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Abstract. Recently, so-called direction-dependent elastic grain-interaction models have been 

developed, which are capable of considering the effects of surface anisotropy or of a grain-shape 

(morphological) texture on the mechanical elastic constants and diffraction (X-ray) stress factors of 

polycrystals. The notion ‘direction-dependent grain-interaction’ signifies that different grain-

interaction constraints prevail along different directions in the polycrystal. This work summarizes 

recent developments and presents a comparison of direction-dependent elastic grain-interaction 

models.  

Introduction  

Elastic grain-interaction models describe the distribution of stresses and strains over the 

crystallographically differently oriented grains in a polycrystal. They can be employed for the 

calculation of mechanical elastic constants (relating mechanical strains to mechanical stresses) and 

diffraction elastic constants (diffraction (X-ray) stress factors for mechanically elastically 

anisotropic samples, relating (diffraction) lattice strains to mechanical stresses) from single-crystal 

elastic data [1-3].  

Usually, isotropic grain-interaction models, as for example the Reuss [4], Voigt [5], 

Neerfeld-Hill [6,7] or Eshelby-Kröner [8,9] models, are considered. In such isotropic models, the 

same grain-interaction assumptions are adopted for all directions in the polycrystal. The Voigt  and 

Reuss models involve extreme grain-interaction assumptions: either the strain tensor (Voigt model) 

or the stress tensor (Reuss model) for each crystallite is assumed to be equal to the mechanical strain 

or stress tensor, respectively; they are incompatible with physical reality because of the 

corresponding stress, respectively strain discontinuities at the grain boundaries. It was demonstrated 

by Hill [7] that the Voigt and Reuss models set bounds for the mechanical elastic constants. Further, 

Neerfeld [6] and Hill [7] found on an empirical basis that the arithmetic (or geometric, Hill, [7]) 

averages of X-ray [6] and macroscopic [6,7] elastic constants calculated according to the models of 

Voigt and Reuss are generally in good agreement with experimental data. Close to these values are 

also the results of the (mathematically more tedious) Eshelby-Kröner model.  

Devised for bulk specimens with an isotropic microstructure, the above mentioned models 

imply mechanical elastic isotropy for crystallographically untextured polycrystals. However, a 

polycrystal cannot generally be considered as being mechanically elastically isotropic, even in the 

absence of crystallographic texture.  

Thin films or surface layers of bulk-polycrystals, as examples, can exhibit mechanically 

elastically only transverse isotropy, owing to their microstructure and reduced dimensionality 

[10,11]. Thus, anisotropic grain interaction occurs. In a (columnar) thin film (or the surface layer of 

a bulk polycrystal), each crystallite is surrounded by neighbouring crystallites in only two 

dimensions. Thus, the grain-interaction perpendicular to the surface can be different from the grain 

interaction parallel to the surface [10,12-14] (see also Stickforth [11], who introduced the notion 

‘surface-anisotropy’ of bulk polycrystals).  

Polycrystals with a grain-shape (morphological) texture also are macroscopically elastically 

anisotropic. The effect of a morphological texture on the elastic behaviour can be considered by 

employing an extension of the Eshelby-Kröner grain-interaction model [15,16]; see, in particular, 
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Koch et al. [17]). To this end, a calculation scheme involving ellipsoidal grains (inclusions) with 

their principal directions aligned along common axes in the specimen frame of reference, where the 

S3-axis is perpendicular to the sample surface, can be adopted (i.e., an ideal grain-shape texture 

occurs; for a detailed discussion, see [17]), whereas spherical grains (inclusions) are considered in 

the traditional Eshelby-Kröner model.  

Mechanical Elastic Constants and X-Ray Stress Factors 

In thin films, plane, rotationally symmetric states of mechanical stress/strain (mechanical averages 

of tensors are indicated by brackets ‘ < > ‘) are frequently met:  
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The superscript S indicates that a tensor is expressed in the specimen frame of reference S. Under 

these loading conditions, which will be considered for the Vook-Witt and the inverse Vook-Witt 

models discussed below, two mechanical elastic constants A and B suffice, as only three 

independent non-zero stress and strain tensor components occur: 

AS Sε σ=
� �

, (3) 

BS Sε σ⊥ =
�

. (4) 

For macroscopically elastically anisotropic specimens, the ϕ, ψ and hkl-dependent diffraction (X-

ray) stress factors ( , , )ijF hklψ ϕ  relate the diffraction strain ,

hkl

ϕ ψε , measured for an hkl reflection at a 

specimen tilt angle ψ  and rotation angle ϕ , to the mechanical stress tensor expressed in the 

specimen frame of reference Sσ  [1-3]: 

, ( , , )hkl S

ij ijF hklϕ ψε ψ ϕ σ= . (5) 

Note that the ( , , )ijF hklψ ϕ  are not components of a tensor since they relate the lattice strain (a 

number) to the stress tensor (expressed in the S-system). For the case of transverse elastic isotropy 

and under a plane, rotationally symmetric state of stress, the diffraction strain is independent of the 

angle ϕ, thus, ϕ can be arbitrarily set to zero (or any other value) for the X-ray stress factors and ϕ 

as an index can be suppressed for the diffraction strain, so that Eq. (5) can be simplified: 

( )11 22( ,0, ) ( ,0, )hkl S
F hkl F hklψε ψ ψ σ= +

�
. (6) 

Usually, the lattice strain is plotted versus sin
2ψ  in a so-called sin

2ψ-plot.

Thin Films  / Surface Anisotropy 

In (columnar) thin films and surface layers of bulk polycrystals, neighbouring grains surround a 

grain in only two dimensions. Grain-interaction assumptions taking this into account can be 

formulated as follows ([10], see also Vook & Witt [18]; a mechanical loading state as given by Eqs. 

(1) and (2) is considered): (i) in the plane of the film, the strain is rotationally symmetric and (ii) 

equal for all crystallites and (iii) the stresses perpendicular to the layer are zero for all crystallites, 

i.e. the crystallites can deform freely in this direction. The above formulated grain-interaction 

assumptions allow the calculation of the mechanical elastic constants A and B and the (sum of two, 

see Eq. (6)) diffraction stress factors [10, 12-14].  

Extreme grain-interaction assumptions (e.g. the stresses perpendicular to the layer are zero for all 

crystallites) are adopted in the Vook-Witt (VW) model. In terms of the bulk models it could be said 

that, a Voigt behaviour is attributed to the in-plane directions, whereas a Reuss behaviour is 
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Figure 1: sin
2ψ-plots for the hhh and 00l reflections of a 

crystallographically untextured copper polycrystal 

subjected  to a plane-rotationally symmetric state of 

stress (100MPa) according to the Vook-Witt (VW) and 

inverse Vook-Witt (iVW) models (single-crystal elastic 

data from [19]). Note that a plot of 
ye versus sin

2ψ  is

equivalent to a plot of 
11 22F F+ versus sin

2ψ  (cf. equation

(6)).  

attributed to the direction perpendicular to the film surface. Thus, the VW model will generally be 

incompatible with the true elastic behaviour of a polycrystal. To overcome this problem, the inverse 

Vook-Witt (iVW) model, required for the construction of an effective grain-interaction model, has 

been proposed by Welzel et al. [13,14]. The grain-interaction assumptions for the iVW model are as 

follows: (i) the in-plane stress is rotationally symmetric and (ii) equal for all crystallites and (iii) the 

strain perpendicular to the film surface is equal for all crystallites. As in the VW model, the above 

formulated grain-interaction assumptions allow the calculation of the mechanical elastic constants A 

and B and the (sum of two, see Eq.  (6)) diffraction stress factors [13,14].   

In an effective grain-interaction model, the mechanical and diffraction elastic constants are 

calculated as arithmetic averages of the elastic constants obtained from a set of extreme grain-

interaction models. For the following discussion such an average of (extreme) grain-interaction 

models will be called an effective grain-interaction model. A well known example for an effective 

grain-interaction is the Neerfeld-Hill model (cf. Introduction). The background of any averaging of 

(extreme) grain-interaction models to describe physical reality could be described as follows: A real 

sample is conceived to be constituted from separate volume fractions of crystallites, each of which 

obeys a certain type of grain-interaction.  

The need for introducing the iVW model can be understood as follows: As compared to bulk 

materials where all directions for grain interaction can be equivalent, thin films posses two principal 

directions exhibiting possibly different types of grain interactions: the in-plane direction (all in-

plane directions are equivalent) and the direction perpendicular to the surface of the film. The 

number of grain-interaction models of extreme types of grain-interaction assumptions is two for 

bulk materials (Reuss and Voigt). Consequently, four types of extreme grain-interaction models 

then can be formulated for columnar thin films, as two principal directions, each with two extreme 

grain-interactions, occur. These extreme grain-interaction models are the Reuss, the Voigt, the 

Vook-Witt and the inverse Vook-Witt models.  

The VW model and the iVW model imply that a polycrystal is macroscopically elastically 

anisotropic (transversely isotropic). Of course, this mechanical anisotropy cannot be revealed by the 

two elastic constants A and B (cf. Table 1 for an 

example). However, the occurrence of non-linear 

sin
2ψ-plots for crystallographically untextured

polycrystals subjected to a plane, rotationally 

symmetric state of stress (see Eq. (2)) indicates 

that indeed mechanical elastic anisotropy does 

occur; see Fig. 1, where pronounced curvature in 

the sin
2ψ-plots can be observed. Experimental

investigations of direction-dependent grain-

interaction in thin films have been conducted by 

van Leeuwen et al. [10] and Welzel et al. [13,14]. 

Table 1: Mechanical elastic constants A and B of a 

crystallographically untextured copper polycrystal (single-

crystal elastic data from [19]) according to the Reuss (R), 

Voigt (V), Vook-Witt (VW) and inverse Vook-Witt (iVW) 

models.  

Cu R V VW iVW 

A (TPa
-1

) 5.76 4.65 5.19 4.91 

B (TPa
-1

) -6.72 -4.50 -5.59 -5.03 
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Grain Shape (Morphological) Texture 

In order to calculate the elastic constants of a polycrystal from single-crystal elastic data in the 

Eshelby-Kröner (EK) model, the crystallites surrounding an individual grain (inclusion) in a 

polycrystal are conceived as an elastically homogenous matrix with the elastic properties of the 

entire polycrystal [8,9]. 

Traditionally, a spherical shape of the inclusions is considered [9]. The effect of a grain-shape 

(morphological) texture on mechanical and diffraction elastic constants can be considered in the EK 

model by considering ellipsoidal inclusions with their principal axes aligned along common 

directions in the specimen frame of reference. The shape of the crystallites can be described by a 

shape parameter h , which is defined as the ratio of the principal axis of the ellipsoid in the z-

direction ( 3a ) of the specimen frame of reference and the principal axes of the ellipsoid in the x-

direction ( 1a ) and the y-direction ( 2a ) in the specimen frame of reference, respectively: 

3 3

1 2

a a

a a
h = = (7) 

Thus, the considered ellipsoids exhibit rotational symmetry with respect to the surface normal of the 

specimen. Only an ideal grain-shape, morphological texture is considered in the following, as only 

in this case unique mechanical elastic constants and X-ray stress factors can be calculated 

employing the EK model (for a more detailed discussion of the effect of a non-ideal morphological 

texture, see [17]).  

Examples for mechanical and diffraction elastic constants calculated for grain aspect ratios 

0.01 100η≤ ≤  are given in Fig. 2. For 1h ¹  (i.e., non-spherical grains), macroscopic elastic 

anisotropy occurs. This is revealed by the occurrence of curved sin
2ψ-plots (as this model allows the

calculation of all components of the mechanical stiffness tensor, the mechanical elastic anisotropy, 

transverse isotropy in this case, could also be deduced from an inspection of this tensor; see [17] for 

examples). It has to be stressed that it is the preferential alignment of non-spherical grains that 

induces the macroscopic elastic anisotropy. Obviously, a polycrystal consisting of non-spherical 

grains with a random distribution of their (shape) orientations will be macroscopically elastically 

isotropic, as no preferred morphological direction occurs.  

The mechanical elastic constants exhibit a weak dependence on the grain-aspect ratio h whereas the 

effect on the diffraction elastic constants is more pronounced.  

Comparison of the Direction-Dependent Elastic Grain-Interaction Models 

At a first glance, the occurrence of surface anisotropy and the occurrence of a morphological texture 

bear no relation and thus, similarities among the elastic constants calculated with the VW/iVW and 

the EK models cannot be expected. However, upon comparing Fig. 1 with Fig. 2a, it is striking that 

similarities in the sin
2ψ-plots do occur.

In Fig. 2b, the mechanical elastic constants A and B (cf. Eqs. (3) and (4)) calculated employing 

the EK model are shown as functions of the grain-aspect ratio h  (line with open circles). For 

comparison, the values of A and B have been indicated also for the VW, the iVW and the Reuss and 

Voigt models. It can be observed that the values of A and B calculated according to the EK model 

fall between the corresponding VW and iVW values. As the grain shape approaches the limit of a 

flat disc ( )0h ® , A and B tend towards the corresponding VW values, whereas in the limit of

needle-like grains ( )h ® ¥ , A and B tend towards the corresponding iVW values. Hence, the

similarities among the different models revealed by the sin
2ψ-plots also hold for the mechanical

elastic constants A and B. These observations may be understood as follows.  
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In the case of flat-disc shaped grains (i.e., 0η → ) with the disc faces parallel to the surface of the 

specimen, a polycrystal could be conceived as a stack of flat disc-shaped grains extending 

throughout the entire width of the polycrystal. If such a polycrystal is subjected to a plane, 

rotationally symmetric mechanical strain parallel to the disc interfaces, all discs (grains) will 

experience the same in-plane strain. Due to mechanical equilibrium conditions, they will experience 

the same stress ( 0º ) perpendicular to the interfaces: the ‘grain-interaction assumptions’ are thus of 

the Vook-Witt type.   

In the case of needle-shaped grains (i.e., η → ∞ ), a polycrystal could be conceived as an 

assembly of  needle-shaped grains with the needle axes perpendicular to the surface of the 

specimen. If such a polycrystal is subjected to a plane, rotationally symmetric mechanical strain 

perpendicular to the needle axes and if one requires that the outer contour of the assembly does not 

change, all needles will experience the same in-plane stress in order to satisfy the mechanical 

equilibrium conditions. Due to the requirement of surface contour-coherence, the grains will 

experience the same strain along the needle axes: the ‘grain-interaction assumptions’ are thus of the 

inverse Vook-Witt type. It is possible to confirm the here observed similarities by analytical 

simplifications of  certain tensors involved in the calculations in the Eshelby-Kröner model for the 

limits 0h ®  and h ® ¥  [20]. 

Conclusions 

• Thin films can exhibit mechanical, macroscopic elastic anisotropy also in the absence of

crystallographic texture. The elastic grain interaction of such thin films can be modelled

employing an effective grain-interaction model combining the extreme Reuss, Voigt, Vook-Witt

and inverse Vook-Witt models.

• Polycrystals with a grain-shape (morphological) texture are mechanically elastically anisotropic.

Their elastic grain interaction can be modelled employing an extension of the traditional

Eshelby-Kröner model; whereas spherical grains (inclusions) are considered in the traditional

Eshelby-Kröner model, a calculation of mechanical elastic constants and diffraction stress

factors is also possible considering ellipsoidal grains with their principal directions aligned

along common axes in the specimen frame of reference.
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Figure 2b: Mechanical elastic constants A and B of a 

crystallographically untextured copper polycrystal 

according to the Vook-Witt (VW), inverse Vook-Witt 

(iVW) and the EK model as a function of the grain 

aspect ratio h  (line with open circles). For comparison,

the values for A and B according to the Reuss (R) and 

Voigt (V) models have also been indicated (single-

crystal compliances from [19]).  
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Figure 2a: sin
2ψ-plots for the hhh and 00l reflections of 

a crystallographically untextured copper polycrystal 

subjected  to a plane-rotationally symmetric state of 

stress (100MPa) according to the EK model involving 

different ellipsoidal crystallite morphologies (single-

crystal compliances from [19]). Note that a plot of 

ye versus sin
2ψ  is equivalent to a plot of

11 22F F+ versus sin
2ψ  (cf. Eq. (6)).
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• For extreme grain morphologies (flat discs and needles), the grain-interaction in the Eshelby-

Kröner model exhibits similarities with the grain interaction in the Vook-Witt and inverse

Vook-Witt models, respectively. Even though the Vook-Witt and inverse Vook-Witt models

have been developed in order to deal with the effect of elastic surface anisotropy of bulk

polycrystals and thin films, they are thus capable of modelling the effect of an ideal

morphological texture on the elastic grain interaction.
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