a nonassociated flow rule. The interaction among
interparticle planes is assumed to be dependent on the degree of
interlocking and porosity of the assembly of soil. The effect of
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porosity is modeled by a phenomenological approach using the



concepts of critical state such that strain softening behavior can
be modeled for dense materials. On the whole, the model requires
a limited number of parameters, which can easily be determined
from conventional triaxial tests.

Ability of the model to reproduce the main features of sand
behavior has been demonstrated. Model simulations were com-
pared with drained triaxial tests results at different initial void
ratios and different confining stresses leading to contractant or
dilatant behavior of the sand specimens. The comparison demon-
strated that the model is capable of reproducing the general trend
for both loose and dense sands.

The model was applied to predict the shear strength of lunar
soil under extremely low atmospheric pressure. Model predictions
indicate that soil under extremely low atmospheric pressure has
an increase of shear strength by 12–15% higher than the one
which would be present under Earth’s atmospheric pressure. The
magnitude is in the same order as the measured increase of shear
strength for lunar soil simulants tested under the usual atmo-
spheric pressure and under a chamber with ultrahigh vacuum.
However, the predicted shear strength for lunar soil due to
surface-energy forces is only a hypothesis, which must await fur-
ther testing on the Moon for validation/calibration.
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