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Extension of subset simulation approach for uncertainty propagation and global sensitivity

analysis

Ashraf Ahmed and Abdul-Hamid Soubra*

University of Nantes, Saint-Nazaire, France

The subset simulation (SS) method is a probabilistic approach which is devoted to efficiently calculating a small

failure probability. Contrary to Monte Carlo Simulation (MCS) methodology which is very time-expensive when

evaluating a small failure probability, the SS method has the advantage of assessing the small failure probability

in a much shorter time. However, this approach does not provide any information about the probability density

function (PDF) of the system response. In addition, it does not provide any information about the contribution of

each input uncertain parameter in the variability of this response. Finally, the SS approach cannot be used to

calculate the partial safety factors which are generally obtained from a reliability analysis. To overcome these

shortcomings, the SS approach is combined herein with the Collocation-based Stochastic Response Surface

Method (CSRSM) to compute these outputs. This combination is carried out by using the different values of the

system response obtained by the SS approach for the determination of the unknown coefficients of the

polynomial chaos expansion in CSRSM. An example problem that involves the computation of the ultimate

bearing capacity of a strip footing is presented to demonstrate the efficiency of the proposed procedure. The

validation of the present method is performed by comparison with MCS methodology applied on the original

deterministic model. Finally, a probabilistic parametric study is presented and discussed.

Keywords: subset simulation; polynomial chaos expansion; strip footing

1. Introduction

Monte Carlo Simulation (MCS) methodology is well

known to be a rigorous and robust tool to calculate

the failure probability (Pf) of a mechanical system.

However, it becomes very time-consuming when

computing a small failure probability. This is due to

the large number of calls of the deterministic model

required in such a case. As an alternative to MCS

methodology, the subset simulation (SS) approach

was proposed by Au and Beck (2001) to calculate the

small failure probability using a much smaller num-

ber of calls of the deterministic model. In this

approach, the failure probability is expressed as a

product of conditional probabilities of some chosen

intermediate failure events. Thus, the problem of

evaluating a small failure probability in the original

probability space is replaced by a sequence of more

frequent events in the conditional probability space.

It should be mentioned here that the SS approach

is efficient in computing the failure probability, but it

does not provide any information about the prob-

ability density function (PDF) of the system response

(i.e. it does not allow one to perform an uncertainty

propagation from the input variables to the system

output). Also, it does not provide any information

about the contribution of each input uncertain

parameter to the variability of the system response

(i.e. it does not allow one to perform a global

sensitivity analysis). In addition, the SS approach

does not allow one to calculate the design point (the

most probable failure point) which is obtained during

a reliability-based analysis. Notice that the computa-

tion of the design point has an important practical

implication since it provides the partial safety factor

corresponding to each input random variable. To

overcome the above-mentioned shortcomings, the SS

approach is combined herein with the Collocation-

based Stochastic Response Surface Method

(CSRSM). The procedure of combining SS approach

with CSRSM is illustrated in this article through an

example problem. In this example, a probabilistic

analysis at the ultimate limit state (ULS) of a strip

footing resting on a (c, 8) soil and subjected to a

central vertical load Ps is performed. First, a classical

SS computation is performed to calculate the failure

probability. Then, the deterministic system responses

obtained during this computation are used in a

CSRSM analysis with no additional cost to obtain

the other outputs cited earlier (i.e. uncertainty

propagation, global sensitivity analysis and reliabil-

ity-based analysis).
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In this article, the uncertainties of the soil shear

strength parameters (c and 8) are taken into account

by considering c and 8 as random variables. The

system response adopted in the analysis is the

ultimate bearing capacity (qu). In order to be able to

perform a validation of the present approach with

MCS methodology applied on the original determi-

nistic model, an analytical deterministic model is used

in this study for the computation of the system

response. This model is based on the kinematic

approach of the limit analysis theory.

The present article is organised as follows: a brief

review of both the SS approach and the CSRSM is

presented. Then, the combination of the SS approach

with CSRSM is described. This is followed by the

example problem to illustrate the efficiency of the

proposed procedure.

2. Review of the SS approach

Subset simulation (SS) was proposed by Au and Beck

(2001) to compute small failure probabilities. This

method was used by several authors (Au and Beck

2003, Schuëller et al. 2004, Au et al. 2007, 2010

among others) and was found to be an efficient tool

compared to MCS methodology. The basic idea of SS

is that the small failure probability can be expressed

as a product of larger conditional failure probabil-

ities. Consider a failure region F defined by the

condition GB0 where G is the performance function

and let s1, . . ., sk, . . ., sNt
be a sample of Nt realisations

of a vector ‘s’ where ‘s’ is composed of M random

variables. It is possible to define a sequence of nested

failure regions F1, . . ., Fj, . . ., Fm of decreasing size

where F1‡ .. ‡Fj‡ .. ‡Fm�F (Figure 1). An

intermediate failure region Fj can be defined by

GBCj, where Cj is an intermediate failure threshold

whose value is larger than zero. Thus, there is a

decreasing sequence of positive failure thresholds

C1, . . ., Cj, . . ., Cm corresponding respectively to

F1, . . ., Fj, . . ., Fm, where C1�. . .�Cj� . . . �Cm�0.

In the SS approach, the space of uncertain parameters

is divided into a number m of levels with equal

number Ns of realisations (s1, . . ., sk, . . ., sNs ) in each

level, so that the total number Nt of realisations is

Nt�m�Ns. An intermediate level j contains a safe

region and a failure region defined with respect to a

given failure threshold Cj. The failure probability

corresponding to this intermediate level j is calculated

as follows:

P Fj Fj�1

�

�

� �

¼
1

Ns

X

Ns

k¼1

IFj
ðskÞ (1)

where IFj
ðskÞ ¼ 1 if sk �Fj and IFjðskÞ ¼ 0 otherwise.

Notice that in the SS approach, the firstNs realisations

are generated using MCS methodology according to a

target PDF (Pt). The next realisations of the subse-

quent levels are obtained using the Markov chain

method based on a modifiedMetropolis-Hastings (M-

H) algorithm by Santoso et al. (2010) using a proposal

PDF (Pp). The modified M-H algorithm by Santoso

et al. (2010) is explained in some detail in Appendix 1.

The failure probability P(F)�P(Fm) of the failure

region F can be calculated from the sequence of

conditional failure probabilities as follows:

PðFÞ ¼ PðFmÞ

¼ P Fm Fm�1jð Þ � P Fm�1 Fm�2jð Þ � P Fm�2 Fm�3jð Þ

� . . . � P F2 F1jð Þ � PðF1Þ

(2)

It should be noted here that the computation of the

failure probability P(F) may be determined using

alternatively one of the two following procedures:

The first procedure consists firstly in prescribing a

sequence of failure thresholds C1, . . ., Cj, . . .Cm so

that C1�. . .�Cj� . . .�Cm�0 and then, calculat-

ing the different values of P(FjjFj�1) for the different

levels using Equation (1). The second procedure

consists first in prescribing a constant conditional

failure probability P(FjjFj�1) for the different levels

and then, in calculating the different Cj values

corresponding to these levels. In the present article,

the second procedure is used. Notice that, for

simplicity in notations, the constant conditional fail-

ure probability will be referred to as p0 in the

following sections.

The algorithm of SS approach can be described by

the following steps:Figure 1. Nested failure domain.
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(1) Generate a realisation of the vector ‘s’ of

random variables by MCS according to the

target PDF (Pt).

(2) Using the deterministic model, calculate the

system response corresponding to this realisa-

tion.

(3) Repeat steps 1 and 2 until obtaining a pre-

scribed number Ns of realisations of the vector

‘s’ and the corresponding system response

values. Then, evaluate the corresponding va-

lues of the performance function to obtain the

vector G0 ¼ fG10; :::;G
k
0; :::;G

Ns

0 g. Notice that
the subscripts ‘0’ refer to the first level (level

0) of SS.

(4) Prescribe a constant failure probability p0 for

all the failure regions Fj and evaluate the first

failure threshold C1 which corresponds to

the failure region F1 where C1 is equal to the

[(Ns�p0)�1]th value in the increasing list of

elements of the vector G0. This ensures that the

value of P(F1) will be equal to the prescribed

value of p0, i.e. the ratio between the number of

realisations corresponding to GBC1 and the

number of realisations Ns generated at level 0 is

equal to the prescribed value p0.

(5) Among the Ns realisations, there are [Ns�p0]

ones whose values of the performance function

are less than C1 (i.e. they are located in the

failure region F1). These realisations are used as

‘mother realisations’ to generate additional

[(1�p0)Ns] realisations of the vector ‘s’ using

Markov chain method based on Metropolis-

Hastings algorithm. These new realisations are

located in the second level (level 1 in Figure 1).

(6) The values of the performance function corre-

sponding to the realisations of level 1 are

listed in an increasing order and are gathered

in the vector of performance functions

G1 ¼ fG11; :::;G
k
1; :::;G

Ns

1 g.
(7) Evaluate the second failure threshold C2 as the

[(Ns�p0)�1]th value in the increasing list of

the vector G1.

(8) Repeat steps 5�7 to evaluate the failure thresh-

olds C3, C4, . . ., Cm corresponding to the failure

regions F3, F4, . . ., Fm. Notice that contrary to

all other thresholds, the last failure threshold

Cm is negative. Thus, Cm is set to zero and the

conditional failure probability of the last level

[P(Fm/Fm�1)] is calculated as:

P Fm Fm�1jð Þ ¼
1

Ns

X

Ns

k¼1

IFm
ðskÞ (3)

where IFm
ðskÞ ¼ 1 if the performance function

G(sk) is negative and IFm
ðskÞ ¼ 0 otherwise.

(9) Finally, the failure probability P(F) is evalu-

ated according to Equation (2).

It should be mentioned that, in the present study, a

Gaussian PDF was used as a target PDF Pt (i.e. it

was used to generate the Ns realisations of the first

level of SS). Concerning the type of the proposal PDF

Pp (which is used to generate the realisations of levels

1, . . ., j, . . ., m�1), it does not affect the efficiency of

the SS approach, and hence, any PDF which can be

operated easily can be used as a proposal PDF (see

Au and Beck 2001). In this article, similar to Au and

Beck (2001, 2003) and Santoso et al. (2010), a

uniform PDF was used. The conditional failure

probability p0 was chosen to be equal to 0.1. Notice

that the value of p0 affects the number m of levels

required to reach the limit state surface G�0.

However, it has a very small effect on the total

number of realisations Nt (which is a multiple of the

number of levels i.e. Nt�m�Ns) required to reach

this limit state surface. Indeed, if p0 is large, the

sequence of failure thresholds C1, . . ., Cj, . . ., Cm will

decrease slowly and a large number of levels will be

required to reach the limit state surface. In this case, a

small number Ns of realisations per level is required

to achieve a target high accuracy of P(F). On the

contrary, if p0 is small, the sequence of failure

thresholds will reach the limit state surface quickly

and a small number of levels will be required. In this

case, a large number Ns of realisations per level will

be required to attain the same target accuracy of

P(F). As a conclusion, an arbitrary value of p0 can be

considered for the probabilistic analysis with a small

effect on the computational time.

3. Review of the CSRSM

CSRSM involves the propagation of the uncertainties

of the input parameters through a computational

model to arrive at a random output (Isukapalli et al.

1998, Huang et al. 2009, Li et al. 2011, Mollon et al.

2011, Houmadi et al. 2012, Mao et al. 2012). Thus,

this method allows one to determine the PDF of the

system response by taking into account the uncer-

tainties of the input parameters via their PDFs.

The basic idea of CSRSM is to approximate the

system response by a polynomial chaos expansion

(PCE) of a suitable order p (i.e. it replaces the

complex finite difference or finite element model by

a meta-model). This approximation is carried out in

this article in the standard normal space of uncorre-

lated random variables. Thus, the random input

variables (which may be non-normal and/or corre-

lated) should be represented in terms of uncorrelated

standard normal random variables. Consequently,
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the system response Y may be approximated by Yapp
as follows:

Y 	 Yapp ¼
X

P�1

i¼0

aiWi nð Þ (4)

where ai are the unknown coefficients to be evaluated,

P is the size of the expansion (which is equal to the

number of the PCE coefficients), j is a vector of M

standard uncorrelated random variables where M is

the number of the uncertain parameters and Ci are

multivariate Hermite polynomials. The multivariate

Hermite polynomials are given in Mollon et al.

(2011), among others. The size P of the PCE is given

by:

P ¼
Mþ pð Þ!

M!p!
(5)

where p is the PCE order. The PCE coefficients can be

determined either by a regression or by a projection

approach. In this work, a regression approach is used.

This approach requires the evaluation of the system

response at a given number of collocation points.

These collocation points are commonly chosen as the

combinations of the roots of the one-dimensional

Hermite Polynomial of order (p�1) for each random

variable. For example, if a PCE of order p�2 is used

to approximate the response of a system with M�2

random variables, the roots of the one-dimensional

Hermite Polynomial of order 3 are chosen for each

random variable. These roots are (��3, 0, �3) for the

first variable and (��3, 0, �3) for the second

variable. In this case, 9 collocation points are avail-

able. These available collocation points are (��3, �

�3), (��3, 0), (��3, �3), (0, ��3), (0, 0), (0, �3),

(�3, ��3), (�3, 0) and (�3, �3). The number N of

the available collocation points can be obtained using

the following formula:

N ¼ pþ 1ð Þ
M

(6)

The CSRSM may be summarised by the following

steps:

(1) For a prescribed order p of the PCE, determine

the pattern (number and positions) of the

available collocation points in the standard

space of random variables.

(2) Transform the collocation points from the

standard to the physical space where the input

random variables may be non-normal. This can

be carried out by using iso-probabilistic trans-

formation as follows:

X ¼ FXðUðnÞÞ (7)

where FX is the Cumulative Density Function

(CDF) of the physical random variable X and

F(j) is the standard Gaussian CDF. Notice

that if the physical random variables are

correlated, the standard normal random vari-

ables should be first correlated using the

Choloesky transformation as follows:

n1c
n2c

.

.

.

nMc

2

6

6

6

4

3

7

7

7

5

¼ H:

n1
n2

.

.

.

nM

2

6

6

6

4

3

7

7

7

5

(8)

in which {j1c, j2c, . . ., jMc} is the vector of

correlated standard variables, {j1, j2, . . ., jM} is the

vector of uncorrelated standard variables and H is the

Choloesky transformation of the correlation matrix

of the physical random variables.

(3) Compute the system response corresponding

to each collocation point in the physical space

using the deterministic mechanical model.

(4) Determine the values of the PCE coefficients by

regression. Notice that the number N of the

available collocation points is generally greater

than the number P of the unknown PCE

coefficients. This leads to a linear system of

equations whose number of equations N is

greater than the number P of unknowns. The

unknown coefficients of the PCE can be

computed by regression using the following

equation:

a ¼ W
T
W

� ��1
�WT � Y (9)

in which a is a vector containing the unknown

PCE coefficients, Y is a vector containing the

system responses as calculated by the deterministic

model at the different collocation points and C is a

matrix of size N�P whose elements are the

multivariate Hermite polynomials. It is given as

follows:

W ¼

W
1
0ðnÞ W

1
1ðnÞ W

1
2ðnÞ � � � W

1
P�1ðnÞ

W
2
0ðnÞ W

2
1ðnÞ W

2
2ðnÞ � � � W

2
P�1ðnÞ

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

W
N
0 ðnÞ W

N
1 ðnÞ W

N
2 ðnÞ � � � W

N
P�1ðnÞ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(10)
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(5) The PDF of the approximated system response

can be computed by applying MCS method on

the PCE determined previously. This is

achieved by (i) generating a large number of

realisations of the vector (j1, j2, . . ., jM) of

standard normal random variables and (ii)

calculating the system response corresponding

to each realisation by substituting the corre-

sponding vector (j1, j2, . . ., jM) in the PCE.

Thus, one obtains a vector of system response

values which can be used to provide the PDF of

this system response.

Finally, notice that although CSRSM is mainly

devoted to the computation of the PDF of the system

response, the determination of the PCE in CSRSM

has other advantages. One may cite among others:

(1) The PCE coefficients allow one to easily per-

form a global sensitivity analysis using the

PCE-based Sobol indices (cf. Sudret 2008,

Mollon et al. 2011). The computation of the

Sobol indices is important since it provides

the contribution of each random variable to the

variability of the system response. This helps

the engineers in detecting the uncertain input

parameters which have a significant weight in

the variability of the system response.

(2) The obtained PCE allows one to easily perform

a reliability-based analysis and a reliability-

based design (RBD) since the deterministic

model is now described by a simple analytical

equation (i.e. the PCE).

4. Extension of the SS approach

This study is devoted to employing the SS approach

to compute not only the failure probability but also

the PDF of the system response and the correspond-

ing statistical moments without an additional cost.

This aim can be achieved by combining the SS

approach with CSRSM.

It should be remembered here that in CSRSM, the

PCE coefficients are determined by using the values

of the system response calculated at several colloca-

tion points. Although the roots of the one-dimen-

sional Hermite polynomials are generally used for the

determination of the collocation points (Isukapalli

et al. 1998, Huang et al. 2009, Li et al. 2011, Mollon

et al. 2011), this technique is not mandatory. In this

article, the combination between SS approach and

CSRSM is carried out by using the realisations

calculated by SS approach as collocation points to

construct the PCE in CSRSM. Notice that the values

of the system response corresponding to these realisa-

tions are already calculated and thus, the computa-

tion of the PCE coefficients requires no additional

calls of the deterministic model.

Once the PCE coefficients are determined, the

MCS methodology is applied on the obtained PCE.

This allows one to obtain the PDF of the system

response. It should be emphasised here that the

application of MCS on the PCE requires a very small

computation time (since the system response is now

represented by an analytical formula); hence, it does

not affect the computation efficiency. In addition to

computing the PDF of the system response, the

proposed procedure has four other advantages:

(1) The computed PCE coefficients can be used to

perform a global sensitivity analysis via the

PCE-based Sobol indices. It should be men-

tioned here that the classical computation of

Sobol indices is based on MCS methodology

(Sobol 2001). This makes it very time-consum-

ing especially when dealing with a large number

of random variables. In the present study, the

PCE-based Sobol indices are used (e.g. Sudret

2008, Mollon et al. 2011). It should be empha-

sised here that the computation of the PCE-

based Sobol indices does not require any

additional call of the deterministic model. The

PCE-based Sobol indices are computed using

an analytical equation which makes use of the

PCE coefficients. Although the computation of

the PCE-based Sobol indices requires a small

computation time for a small number of

random variables, it becomes time-consuming

in case of a large number of random variables.

Even though, this time remains much smaller

than that required by the classical approach

based on MCS methodology.

(2) Contrary to the SS approach, the procedure

proposed in this study allows the computation

of the failure probability for all the values of

the failure threshold that are greater than the

one considered in the SS analysis without the

need to repeat the deterministic calculations

(i.e. without an additional cost). This is because

the limit state surfaces corresponding to larger

values of the failure threshold are closer to the

origin of the standard space of random vari-

ables and thus, they are included in the

sampling zone of the SS methodology as will

be seen later.

(3) The obtained PCE allows one to perform a

reliability-based analysis or a RBD. For the

reliability-based analysis, the Hasofer-Lind re-

liability index and the corresponding design

point can be easily determined since the PCE is

5



obtained in the standard uncorrelated space of

the random variables. This is done by searching

the point which is located on the limit state

surface and has the minimum norm in the

standard space of random variables. The design

point is of great importance since it provides

information about the partial safety factors of

the different random variables. Concerning the

RBD, the obtained PCE makes it easy to

compute the dimension of the structure (e.g.

the breadth of the footing) corresponding to a

target reliability index.

(4) The obtained PCE allows one to undertake a

probabilistic parametric study to show the

effect of the different characteristics of the

random variables (e.g. coefficient of variation

COV, coefficient of correlation r and the non-

normality) on the PDF of the system response.

5. Example analysis

In this section, the efficiency of the proposed proce-

dure to compute the different outputs cited above is

illustrated through an example problem. In this

example, a probabilistic analysis of a shallow strip

footing of breadth B�2 m resting on a (c, 8) soil and

subjected to a central vertical load Ps�650 kN/m (i.e.

a vertical footing pressure qs�325 kN/m
2) is per-

formed. The analysis is carried out at the ULS. The

system response is the ultimate bearing capacity qu.

The uncertain parameters considered in the analysis

are the soil shear strength parameters c and 8. They

are modelled as random variables. Two types of the

PDFs are used for these random variables (normal

and non-normal, as shown in Table 1). In the case of

non-normal random variables, the soil cohesion was

assumed to follow a log-normal PDF. However, the

soil friction angle was assumed to follow a beta

distribution with lower and upper bounds of 0 and

458, respectively. Also, two cases of uncorrelated (i.e.

rc,8�0) or correlated (i.e. rc,8��0.5) random

variables were also considered in the analysis. The

illustrative values used for the statistical parameters

of these random variables are those commonly

encountered in practice [Wolff (1985) and Phoon

and Kulhawy (1999) among others] and they are

presented in Table 1. These values will be referred to

hereafter as the reference values. The performance

function used to calculate the failure probability is

defined as follows:

G ¼ qu qs= Þ � 1ð (11)

The ultimate bearing capacity qu is calculated using

the deterministic model presented by Soubra (1999).

This model is based on the theory of limit analysis. It

will be briefly presented in the following subsection.

5.1. Deterministic model

The deterministic model is based on the upper-bound

theorem of the limit analysis theory using a kinema-

tically admissible failure mechanism. The approach is

simple and self-consistent, and it obtains rigorous

upper-bound solutions in the framework of the limit

analysis theory. The failure mechanism used for the

computation is a translational symmetrical multi-

block mechanism (Figure 2). The bearing capacity is

obtained by equating the total rate of work of the

external forces to the total rate of energy dissipation

along the lines of velocity discontinuities. The ulti-

mate bearing capacity (in the absence of a surcharge

loading on the ground surface) is given as follows:

qu ¼
1

2
cBNc þ cNc (12)

in which B is the footing breadth, g and c are the soil

unit weight and cohesion and Ng and Nc are the

bearing capacity factors due to soil weight and

cohesion, respectively. The coefficients Ng and Nc

are functions of the soil friction angle 8 and the

geometrical parameters of the failure mechanism

shown in Figure 2. The ultimate bearing capacity of

the foundation is obtained by minimisation of Equa-

tion (12) with respect to the mechanism’s geometrical

parameters. For further details on the failure mechan-

ism, the reader can refer to Soubra (1999). It should be

mentioned here that although the results given by this

approach are upper-bound solutions, they are the

smallest ones against the available results given by

rigid block mechanisms. Notice also that the compu-

tation time of the ultimate bearing capacity is equal to

about 0.2 minutes. The small computation time of this

model admits the validation of the proposed proce-

dure by comparing with the results given by MCS

Table 1. Statistical characteristics of the random variables.

Type of the probability density function (PDF)

Random variable Mean Coefficient of variation (%) Case of normal PDFs Case of non-normal PDFs

c 20 kPa 20 Normal Log-normal

8 30o 10 Normal Beta
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methodology applied on the original deterministic

model, as will be shown in the next section. Finally,

notice that the deterministic ultimate bearing capacity

(i.e. the ultimate bearing capacity obtained using the

mean values of c and 8 given in Table 1) is equal to

1071.72 kN/m2. Thus, for the adopted qs value

(qs�325 kN/m2), the punching safety factor

Fp�qu/qs is equal to 3.3.

5.2. Validation of the proposed procedure by

comparison with MCS methodology

This section is devoted to the validation of the

proposed procedure by comparison of the obtained

results with those given by MCS methodology

applied on the original deterministic model. The

comparison involves the values of the failure prob-

ability together with the PDF and the statistical

moments (mean, coefficient of variation, skewness

and kurtosis) of the system response. Notice that

normal and uncorrelated random variables are con-

sidered herein.

It should be noticed here that in addition to the

number and position of the collocation points,

the PCE order plays a key role in the accuracy of

the approximation by a PCE. The optimal PCE order

was chosen in this study. An optimal order was

defined as the minimal order that leads to a coeffi-

cient of determination R2 (see Appendix 2) greater

than a prescribed value (say 0.9999). In fact, a

prescribed small value of p (say p�2) is firstly chosen

and the corresponding value of R2 is calculated.

Secondly, p is successively increased until obtaining

a sufficiently large value of R2 (0.9999 in this paper).

The numerical results have shown that a third-order

PCE is necessary to satisfy the prescribed condition

on the coefficient of determination (Table 2). Thus,

this PCE order will be used in all subsequent

probabilistic calculations performed in this article.

5.2.1. Validation in terms of failure probability (Pf)

To ensure a rigorous computation of the failure

probability by SS approach, the number of realisations

of random variables Ns to be used per level must be

sufficient to provide a small value of the coefficient of

variation COVPf
of this failure probability. Figure 3

shows the variation of the coefficient of variation of

the failure probability computed by SS approach

(COVPf
) with the number of realisations Ns to be

used per level. Notice that COVPf is estimated as

follows:

½COVPf

2
¼

X

m

j¼1

½COV
j

p0

2

(13)

where COVj
p0
is the coefficient of variation at an

intermediate level j. Details on the computation of

COVj
p0
may be found in Au and Beck (2001, 2003).

Figure 3 shows that COVPf
decreases (i.e. the

accuracy of the calculation increases) with the in-

crease of Ns. It attains a small value (about 10%)

when Ns�10,000 realisations per level. Conse-

quently, 10,000 realisations were considered at each

level to calculate Pf by SS approach. The correspond-

ing Pf value was found equal to 3.15�10
�4. Notice

that four levels of SS approach were necessary to

calculate this failure probability and thus, the total

number of realisations required by SS approach is

Nt�10,000�(3�9000)�37,000 realisations. It

should be emphasised here that the high number of

Table 2. Coefficient of determination R2 for PCEs of

different orders.

PCE order R2

2 0.9971

3 0.9999

4 0.9999

Figure 3. Coefficient of variation of Pf (calculated by SS

approach) versus the number of samples Ns used per level.

Figure 2. Failure mechanism for the ultimate bearing

capacity analysis.
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realisations (i.e. 37,000 realisations) is due to the

small value of COVPf
considered in the computation.

For practical implementations, a higher value of

COVPf
would be acceptable and thus, a smaller

number of realisations would be required. For

instance, if Ns�1000 realisations per level, COVPf

would be equal to 31.5% and Pf would be equal to

2.56�10�4. This means that for COVPf
�31.5%, the

number of realisations is reduced by 90% with respect

to the one corresponding to COVPf
�10%; however,

the difference in the Pf value is only 18.7%. The Pf
value computed above (i.e. Pf�3.15�10

�4) is to be

compared with the value of Pf�3.22�10
�4 com-

puted by applying MCS methodology on the original

deterministic model. One can observe that the two

values are very close. Notice that 360,000 realisations

were used to calculate the failure probability by

applying MCS on the original deterministic model

to attain the same COVPf
as that of SS (i.e. about

10% as may be seen from Figure 4). This means that

for the same accuracy, the number of calls of the

deterministic model required by SS approach is

reduced by 89.7% with respect to that required by

MCS.

It should be noticed here that contrary to MCS

methodology which can be used to compute the failure

probabilities corresponding to different values of qs
without repeating the deterministic calculations, the

SS approach allows one to calculate the failure

probability corresponding to only one qs value. If

the failure probability corresponding to another qs
value is required, one needs to repeat all the determi-

nistic calculations. The combination of SS approach

and the CSRSM overcomes this shortcoming. This

means that once the PCE (meta-model) is obtained, it

can be used to accurately calculate the failure prob-

ability corresponding to any qs value larger than the

original one. The accuracy of this computation is

ensured by the fact that all the limit state surfaces

corresponding to larger qs values are included in the

sampling zone of the SS approach (see Figure 5).

Table 3 presents a comparison between the failure

probabilities computed by the proposed procedure

and those calculated byMCSmethodology applied on

the original deterministic model for different qs values.

This table shows a good agreement between the two

methods. This indicates that contrary to the SS

approach, the procedure proposed in this study allows

the computation of the failure probability for the

values of the footing pressure that are greater than the

one considered in the SS analysis.

5.2.2. Validation in terms of PDF

Once the PCE coefficients are determined, the

uncertainty propagation can be performed. The

PDF, CDF and the statistical moments of the system

response can be easily determined by applying MCS

methodology on the obtained PCE (meta-model). In

order to validate these results, they were compared in

Figure 6(a, b) and Table 4 with those obtained by

applying MCS on the original deterministic model

using (as before) 360,000 realisations of random

variables. These results show that there is a good

agreement between the proposed procedure and MCS

methodology applied on the original deterministic

model for both the central part and the distribution

tail of the PDF of the system response.

As a conclusion, the proposed procedure allows

one to rigorously determine not only the failure

Figure 4. Coefficient of variation of Pf (calculated by

applying MCS on the original deterministic model) versus

the number of realisations.

Figure 5. Limit state surfaces corresponding to different

values of qs plotted in the standard space of random

variables.
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probability but also the statistical moments of the

system response with no additional calls of the

deterministic model. The next sections are devoted

to the presentation of (1) a global sensitivity analysis;

(2) a reliability-based analysis and design; and finally

(3) a probabilistic parametric study.

5.3. Global sensitivity analysis via PCE-based Sobol

indices

As mentioned previously, Sobol indices provide a

measure of the contribution of each random variable

to the variability of the system response. The Sobol

indices of the soil cohesion Sc and the soil friction

angle S8 were calculated and were found to be equal

to 0.1025 and 0.8975, respectively. This means that,

for the statistical moments of the input uncertain

parameters considered in this study, the soil friction

angle has a significant weight in the variability of the

ultimate bearing capacity. However, the soil cohesion

has a relatively small weight in the variability of this

response.

5.4. Reliability-based analysis and design

The Hasofer-Lind reliability index bHL is a means by

which the safety of a given geotechnical system is

measured. It represents the minimum distance be-

tween the origin and the limit state surface G�0 in

the standard space of random variables. The compu-

tation of bHL is performed by minimisation under the

condition G�0, where G is approximated using the

PCE. The point (c*, 8*) resulting from the minimisa-

tion is called the design point. It is the most probable

failure point corresponding to a given qs value.

Table 5 presents the reliability index, the design

point and the corresponding partial safety factors

(Fc�mc/c
*, F8�tan(m8)/tan8

*) for different qs va-

lues. This table also presents the punching safety

factor Fp�qu/qs, where qu is the deterministic ulti-

mate bearing capacity (i.e. qu�1071.72 kN/m
2).

Remember that for all qs values larger than the

original one (i.e. qs�325 kN/m
2), the reliability index

is accurately calculated since the corresponding limit

state surfaces are included in the sampling zone. This

is ensured by the fact that the distance between the

origin and the farthest collocation point in the

standard space of random variables is dmax�5.04.

This distance is larger than all values of bHL
presented in this table.

From Table 5, one can observe that the increase in

qs increases the values of c* and 8* at the design point.

However, the reliability index and the partial safety

factors Fc and F8 decrease with the increase in qs. This

is to be expected since the increase in the footing

pressure decreases the footing safety and thus provides

smaller resistance factors. Notice that for the punching

safety factor Fp�3 which is generally used in practice,

the corresponding partial safety factors Fc and F8 are,

respectively, 1.34 and 1.51. These values are somewhat

close to those provided by Eurocode 7 where Fc and F8

are, respectively, equal to 1.4 and 1.25. Notice finally

that all the values of the reliability index, design point

Table 3. Comparison between the failure probability com-

puted by applying MCS on the original deterministic model

and that calculated by applying MCS on the meta-model

for different values of the footing applied pressure qs.

Failure probability

qs (kN/m
2)

MCS applied on the

original deterministic

model

MCS applied on

the meta-model

325 3.22�10�4 3.15�10�4

350 6.42�10�4 5.68�10�4

375 1.22�10�3 1.10�10�3

400 2.34�10�3 2.10�10�3

425 3.90�10�3 3.70�10�3

450 6.41�10�3 6.16�10�3

475 9.81�10�3 9.70�10�3

500 1.46�10�2 1.44�10�2

525 2.07�10�2 2.07�10�2

550 2.83�10�2 2.88�10�2

575 3.77�10�2 3.86�10�2

600 4.88�10�2 4.93�10�2

625 6.17�10�2 6.28�10�2

650 7.66�10�2 7.73�10�2

675 9.36�10�2 9.42�10�2

700 1.11�10�1 1.12�10�1

Table 4. Comparison between the statistical moments of the ultimate bearing capacity computed by applying MCS on the

original deterministic model and those computed by applying MCS on the meta-model.

Mean value of qu
(kN/m2)

Standard deviation of

qu (kN/m
2)

Coefficient of

variation of qu (%)

Skewness of

qu

Kurtosis of

qu

MCS applied on the original

deterministic model

1150.50 419.50 36.46 1.06 1.82

MCS applied on the meta-

model

1150.60 418.30 36.35 1.05 1.78
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and partial safety factors are calculated using only one

SS computation (where Ps�650 kN/m). It should

be emphasised here that these results could not be

obtained using the SS approach since this method does

not provide an analytical expression of the system

response (or the limit state surface). They are obtained

with the use of SS approach combined with CSRSM.

Figure 7 presents two fragility curves in

the normal and semi-log scales. These curves provide

the variation of the failure probability with the

allowable footing pressure qs [where qs�Pu/

(B�Fp)] when the random variables are non-normal

and uncorrelated (the safety factor Fp was taken equal

to 3 in this study). These curves can be used to

perform either a RBD or a reliability-based analysis.

Concerning the RBD, if for example a strip footing

is required to support a service load with a prescribed

failure probability of 10�3, from Figure 7(b), the

allowable footing pressure is equal to qs�125 kN/m
2.

Consequently, the required footing breadth for a

service load of 500 kN/m is B�Ps/qs�500/125�4

m. For the reliability-based analysis, Figure 7(b)

provides the failure probability of a strip footing

subjected to a given service load. For instance, if a

footing of breadthB�2m is subjected to a service load

of Ps�250 kN/m (i.e. subjected to an allowable

pressure of qs�250/2�125 kN/m
2), the correspond-

ing failure probability is equal to 10�3.

Finally notice that only one SS calculation was

performed to compute the fragility curves in Figure 7.

This calculation corresponds to the smallest value of

qs. However; for larger qs values, MCS methodology

was applied on the obtained PCE to calculate the

failure probability with no additional deterministic

calculations. This demonstrates once again the inter-

est of the extension of the SS approach.

5.5. Parametric study

The aim of this section is to investigate the effect of

the statistical characteristics (coefficient of variation

COV, coefficient of correlation r and the type of the

PDF) of the random variables on the system

response.

5.5.1. Effect of the coefficients of variation (COVs) of

the random variables

This section presents the effect of COVc and COV8

on (1) the PDF of the system response (ultimate

bearing capacity) and the corresponding statistical

moments and (2) the Sobol indices Sc and S8. Notice
Figure 6. Comparison between the PDF and CDF of the

ultimate bearing capacity computed by applying MCS on

the original deterministic model and those computed by

applying MCS on the meta-model. Table 5. Punching safety factor, reliability index, design

point and partial safety factors for different values of the

footing applied pressure qs.

qs (kN/m
2) Fp�qu/qs bHL c*(kN/m2) 8*(o) Fc F8

325 3.30 3.48 14.51 20.04 1.38 1.58

350 3.06 3.25 14.88 20.67 1.35 1.53

357.24 3.00 3.19 14.98 20.84 1.34 1.51

375 2.86 3.04 15.23 21.26 1.31 1.48

400 2.68 2.84 15.56 21.81 1.29 1.44

425 2.52 2.65 15.86 22.35 1.26 1.40

450 2.38 2.48 16.14 22.84 1.24 1.37

475 2.26 2.31 16.39 23.31 1.22 1.34

500 2.14 2.16 16.63 23.76 1.20 1.31

525 2.04 2.01 16.85 24.18 1.19 1.29

550 1.95 1.88 17.06 24.58 1.17 1.26

575 1.86 1.75 17.25 24.96 1.16 1.24

600 1.79 1.62 17.43 25.33 1.15 1.22

625 1.71 1.51 17.59 25.67 1.14 1.20

650 1.65 1.39 17.75 26.00 1.13 1.18

675 1.59 1.29 17.90 26.32 1.12 1.17

700 1.53 1.19 18.05 26.63 1.11 1.15

10



that, in order to investigate the effect of COV of a

certain random variable, its COV is increased or

decreased by 50% with respect to its reference value;

however, the COV of the other random variable

remains constant. Notice also that non-normal and

uncorrelated random variables are considered in this

section.

Figures 8 and 9 present, respectively, the effect of

COVc and COV8 on the PDF of the system response.

The corresponding values of the statistical moments

are given in Table 6. This table also provides the

effect of COVc and COV8 on the Sobol indices. From

these results, one can observe that COVc has a

negligible effect on the mean value, skewness and

kurtosis of the system response; however, it has a

small effect on the variability of this response. For

instance, an increase in COVc by 50% with respect to

its reference value increases the COV of the system

response by only 6.9%. Concerning COV8, it was

found to have a significant effect on the mean value,

skewness and kurtosis of the system response. Also,

the variability of the system response was found to be

very sensitive to the variability of the soil friction

angle (an increase in COV8 by 50% with respect to its

reference value increases the COV of the system

response by 48.9%). One may observe that the

random variable for which the COV is of a significant

influence on the variability of the system response (i.e.

8) is the one that has the larger Sobol index.

Remember that 8 has a Sobol index of 0.8975 while

c has a Sobol index of 0.1025 for the reference caseFigure 7. Fragility curves in the case of uncorrelated non-

normal random variables using (a) normal scale and (b)

semi-log scale.

Figure 8. Effect of the coefficient of variation of the soil

cohesion (COVc) on the PDF of the ultimate bearing

capacity.

Figure 9. Effect of the coefficient of variation of the soil

friction angle (COV8) on the PDF of the ultimate bearing

capacity.
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studied before. Finally, Table 6 shows that the

increase in COV of a given random variable increases

its Sobol index (i.e. its weight in the variability of the

system response) and decreases the Sobol index of the

other random variable; the COV of the soil friction

angle being of greater effect.

5.5.2. Effect of the correlation and the non-normality of

the random variables

Figure 10 shows the effect of the correlation and the

non-normality of the random variables on the PDF of

the ultimate bearing capacity and Table 7 shows the

corresponding statistical moments. These results in-

dicate that the mean value of the ultimate bearing

capacity is very slightly affected by both the correlation

and the non-normality of the random variables. The

results also indicate that both assumptions of non-

normal variables and negative correlation between

these variables have a small effect on the variability of

the system response. For instance, the assumption

of non-normal random variables decreases the COV of

the system response by 1.9% and 4.7%, respectively,

for correlated and uncorrelated random variables. On

the other hand, the negative correlation decreases the

COV of the system response by 4.5% and 1.8%,

respectively, for the cases of normal and non-normal

random variables. Concerning the skewness and

kurtosis of the system response, they were found to

decrease with both the negative correlation and the

assumption of non-normal random variables. As a

conclusion, these results indicate that the case of

normal uncorrelated random variables is conservative

since it provides the largest variability of the ultimate

bearing capacity.

6. Conclusion

This study presents a combination between the SS

approach and the CSRSM to calculate not only the

failure probability due to an applied footing pressure,

but also the PDF of the ultimate bearing capacity.

A strip footing of breadth B resting on a (c, 8) soil

where both c and 8 are considered as random

variables is considered. The combination between

the two methods is performed through the use of the

realisations generated by the SS approach as colloca-

tion points to evaluate the unknown PCE coefficients

in CSRSM. In addition to the PDF of the ultimate

bearing capacity which is computed with no addi-

tional calls of the deterministic model, the combina-

tion between both methods provides the PCE-based

Sobol indices. These indices give the weight of each

random variable in the variability of the system

response. Finally, the failure probabilities corre-

sponding to qs values greater than the original one

used to perform a SS computation can be calculated

based on the obtained PCE of the system response by

applying MCS on this PCE. The main findings of this

study can be summarised as follows:

(1) The PDF and the CDF of the ultimate bearing

capacity and their corresponding statistical

Table 6. Effect of the coefficients of variation of the soil cohesion (COVc) and the soil friction angle (COV8) on the statistical

moments of the ultimate bearing capacity and on Sobol indices.

Sobol indices

COV(%)

Mean value of qu
(kN/m2)

Standard deviation of

qu (kN/m
2)

Coefficient of

variation of qu (%)

Skewness of

qu

Kurtosis of

qu Sc S8

COVc(%) 10 1151.05 402.21 34.94 1.04 1.75 0.0278 0.9722

20 1150.60 418.30 36.35 1.05 1.78 0.1025 0.8975

30 1149.08 446.52 38.86 1.10 1.98 0.2030 0.7970

COV8(%) 5 1091.51 225.00 20.61 0.56 0.56 0.3320 0.6680

10 1150.60 418.30 36.35 1.05 1.78 0.1025 0.8975

15 1256.11 680.05 54.14 1.51 3.66 0.0431 0.9569

Figure 10. Effect of the correlation between random

variables and the type of the probability density function

of these variables on the PDF of the ultimate bearing

capacity.
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moments, as determined by the proposed

procedure, have shown a good agreement with

those obtained by applying MCS methodology

on the original deterministic model.

(2) The failure probabilities computed by the

proposed procedure and corresponding to qs
values larger than the original one used to

perform a SS computation agree well with

those computed by applying MCS methodol-

ogy on the original deterministic model.

(3) The global sensitivity analysis performed using

the PCE-based Sobol indices has shown that

the soil friction angle has a significant weight in

the variability of the ultimate bearing capacity

(S8�0.8975); however, the soil cohesion has a

relatively small weight in the variability of this

response (Sc�0.1025). This conclusion is valid

for the values of the soil uncertainties consid-

ered in this article which are the ones frequently

encountered in practice for a (c�8) soil.

(4) The increase in the footing pressure qs increases

the values of c* and 8* at the design point.

However, the reliability index and the partial

safety factors Fc and F8 decrease with the

increase in the footing pressure. This is to be

expected since the increase in the footing

pressure decreases the footing safety.

(5) A fragility curve which can be used to perform

either a reliability analysis or a RBD of strip

footings was presented. Concerning the relia-

bility analysis, this curve provides the failure

probability of a strip footing subjected to a

given service load. For the RBD, it allows one

to calculate the footing breadth required to

support a given service load for a target failure

probability.

(6) A parametric study to investigate the effect of

(i) COVc and COV8, (ii) the correlation be-

tween c and 8 and (iii) the non-normality of the

random variables, on the ultimate bearing

capacity has shown that:

. The increase in COV8 considerably in-

creases the variability of the system re-

sponse; however, the increase in COVc has

a small effect on this variability.

. The random variable for which the COV is

of a significant influence on the variability

of the system response (i.e. 8) is the one

that has the greater value of Sobol index.

. The increase in COV of a given random

variable increases its Sobol index (i.e. its

weight in the variability of the system

response) and decreases the Sobol index of

the other random variable; the COV of the

soil friction angle being of greater effect.

. The variability of the system response was

found to decrease with the assumption of

non-normal variables with respect to the case

of normal variables. This variability also

decreases when considering negative correla-

tion between random variables as compared

to the case of uncorrelated variables.
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Appendix 1

Metropolis-Hastings algorithm

The Metropolis�Hastings algorithm is a Markov chain

Monte Carlo (MCMC) method. It is used to generate a

sequence of new realisations from existing realisations (that

follow a target PDF called ‘Pt’). Let sk �Fj be a current

realisation which follows a target PDF ‘Pt’. Using a

proposal PDF ‘Pp’, a next realisation sk�1 �Fj that follows

the target PDF ‘Pt’ can be simulated from the current

realisation sk as follows:

a. A candidate realisation s is generated using the

proposal PDF (Pp). The candidate realisation s is

centred at the current realisation sk.

b. Using the deterministic model, evaluate the value of

the performance function G(ŝ) corresponding to the

candidate realisation ŝ. If G(ŝ)BCj (i.e. ŝ is located

in the failure region Fj), set sk�1� ŝ; otherwise,

reject s and set sk�1�sk (i.e. the current realisation

sk is repeated).

c. If G(ŝ)BCj in the preceding step, calculate the ratio

r1�Pt(ŝ)/Pt(sk) and the ratio r2� Pp (sk/ŝ)/Pp (ŝ/sk),

then compute the value r�r1r2.

d. If r]1 (i.e. s is distributed according to the Pt), one

continues to retain the realisation sk�1 obtained in

step b; otherwise, reject s and set sk�1�sk (i.e. the

current realisation sk is repeated).

Notice that in step b, if the candidate realisation ŝ does not

satisfy the condition G(ŝ)BCj, it is rejected and the current

realisation sk is repeated. Also in step d, if the candidate

realisation ŝ does not satisfy the condition r]1 (i.e. ŝ is not

distributed according to the Pt), it is rejected and the

current realisation sk is repeated. The presence of several

repeated realisations is not desired as it leads to high

probability that the chain of realisations remains in the

current state. This means that there is high probability that

the next failure threshold Cj�1 is equal to the current failure

threshold Cj. This decreases the efficiency of the subset

simulation approach. To overcome this inconvenience,

Santoso et al. (2010) proposed to modify the classical

M-H algorithm as follows:

a. A candidate realisation s is generated using the

proposal PDF (Pp). The candidate realisation s is

centred at the current realisation sk.

b. Calculate the ratio r1�Pt(ŝ)/Pt(sk) and the ratio

r2� Pp(sk/ŝ)/Pp(ŝ/sk), then compute the value

r�r1r2.

c. If r]1, set sk�1�ŝ; otherwise, another candidate

realisation is generated. Candidate realisations are

generated randomly until the condition r]1 is

satisfied.

d. Using the deterministic model, evaluate the value of

the performance function G(sk�1) of the candidate

realisation that satisfies the condition r]1. If

G(sk�1)BCj (i.e. sk�1 is located in the failure region

Fj), one continues to retain the realisation sk�1
obtained in step c; otherwise, reject ŝ and

set sk�1�sk (i.e. the current realisation sk is

repeated).

These modifications reduce the repeated realisations and

allow one to avoid the computation of the system response

of the rejected realisations.
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Appendix 2

Computation of the coefficient of determination R2

Let us consider N realisations

n Ið Þ ¼ n
Ið Þ
I ; :::; n

Ið Þ
M

� �

; :::; n Nð Þ ¼ n
Nð Þ
I ; :::; n

Nð Þ
M

� �n o

of the

standard normal random vector j, and let

Y ¼ Y n Ið Þ
� �

; :::; Y n Nð Þ
� �n o

be the corresponding values

of the system response determined by deterministic calcula-
tions, then,

R2 ¼ 1� DPCE

where DPCE is given by:

DPCE ¼
1=Nð Þ

PN

i¼1 Y n
ið Þ

� �

� Yapp n
ið Þ

� �h i2

Var Yð Þ

and

Var Yð Þ ¼
1

N� 1

XN

i¼1
Y n

ið Þ
� �

� Y
h i2

Y ¼
1

N

XN

i¼1
Y n

ið Þ
� �

Notice that N in these equations is the number of

collocation points used to evaluate the unknown coeffi-

cients of the PCE. The value R2�1 indicates a perfect fit of

the true model response Y, whereas R2�0 indicates a

nonlinear relationship between the true model Y and the

PCE model Yapp.
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