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Abstract:  The purpose of this article is to describe a tool 
developed in order to equip a finite-element software based on 
nonlinear beam analysis with an error indicator aimed at 
measuring discretization errors. The technique is an extension of 
the error estimate devised by Ladevèze et al. in 1991 in which the 
finite-element solution is compared to a statically admissible 
distribution of the generalized stresses. This last distribution is 
built element by element which is fast and easy to implement. A 
nonlinear analysis of a single bay frame in static’s is presented as 
an example.

keywords: Finite elements; Frames; Analysis; Computer 
software; Errors.

Introduction

Advances achieved in construction engineering and more res
tive safety requirements, especially with respect to severe
exceptional loads such as earthquakes, have induced major n
in understanding and predicting the response of civil engineer
structures. In most instances, the validity of computational res
and their efficiency are of great concern. Quality is, howev
quite intricate to evaluate in a broad sense because several fa
are important and interact. A finite-element model is based o
series of assumptions, with respect to its geometry, to the bou
ary conditions, to the representation of the applied loads, to
construction process, and also to the constitutive relations of
different materials. The purpose of this technical note is to pres
a simple tool for evaluating one of these components: the qua
of the discretisation of the finite-element~FE! model.
Many techniques can be found in the literature, related to
adaptive meshing and mesh optimization. A posteriori error indi-
cators are mostly elaborated from four different approaches. Th
first one relies on the analysis of the stress field in the discretise
structure~see, e.g., Zienckiewicz and Zhu 1987!. Two sets of
results are compared: one being discrete, the other being smoot
ened. The method devised by Babuska and Rheinholdt~1982! is
based on the measure of the residual forces in the equations
equilibrium which are never totally balanced in nonlinear FE
analyses. Huerta and Diez~2000!use a comparison between two
finite-element models. A very fine discretization is considered to
be the reference~i.e., quasi-exact!solution, against which the
user’s mesh is compared. Finally, Ladeve`ze et al.~1991!define an
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error indicator as the distance between the finite-element solut
and a statically admissible solution.

Most of these indicators provide an upper bound of the tr
error in elastic analyses. It is not rigorously demonstrated t
they provide an upper bound of the error in general nonline
analyses but they are convergent, i.e., equal to zero when
exact solution is found.

In this short technical note, we show that the technique due
Ladevèze et al. can be easily implemented in finite-eleme
analyses of frames.

Finite-Element Model

The finite-element model used here is a nonlinear static and
namic computer program based on a layered finite-element
scription of reinforced concrete beams and frames~Bazant et al.
1987!. This program uses Euler-Bernoulli beam elements. T
two-dimensional beam elements possess two nodes. The hori
tal displacementux ~parallel to the neutral axis of the beam!is
interpolated with a linear function over the element. The vertic
displacementuy ~perpendicular to the neutral axis of the beam!is
interpolated with a classical third order hermitian function. The
displacements are computed at the centroid of the cross sect

Fux~x!
uy~x!G5NF ui

uj

n i

n j

u i

u j

G (1)

whereN denotes the matrix of shape functions, expressed in te
of the element neutral axis coordinatex. ui , v i , andu i are the
horizontal displacement, the vertical displacement and the ro
tion at node i, respectively. According to the Euler-Bernoull
theory, the horizontal displacement at any point of the cross s
tion of coordinates~x,y! is u(x,y)5ux(x)2y]uy(x)/]x and the
nonzero component of the strain~in direction x! is «(x,y)
5]u(x,y)/]x.

The beam cross section is decomposed into layers made
material with nonlinear uniaxial stress-strain laws. The consti
tive model used for concrete is a rate independent damage mo
A complete description of the constitutive equations can be fou
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in Dubé et al. ~1996!. Fig. 1 shows the concrete response f
tension-compression cycles. For the reinforcements, a o
dimensional elastoplastic model with linear hardening is imp
mented. It should be pointed out that any other constitutive re
tions could be implemented as well, without any modification
the calculation of the error indicator described in the next secti

Error Indicator

The finite-element solution provides the values of the generaliz
stresses, i.e., the normal and shear forces (Nk,Vk) and the bending
momentMk at each nodal point. The upper-scriptk indicates that
these expressions are obtained from a displacement-based~finite
element!approximation.

The error estimation consists in measuring the difference
tween two generalized stress fields. The first one is the fin
element ~FE! solution. It is kinematically admissible, which
means that it satisfies the displacement boundary conditions, c
patibility conditions, but that the generalized stresses field deriv
with the help of the constitutive relations do not satisfy the equ
librium equations pointwise. The second one is statically adm
sible. It satisfies the equilibrium equations pointwise, and t
force boundary conditions as well. With the help of the constit
tive relations, strains can be derived from this field but they a
in general, not compatible with a displacement field and with t
displacement boundary conditions. Theoretically, if those two s
lutions are identical, all the governing equations of the proble
are satisfied and the exact solution has been found. The dista
between the kinematically~FE! and statically admissible fields is
an indicator of the error due to mesh discretisation. It does
mean that the FE solution is better than the statically admissi
solution or conversely, any solution can be used for design p
poses, but both are approximates.

Statically admissible generalized stress field
The statically admissible solution~generalized stress!denoted
(Ns,Vs,Ms) should verify exactly the differential equations o
equilibrium/motion:

dNs~x,t !

dx
1 f x5r

d2@ux~x,t !#

dt2
(2a)

dVs~x,t !

dx
1 f y5r

d2@uy~x,t !#

dt2
(2b)

Fig. 1. Response of concrete constitutive law to tension-compress
loading
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dMs~x,t !

dx
1Vs~x,t !50 (2c)

where (f x , f y) are, for most applications, constant distribute
forces,r5mass per unit length of beam, and rotational iner
terms have been neglected.

For the sake of simplicity, let us omit the inertia terms an
focus on statics. Equation~2! may be integrated over each bea
element~recall that distributed forces are constant!:

Ns~x!5a1 f xx (3a)

Ms~x!5
~x!2

2
1bx1c (3b)

Constants~a, b, c!need to be computed. Since each finite eleme
is in equilibrium, according to the FE solution, nodal values
Eq. ~3! are equated with the FE solution. Constanta is computed
from Eq. ~3a! by expressing this relation at either nodes of t
element with the same result. Constants~b, c! are computed from
Eq. ~3b! expressed at each node:

Ns~0!5a5Nk~0!

Ms~0!5c5Mk~0! (4)

Ms~1!5
L2

2
1bL1c5Mk~1!

whereL5element length. Within each beam element, Eq.~4! pro-
vides a statically admissible solution. It is entirely local, i.e., e
pressed at the element level. Hence its resolution is a post
cessing operation which is performed element per elem
successively. The same method applies to more sophisticated
distributions without any modifications.

It is important also to satisfy equilibrium across each bea
element. As opposed to the case of two-dimensional finite e
ments where stress vectors are not continuous across each
ment, this is automatically satisfied in the beam formulation~be-
cause of the order of continuity of the interpolation functions
This is the major reason why the statically admissible solut
(Ns,Vs,Ms) is so easy to construct. Note that another techniq
due to Carol and Murcia~1989!could have been used for obtain
ing statically admissible fields. It would have been more co
puter time consuming because a global set of equations of
equal to the number of degree of freedom of the problem need
be solved.

In dynamics, inertial forces must be taken into account in t
derivation of the «statically» admissible field of generaliz
forces. With a classical Newmark integration scheme, which
sumes a constant acceleration over each time step, these in
forces can be viewed as additional distributed loads which
constant during each time step and follow the interpolation of
displacements in space. Hence the «statically» admissible fiel
normal force becomes a polynomial of order 2 and the «st
cally» admissible distribution of bending moment becomes
polynomial of order 5. The derivation of the statically admissib
solution is exactly the same as in static’s, except that the exte
loads are slightly more complex.

Definition of the error indicator
We have now two solutions, which can be compared. The d
tanceE between the two solutions is defined as anL2 norm ac-
cording to Ladeve`ze et al. ~1991!. E is further denoted as the
global error indicator. It is an approximation of the true err
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~which cannot be known without the knowledge of the exact s
lution!. It can be also decomposed according to the discretizati

E5 (
elements

ep

with

ep5
*elementsPA~Ns~x!2Nk~x!!2dx

*structureA~Nk~x!1Ns~x!!2dx

1
*element pA~Ms~x!2Mk~x!!2dx

*structureA~Mk~x!1Ms~x!!2dx
(5)

Fig. 2. Single bay case study
3
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whereep is the local error indicator in elementp ~distance be-
tween the two solutions in the element!. Numerically, the loca
error indicator is computed over the element according to th
quadrature of the finite-element solution. We may retain, in eac
element, the maximum value of the indicator over the entire ca
culation. Consequently, the local and global error indicators a
either constant or monotonically increasing in the course of th
calculation. The above definitions can be used in statics and
dynamics.

Application

As an illustrative example, consider the single bay plane structu
shown in Fig. 2. It is made of reinforced concrete. The reinforce
ment is constant over the frame; it is incorporated in the bea
element assuming a perfect bond between steel and concrete.
loading is displacement controlled: a horizontal displacement
applied to the left corner node. The maximum displacement is 0
m, decomposed into a loading history of 100 increments of equ
size. Four different meshes shown in Fig. 3 are considered. T
number of finite elements ranges from 3 to 25. The distribution
of tensile damage, of the plastic strain in the reinforcement, an
of the local error indicator over the structure at the end of th
loading process are also shown in this figure.

Fig. 4 shows the load-deflection curves~horizontal force ver-
sus horizontal displacement at the top left corner! for each finite-
Fig. 3. Local results~tensile damage, rebar yielding, and local error distributions! for different meshes
JOURNAL OF STRUCTURAL ENGINEERING / JANUARY 2002 / 131
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element mesh. It can be observed that they are quite similar
the two finest meshes. In fact the FE solution seems to h
converged toward the exact one, in terms of mesh refinemen
terms of local quantities~damage, plastic strain, and local errors
there are still differences as shown in Fig. 3. The minimum a
maximum local errors keep on diminishing upon refinement. T
maximum local error, however, concentrates in the joints wh
material nonlinearity is more intense, as expected. According
this analysis, the global response can be obtained quite accur
with a moderately dense mesh, local quantities such as damag
plastic strain are much more demanding from the viewpoint of
finite-element discretization.

Conclusion

An extension of the error indicator devised by Ladeve`ze et al.
~1991! to the simple case of beam analysis has been presen

Fig. 4. Force displacement behavior for single bay example
4

r
e
n

ly
or

d.

The method relies on the comparison between the finite-elem
solution and a statically admissible field of generalized stresse
is quite simple to implement because statically admissible fie
of generalized stresses are constructed element per element
post-processing course of the FE calculation. It can be easily
tended to a three-dimensional configuration, or to cases wh
distributed forces are arbitrary~known! functions, such as in dy-
namics.

Two forms of error estimate can be considered: the glob
error which is an overall measure of the quality of the finite
element discretization and the distribution of the local erro
which pin-points locations where the discretization is too coar
or could be coarser. This latter information could serve as a po
of entry in the design of optimized meshes.
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