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Diagnosis and prediction of vibration from railway trains
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GeM Laboratory, UMR CNRS 6183, Ecole Centrale of Nantes, 1 rue de la Noë, 44 321 Nantes Cedex 3, France

In the North West of France, more particularly in the region of the Somme Bay, where the ground is constituted mainly of peat, observation 
of the surface of the soil near railway tracks has revealed high levels of displacement. This paper, contains a prediction model and diagnosis 
of vibration near the track. A model of a railway track on layered ground subjected to a moving train has been built and the calculation 
method uses Fourier transform formalism for a semi-analytical solution in the wave number domain. It includes all elements of the track and 
allows a parametric analysis of its different elements and evaluation of vertical displacement according to the speed, weight and composition 
of each train. The diagnosis has been performed with in situ measurements and with the aim of the validation of the model. A parameter study 
of the ground undertaken by seismic measurements shows a critical speed close to 100 m/s while the studied trains are moving with sub-

Rayleigh speeds. Measurements give us a lot of information about lateral and vertical acceleration on the soil’s surface and parts of the track. 
For high speeds and freight trains, displacement reaches more than 10 mm.

Keywords: Wave propagation; Railway track; Moving loads (train); Soft soils; In situ measurements; Diagnosis
1. Introduction
1.1. Background to the problem

The consequences of railway traffic, in terms of

environmental damage (vibration, noise and various

polluters) are all the more important in view of the fact

that the speed of trains has increased. This increase in speed

is particularly sought after for railway trains like the high

speed T.G.V. in France. Concerning vibration, the effect of

this speed is directly connected to its relative position from

waves propagating through the ground (especially super-

ficial Rayleigh waves). For relatively soft ground (clay,

peat, .), a Rayleigh wave speed of less than 100 m/s is

possible, and in this case the super-Rayleigh regime is

reached for trains moving at high speed. This situation

induces high levels of displacement in the rail and at the
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ground’s surface, which has no impact on the comfort of

passengers, but is worrying for the wear and tear of the

tracks and neighbouring structures.
1.2. General outline

The French project ‘PREDIT’ includes the design of

simulation and diagnosis tools which enable us to simulate

and characterize all phenomena concerned with ground

traffic as precisely as possible. In fact, before the

development of numerical methods, available means were

limited to relatively simple models (for example, a beam on

an elastic foundation subjected to a moving load) and

generally taking into account only a part of the whole

coupled problem: train-track-ground. Despite some simpli-

fied hypotheses, the objective of this study is, therefore, to

ensure better interaction thanks to a more accurate model

and including, both specific experiments (the French

national railway company SNCF for the track, Soletanche-

Bachy for the ground) and published results.

As well as this model, we must refer to an experimental

in situ validation. Recordings have been made to build a

usable experimental data bank for the comparison between

in situ measurements and numerical results of



the simulation. For this comparison, it is necessary to obtain

all the data to test the model. Therefore, it was necessary to

first choose suitable data to perform numerical simulations.

Ground parameters are deduced from seismic recordings

and borings. Different models have been tried: semi-infinite

half space and one or two soft layers on substratum.

1.3. Review of published results

Many theoretical 2D models have been studied for semi-

infinite half space. Alabi (cf [1] and [2]) has studied the

effects of a line load on the surface of the ground and shown

the high levels of vertical displacement on the surface. In

order to take layered ground into account, De Barros and

Luco (cf [3] and [4]) have developed a semi-analytical

model for a point load moving on a viscoelastic multi-

layered half-space (details in [5]), using the determination

and combination of stiffness matrices obtained for each

layer. This model is based on a double Fourier transform

and shows the presence of Mach cones in the first layer for

super-Rayleigh speeds. This model was then used by

Gunaratine and Sanders for the road [6] and by Auersh for

track excitation [7]. It is also used by Jones and Petyt for

rectangular loads or strip loads with different ground

conditions: half space [8], elastic layers on a half space

[9] or on a rigid foundation [10].

A track is composed of two rails lying on sleepers (wood

or concrete) joined by railpads. The rail provides the contact

between the train wheel and the track. Vibrations from trains

propagating from the rail to the ballast going through the

sleepers, strains these same elements. This distribution was

mainly studied by Krylov, cf [11]. In fact the rail represents

the main source of excitation. For a railway system, the

excitation on the ground’s surface is generated mainly by

irregular contact between the wheel and the rail due to

manufacturing defects or wear and tear. With a high number

of trains, the properties of the track amplify the excitation.

The difficulty of the model comes from the fact that the

track has to be built with materials described by complex

constitutive Equation (like ballast) (e.g. by Gudehus [12]).

Boundary element models (used by Lombaert et al. [13]),

finite element models (used by Hall [14] for example) can

be also used. The rail is then modelled using beam elements

(Rayleigh-Timoshenko beam) supported by rigid sleepers.

Each sleeper has two degrees of freedom: rotation and

translation and lies on the ballast. The sleepers interact with

each other by damping-shock absorbers (representing the

railpads). The excitation is modelled as a series of point

loads representing the train moving at constant speed. The

load acts on a node along the beam with a time condition

corresponding to the speed of the train and the distance

between each node. The problem is then formulated in the

wave number domain. This model thus enables us to take

the non-linearities of the ground and the ballast into

account. Finally, by modal analysis or analysis of the

dispersion, parametric amplification notion is justified.
2

Coupled finite-boundary element models (Andersen et al.

[15]) can also be used. In this case, finite elements are used

to model the structure of the track and the ground is

described using a boundary element model. The coupling of

the finite element and the boundary element zones is carried

out in a context of nodal forces, i.e. in a finite element

manner. The coupled model is applied to the study of the

screening effect due to open or in-filled trenches along the

track. To reduce ground vibration caused by rail traffic,

Massarch [16] has also studied the isolation effect of open or

gas-filled trenches based on field measurements.

For Sheng et al. [17] the continuously welded rail is

modelled as an Euler beam lying on a Timoshenko beam

representing the sleepers. The ballast is modelled by vertical

stiffness and a uniformally distributed mass. This model

takes two loading modes into account (static and dynamic)

and shows the importance of the dynamic regime in the case

of super-Rayleigh for the amplification of vibration [18].

For low frequencies, the train-track interaction as well as the

inertia of the rail and sleepers are not considered. The soil

model frequently used for simulation (for example, in [19])

is similar to that developed by Jones and Petyt [20] and the

track model by Jones et al. [21]. The moving vertical

excitation includes a constant component and a harmonic

one simulating irregularities in the track (single frequency).

Forces due to track-soil interaction are roughly estimated, as

in [22], and become significant for frequencies less than

40 Hz. Dinkel et al. [23] calculated the linear response of the

ground using methods which sometimes include wavelet

algorithms.

The analytical solution of the problem has been obtained

by Felszeghy in [24] using a simplified rail-ballast-ground

model using a beam (Euler-Bernoulli or Timoshenko)

supported by an elastic foundation (springs and dampers).

An equivalent 3D numerical model has been also compared

to high speed train measurements in Ledsgard (Sweden) by

Paolucci et al. [25]. Dieterman and Metrikine [26] have

shown that two critical speeds exist in the case of a beam on

homogeneous ground, excited by a harmonic load, one

equal to the speed of the Rayleigh wave in the ground and

one other close to the speed of the Rayleigh wave,

controlled by the stiffness and the mass of the beam.

Moreover, energy is transferred from the beam to the ground

when the phase speed in the track is less than the Rayleigh

speed of the ground. Krylov [27] has deduced that the

displacement amplitude on the ground’s surface depends on

the period and the number of sleepers (also found by Heckl

et al. in [28]). In the case of multilayered ground, waves are

scattered with a higher penetration of energy into the

ground.

Finally, the heterogeneous effect of the ballast can be

considered. This was done by Suiker et al. ([29] and [30])

for example. The ballast is then no longer modelled as a

classic elastic continuous medium but to a Cosserat model

including rotations–translation and inertia of the granular

material (depending on the size of the grains).



2. Mathematical model

Two dimensional models are not able to reproduce

mechanisms of wave propagation in the ground correctly

since the loading zone represents a reduced area compared

to infinite ground surface, thus excluding the hypothesis of

plane deformation. This limitation has motivated research-

ers to obtain solutions using 3D models (see Fig. 1).
2.1. Description of the model

The calculation method uses the Fourier transform

formalism for a semi-analytical solution in the wave number

domain. The stiffness matrix for layered ground was written

and accompanied by a fitted phase argument in Helmoltz

functions. This provides us a fast numerical approach to the

problem. Equations are written in the wave number domain

as well as for steady state solutions. An inverse numerical

Fourier transform is then applied when the matrix equation of

the whole system (train-track-soil) has been solved.
2.2. Analytical solution to the 3D half-space problem

Soil is homogeneous and isotropic. Intrinsic parameters

for a layer of ground are Young’s modulus E, Poisson’s ratio

n, density r, hysteretic damping factor h and thickness h.

For layered ground, a rigidity matrix connecting stress to

displacement at the interface of each layer can be obtained.

For a displacement vector ðU which has components (u,v,

w), the behaviour of the half-space is described by Navier’s

elastodynamic equations. In the absence of body force, one

obtains the following vector equation:

ðl CmÞVðV ðU ÞCmV2 ðU Z r
v2 ðU

vt2
(1)

where l et m are Lamé’s constants, P is the gradient

operator and P2 is the laplacian operator.
Fig. 1. Representation o
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The stress–strain relation can be expressed as:

tij Z ldijD ðU Cm
vui

vxj

C
vuj

vxi

� �
(2)

where dij is the Kronecker delta, ui and xi are the ith

component of the vectors (u,v,w) and (x1,x2,x3) and D is the

dilatation defined by ((/(x1C(/(x2C(/(x3).

In the 3D model, the equation of motion for the soil is

satisfied by writing [31]:

u Z
vf

vx1

C
v2j

vx1vx3

; v Z
vf

vx2

C
v2j

vx2vx3

;

w Z
vf

vx3

C
v2j

vx2
3

K
1

cS

v2j

vt2
:

(3)

where f comes from compression waves (particle move-

ment in the direction of wave propagation) and j of shear

waves (particle movement perpendicular to the direction of

propagation) as in these equations:

V2f Z
1

c2
p

v2f

vt2
and V2j Z

1

c2
s

v2j

vt2

where cp and cs are compression and shear wave speed,

respectively.

Then, Eq. (2) and boundary conditions allow us to write

the following equations in (0,x1,x2,x3) relative to the soil:

t33ðx1; x2; x3; tÞ Z
l

c2
P

v2f

vt2
C2m

v2f

vx2
3

C
v3j

vx3
3

� �
K2r

v3j

vx3vt2

Z
K

FBðx1; tÞ

2LBAL

if jx2j%2LBAL

0 else

8><
>:

(4)
f the 3D model.



t13ðx1; x2; x3; tÞ Z 2m
v2f

vx1vx3

C
v3j

vx1vx2
3

� �
Kr

v3j

vx1vt2
Z 0

(5)

t23ðx1; x2; x3; tÞ Z 2m
v2f

vx2vx3

C
v3j

vx2vx2
3

� �
Kr

v3j

vx2vt2
Z 0

(6)

where FB(x1,t) is the vertical force acting on the ballast,

LBAL is the ballast width.

Changes of functions and variables are performed:

x Z x1Kct; y Z x2; z Z x3

wðb; tÞ Z w*ðbÞeiU0t; Fðb; tÞ Z F*ðbÞeiU0t

(
(7)

where c is the speed of the train, U0 is the excitation

frequency, * indicates that we study the steady state

solution and b and g are the wave numbers relative to x

and y.

A double Fourier transform (x,y)/(b,g) gives:
l

c2
P

ðU0KbcÞ2 �f � ðb;gÞC2m
v2 �f � ðb;gÞ

vz2
C

v3 �j � ðb;gÞ

vz3

0
@

1
AK2rðU0KbcÞ2

v �j � ðb;gÞ

vz
ZK�F*

BðbÞ
singLBAL

gLBAL

2m
v �f � ðb;gÞ

vz
C2m

v2 �j � ðb;gÞ

vz2
CrðU0KbcÞ2 �j � ðb;gÞ Z 0

8>>>>><
>>>>>:

(8)
In these equations ‘-‘ refers to function in the wave number

domain.

Solutions with no propagating waves in negative z

direction (no reflection) for this last set of equation are:

�f�
ðb;gÞ Z Aðb;gÞeKaPz and �j�

ðb;gÞ Z Bðb;gÞeKaSz (9)

where a2
P Zb2Cg2K U0Kbc

cP

� 	2

and a2
SZb2Cg2K

U0Kbc
cS

� 	2

Displacement on the soil’s surface is given by:

�w� ZKaP
�Aðb;gÞCa2

S
�Bðb;gÞC

U0 Kbc

cS

� �2

�Bðb;gÞ

(10)

By solving previous equation, vertical displacement in the

wave number domain and on the soil’s surface (zZ0) is

written as follows:

�w� ZK
�F�

BðbÞ

m

ðU0KbcÞ2

c2
S

!
aP

ða2
S Cb2 Cg2Þ2K4aPaSðb

2 Cg2Þ

sin gLBAL

gLBAL

(11)

The aim is to determine �w� on the soil’s surface and to

deduce w with the help of inverse numerical Fourier

transform. Thus, it is necessary to calculate �F�
BðbÞ.
4

Stress continuity for zZ0 is given by:

tzzðx; y; 0; tÞ ZK
FBðx; tÞ

2LBAL

(12)

So, displacement below the ballast is written as follows:

�w�
BðbÞ ZK

�F�
BðbÞ

pm

ðN
0

ðU0KbcÞ2

c2
S

!
aP

ða2
S Cb2 Cg2Þ2K4aPaSðb

2 Cg2Þ

!
sin gLBAL

gLBAL

dg (13)

The equation for a rail represented by an Euler beam is

written:
EI
v4wRðx1; tÞ

vx4
1

CmR

v2wRðx1; tÞ

vt2
CkP½wRðx1; tÞKwSðx1; tÞ�

Z

P0eiU0t

2b
pour jx1 Kctj!b

0 sinon

8><
>:

(14)

where x1Kct indicates the load displacement.

Sleepers are represented by a continuous mass in the

equation:

mS

v2wSðx1; tÞ

vt2
CkP½wSðx1; tÞKwRðx1; tÞ� ZKFSðx1; tÞ

(15)

where FS is the rail force on the sleepers.

At the top and bottom of the ballast, the system is written

as:

mB

6
2

v2wSðx1; tÞ

vt2
C

v2wBðx1; tÞ

vt2

� �
CkB½wSðx1; tÞKwBðx1; tÞ�

ZFSðx1; tÞ

(16)



mB

6

v2wSðx1; tÞ

vt2
C2

v2wBðx1; tÞ

vt2

� �
CkB½KwSðx1; tÞ

CwBðx1; tÞ�ZKFBðx1; tÞ

(17)

where FB is the ballast force on the soil.

Damping hi in pads and ballast is taken into account [32]

in stiffness as

k�i Z ki½1 C ihi signðU0 � bcÞ�:

Using Eq. (7), the following set of equations relative to

the track is obtained:

A1ðbÞ �w
*
RðbÞKkP �w

*
SðbÞ Z A2ðbÞ

Kkp �w
*
RðbÞCA3ðbÞ �w

*
SðbÞCA4ðbÞ �w

*
BðbÞ Z 0

A4ðbÞ �w
*
SðbÞCA5ðbÞ �w

*
BðbÞ ZK�F*

BðbÞ

�w*
BðbÞ Z A6ðbÞ �F

*
BðbÞ

8>>>>><
>>>>>:

(18)

where

A1ðbÞ Z EIb4KðUKbcÞ2mR CkP; A2ðbÞ Z P0;

A4ðbÞ ZKðUKbcÞ2
mB

6
KkB;

A3ðbÞ ZKmSðUKbcÞ2 CkP CkB K
mB

3
ðUKbcÞ2;

A5ðbÞ ZKðUKbcÞ2
mB

3
CkB;

A6ðbÞ ZK
1

pm

ðN
0

ðU0KbcÞ2

c2
S

!
aP

ða2
S Cb2 Cg2Þ2 K4aPaSðb

2 Cg2Þ

!
sin gLBAL

gLBAL

dg

Solving the Eq. (18) leads to the force expression:

�F*
BðbÞZ

A2ðbÞA4ðbÞkP

A1ðbÞA6ðbÞA
2
4ðbÞðA3ðbÞA1ðbÞKk2

PÞð1CA5ðbÞA6ðbÞÞ

(19)

and transformed displacement is finally given by:

�w�ZK
�F�

BðbÞ

m

ðU0KbcÞ2

c2
S

!
aP

ða2
S Cb2 Cg2Þ2K4aPaSðb

2 Cg2Þ

!
singLBAL

gLBAL

: (20)
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2.3. Semi-analytical solution to the 3D multilayered

problem

In this part, the previous model (Fig. 1) is used with

several ground layers below the ballast. A relation between

displacements and stresses can be written into a matrix

formulation.

First the dilatation q is introduced as:

�q* Z ib �u* C ig �v* C
d �w*

dz
Z �AeaPðzKhÞ C �BeKaPz (21)

Wave equation appear using �q*:

d2

dz2
Ka2

S

� � �u*

�v*

�w*

8><
>:

9>=
>; ZK

l Cm

m

ibð �AeaPðzKhÞ C �BeKaPzÞ

igð �AeaPðzKhÞ C �BeKaPzÞ

aPð �AeaPðzKhÞK �BeKaPzÞ

8>><
>>:

9>>=
>>;

(22)

where aP and aS are defined in (9).

Solutions to this last equation are expressed as:

�u*

�v*

�w*

8>><
>>:

9>>=
>>; ZK

�AeaPðzKhÞ

U0Kbc

c2
P

� 	2

Kib

Kig

KaP

8>><
>>:

9>>=
>>;C

�BeaPðzKhÞ

U0Kbc

c2
P

� 	2

Kib

Kig

aP

8>><
>>:

9>>=
>>;

CeaSðzKhÞ

�C

�D

K
i

aS

ðb �C Cg �DÞ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

CeKaSz

�E

�F

i

aS

ðb �E Cg �FÞ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(23)

For a layer of thickness h, displacement is written in terms

of the constants �A, �B, �C, �D, �Eand �F:

f �U*g Z f �u*
0 �v*

0 iw*
0 �u*

h �v*
h i �w*

h g Z ½Q�f �A �B �C �D �E �FgT (24)

Longitudinal, lateral and vertical stresses are given,

respectively, by:

�t*
xz

m
Z

d �u*

dz
C ib �w* ;

�t*
yz

m
Z

d �v*

dz
C ig �w* ;

�t*
zz

m
Z

l

m
�q* C2

d �w*

dz

(25)



Similarly, for the same layer, stress can be expressed in

terms of the previous constants:

f �S*g Z fK�t*
xz;0 K �t*

yz;0 Ki �t*
zz;0 �t*

xz;h �t*
yz;h i �t*

zz;hg

Z ½S�f �A �B �C �D �E �FgT (26)

For the ground, the 3D stiffness matrix is the combination of

the stiffness matrices of each layer:

Stiffness

Matrix

" #
f �U�g Z f �S�g (27)

where f �U�g is the transformed displacement vector and

f �S�g is the stress vector.

Consequently, the displacement vector f �U�g is given by:

f �U�g Z
Stiffness

Matrix

" #K1

f �S�g Z ½B�f �S�g (28)

where [B] is the inverse stiffness matrix for multilayered

ground.

The general stiffness matrix is obtained from matrices

[Q], [S] and [R] detailed in the Appendix.

As no lateral and longitudinal stress is considered in the

present problem: �txz Z �tyz Z0, displacement is obtained as

follows:

�u � ð0Þ ZKiB31 �t*
zzð0Þ; �v � ð0Þ ZKiB32 �t*

zzð0Þ;

�w � ð0Þ ZKB33 �t*
zzð0Þ

(29)

Vertical stress comes from the force exerted by the ballast

FB(x,t) on the surface of lateral length 2LBAL. So,

displacement is written:

�w�ð0Þ ZKB33
�FBðbÞ

sin gLBAL

gLBAL

(30)
2.4. Description of the train load

Typical train excitation is more complex than that

represented previously (Fig. 2). It is composed of a series

of vertical excitation, modelling the effect of each engine

and carriage wheel on the rail. Each of these forces is

considered as harmonic. The total weight of the load is

distributed over the whole rail-wheel contact.
Fig. 2. Representation o
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Cauchy stress due to the engine is given by (cf. Fig. 3):

�sENGðbÞ ZK2PENGeiU0teKib
2
ðNWAGLWAGCLENGÞ

sin ba

ba
½1

C2 cos bLBOGKENG�cos bLAXKENG (31)

and the Cauchy stress due to 2NWAG carriages:

�sWAGðbÞ ZK4PWAGeiU0t sin ba

ba
cos bLAX–ENG

!cos bLBOG–WAG

X2NWAG

kZ1

eibðkKðNWAG=2ÞKð1=2ÞÞLWAG

(32)

where PENG and PWAG are the engine and carriage weight,

NWAG is the number of carriages, LBOG–ENG is the length

between two engine bogies, LBOG–WAG is the length

between two carriage bogies, LAX–ENG and LAX–WAG is

the length between two engine and carriage axles.

Finally, for a standard train: �sTRAINðbÞZ �sENGðbÞC
�sWAGðbÞ.

Excitation of different axles is taken to be synchronous.

However, the study of non-synchronous excitation can be

carried out by introducing a time delay in Eqs. (31) and (32).

Parameters for a real train (the SNCF ‘Corail’ and

‘Autorail’) are given in Table 1. In the first example we

consider only two carriages (Fig. 3). In the wave number

domain the distribution function of the train is a periodical

and symmetrical function when the speed is equal to zero.

Fig. 3 describes Cauchy stress in the real field and in

accordance with Fig. 2. The magnitude of this stress

depends on the weight of each axle and the surface area of

wheel-rail contact.
2.5. Numerical results

Fig. 4 shows vertical displacement on the soil’s surface

in the wave number domain. A curve in a dotted line can be

obtained for a model of a layer lying on a half-space excited

by a harmonic rectangular load (by Lefeuve [32]). The

resulting curve in the (b, g) plane for a 3D model without a

track is deduced by a rotation of this previous curve around

the w* vertical axle and is a symmetrical function of b and

g. The curve in a full line against b associated with the curve

in a dotted line against g represents the model with a track

and is not a symmetrical function. The presence of the track
f train excitation.



Fig. 3. Cauchy stress in wave number (left) and real fields (right).

Table 1

Parameters of standard trains

PENG (kN) PWAG (kN) LBOG–ENG (m) LBOG–WAG (m) LAX–ENG (m) LAX–WAG (m)

Autorail 108 78 2.5 2.5 15.2 15.4

Corail 180 103 1.6 2.56 11.99 16.3

Fig. 4. Vertical displacement in the Fourier domain following b (—) and g

(–) axes.
modifies the magnitude of waves emitted in the first layer of

the ground and, more precisely, amplifies the displacement

in the direction of the track.

Increasing load frequency leads to a reduction in the peak

of resonance and this is obtained for higher Mach numbers

(Fig. 5). The effect on vertical displacement non-dimensio-

nalised by the Rayleigh wave length is also studied for

increasing speeds of harmonic unit load (40 Hz) moving on

semi-infinite ground. For a non-moving load (MRZ0) or a

load moving at sub-Rayleigh speeds (MRZ0.5), displace-

ment is symmetrical and the maximum coincides with the

load position. For super-Rayleigh speeds (MRZ1.5), the

maximum is shifted behind the load position. The critical

speed (MRZ1) between these two regimes amplifies

displacement.

Now, the final track model (train-track-soil) discussed in

paragraph 2.1 is used. The ballast is considered as the first

layer of the ground (thickness hBAL) and interaction is

obtained by sleepers (width 2LTRAV). Fig. 6 shows a

comparison between displacement below the track in the

real field for each speed regime (for a 10 Hz unit load).

Mechanical parameters correspond to soft peaty ground

(Table 2). If the load speed is lower than the phase speed of

the system, displacement produced by each train force

decreases quickly and is limited to the vicinity of this force.

However, if the speed load increases enough to excite a

propagation mode in the system, there is amplification due

to each force response.

An increase in speed thus implies an amplification of

vertical displacement and an amplification of oscillation
7

behind the train. Displacement field on the surface of

the ground is represented in Fig. 6 for different speeds and

confirms previous results as well as the presence of Mach

cones for each bogie (Fig. 7).

At the end of this theoretical study of railway vehicle

vibration, numerical software called FASTIVIB was built.

‘Fourier Analysis of Soil-Track Interaction and

VIBration’ is a software programme that evaluates

displacement on the surface of homogeneous and

isotropic semi-infinite or multilayered soil. It takes into

account the physical characteristics of the soil under a

railway track and a simplified model of a train moving at

constant speed.



Fig. 5. Critical speed for moving load on soft soil (left) and vertical displacement against the load speed (right).
The mathematical track model in FASTIVIB is obtained

with the following simplifications:

– each rail is considered as perfectly elastic (Euler

beam),

– each sleeper is modelled by a sum of continuous

stiffness elements connected to the rail and

allowing a longitudinal and lateral strength,

– railpads are considered as stiffness and damping

elements between the sleepers and the rail,

– the ballast can be constituted either simply with

vertical stiffness elements allowing a longitudi-

nal and lateral rigidity of the structure, or as an

elastic layer lying on the ground’s surface.
3. Diagnosis of vibration from in-situ measurements
3.1. Location and soil properties

Special sites with high levels of displacement are found

in the North West of France (near Amiens) along the railway
Fig. 6. Effect of train speed on the vertical displacement under the track.
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line from Longueau to Boulogne. Two tracks are concerned

where the ground is composed mainly of alluvia (clay mixed

with peat-low Young modulus E) or silt often found along

the valley of the river Somme.

The studied area is located at the South West

boundary of this valley. It is characterised by a very

thick alluvium layer lying directly on a limestone

substratum. The density r of the ground can easily be

measured. It is determined using borings in the vicinity

of the track. A sample (size: depth 7 m, diameter 70 mm)

has been analysed. For different sections normal and

hydrostatic weighing tests are performed successively. To

identify the Young modulus and the Poisson ratio, P, S

and R wave speeds are obtained from seismic refraction

tests.

Compression and shear wave speeds are connected to

parameters of the behavior law of soil by:
cP Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l C2m

r

s
cS Z

ffiffiffiffi
m

r

r
(33)
Table 2

Mechanical parameters for the two sites concerned

BREILLY

Cp

(m/s)

Cs

(m/s)

E

(MPa)

n r (kg/

m3)

h

Peat (3 m) 344 147 96 0.39 1600 0.05

Transition (4 m) 960 480 940 0.37 1850 0.08

Limestone (N) 1872 930 4539 0.34 2000 0.1

CROUY-ST-PIERRE

Cp (m/

s)

Cs (m/

s)

E

(MPa)

n r (kg/

m3)

h

Peat (3 m) 345 122 68 0.43 1600 0.05

Transition (4 m) 959 475 940 0.37 1850 0.08

Limestone (N) 1850 920 3889 0.35 2000 0.1



Fig. 7. Displacement field on soil surface for Corail train in sub (left) and super Rayleigh (right) regimes.
As Lamé coefficients l and m are joined to Young modulus

E and to Poisson ratio n, these mechanical parameters can be

deduced as follows:

E Z rc2
S

3 cP

cS

� 	2

K4

cP

cS

� 	2

K1

n Z
1

2

cP

cS

� 	2

K2

cP

cS

� 	2

K1

(34)

The damping ratio h characterising the material is

identified by the evolution of the frequency relationship

between two spectral measurements at two different points.

Datoussaid et al. in [33] have shown that the mean of this

curve allows us to deduce the increase in damping with

frequency.

Finally, Table 2 sums up the main results in two

locations: ‘Breilly’ and ‘Crouy St Pierre’. The simulation

model is built with the data in this table. It appears that the

two sites are slightly different in terms of Young modulus

and Poisson ratio. Density and damping ratio are assumed to

be the same.

3.2. Measurements network

Numerical camcorder CCD (MotionVision) of spacial

resolution 528!512 pixels, containing an acquisition card

coupled with unit software (SYSMAT Industry VNR250)

is used. With this process, we can evaluate longitudinal

and vertical displacement of the rail as well as

deformation using four marks painted on the rail [34].

The frequency of acquisition is equal to 250 images per

second. In this case, the time of acquisition is close to 7 s

(approximately 1800 images). Analysis of recordings is

carried out in deferred time thanks to a program that

automatically calculates the displacement for each image

between the marks and their positions. The centre is

located by calculating the barycentre balanced by bright

colours. The precision of measurement is dependent on

the size of the mark. Finally, local plane displacement of

the rail is easily deduced from these marks. In addition,
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Laser velocimeter (RMP-POLYTEC OFV 2200) aiming at

a reflection cell glued to the rail for lateral velocity

measurements is also used.

An accelerometer BandK type 4371 is magnetised

on the rail for vertical measurements and on the flank

of the rail for lateral measurements. It is subjected to

very high acceleration as well as high noise levels

propagated by the rail. One accelerometer (ICP 393A03)

is glued to the surface of the sleeper for vertical

measurements or on its side for lateral measurements

and the other one is fixed to a steel support sunk into the

ground in different parallel and perpendicular points to

the track.

The technique of a trigger starting with infrared detection

enables automatically analysis of intersection of the infrared

ray by the passage of the train. The speed of trains then can

be calculated precisely.

Displacement of each part of the track and of ground

surface is calculated with sufficient precision from

acceleration signals measured by accelerometers. How-

ever, particular care must be taken during data processing

of transducers used to record acceleration and to

recording parameters such as the sampling frequency.

Thanks to the asynchronous recording of numerical and

analogical data, a sampling frequency of 1000 Hz is used

(compared to 250 Hz for the camera) to obtain a

sufficiently accurate displacement calculation. Thus,

measured acceleration signals are integrated to deduce

speeds and displacement by using one or two numerical

integrations.
3.3. Experimental results

Figs. 8 and 9 show absolute rail displacement when

Corail and Autorail trains are moving on the track. In Fig. 8,

with the same speed (120 km/h), the Corail train is

composed of one or two engines. In Fig. 9, the Autorail

train pulls two or four carriages at a speed equal to 75 km/h.
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Fig. 8. Data from VNR for Corail train with 2 (left) and 1 (left) engines (120 km/h).
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Fig. 9. Data from VNR for short-2 carriages-(left) and long-4 carriages-(right) Autorail trains (75 km/h).
Each train element can be discerned and the noise signal is

relatively low. For these speeds, rail deformation and

consequently ground displacement is mainly quasi-static.

The maximum displacement amplitude is about 4 mm for a

load equal to 2.105 kN by axle. Fig. 10 shows the rail

displacement at a speed equal to 75 km/h for a freight train

(two engines and twenty two carriages) and only two

engines. Measurements of acceleration in the parts of the

track (rail, sleepers, pads) are carried out for each passage.

The peaks of displacement and maximum particle speeds on

the site are compared for a Corail and Autorail train and are

summed up in Table 3.
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Fig. 10. Data VNR for a freight train—two engines a
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Fig. 11 represents acceleration signals for a train and

the displacement spectra calculated by double integration

and Fourier transform. The response spectra are

calculated using the sampling frequency of FsZ
1000 Hz and a number of points NZ8192 points. The

frequency f and the spectra Sw are then expressed

respectively as:

f Z Fs
M

N
and Sw Z

FFTðwÞ

Fs
(35)

where M varies from 0 to the Nyquist frequency and

FFT denotes the Fast Fourier Transform.
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nd 22 carriages (left) and two engines (right).



Table 3

Particle speeds and maximum displacement

Particle speed (mm/s) Induced displacement (mm)

Corail Engine Carriages Engine Carriages

Sleeper – – – –

Ballast 120 40 5 2

Soil at 2 m 60 40 3 0.6

Soil at 3 m 40 1 1.4 0.4

Autorail

Sleeper 600 – – –

Ballast 100 – 0.8 0.3

Soil at 2 m 40 0.5 1.6 0.2

Soil at 3 m 20 0.25 0.8 0.1
Signals are the same with an attenuation factor

in amplitude close to 10. Note that the signal

measured in theballast can be strongly faulty due to the

unsatisfactory interaction between granular medium and
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Fig. 11. Measurements on a track for a train moving at 7
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the accelerometer. The spectra evolve from one element to

the other and we find that the highest peaks in sleepers and

in the ballast are due to the passage of axles. In the 10–

20 Hz range, amplitude is smaller.

Fig. 12 gives results for surface measurements of the

ground near the track (2, 3 and 5 m) for the same

passage and train speed (Autorail train moving at

80 km/h). The wave propagation in the medium is

necessarily taken into account to perform measurements

far from the track because very high quasi-static

deflections mask vibration. These high deflections are

visible on the spectra. For example, near the track, a

high peak between 2 and 5 Hz masks vibration (in the

time domain) with consequences on components from 10

to 40 Hz. These deflections are not as visible at 3 and

5 m. The acceleration signal measured at 5 m is slightly

higher than the result at 3 m. But these results wholly

depend on the relation between the wavelength and the
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5 km/h (from top to bottom: rail, sleeper, ballast).



Fig. 12. Measurements on soil surface for a train moving at 75 km/h (from top to bottom: 2, 3, 5 m).
recording position chosen for the experimental

measurement.

Fifteen passages including various parameters such as

the train type, its speed, the site characteristics are recorded

by Picoux et al. and summarised in [34].

The study of spectral acceleration density shows that:

– vertical accelerations is very much reduced by the

ballast,

– their spectra distribution is different from one

element to another,

– on a same site, a heavy train (Corail) carries

higher acceleration in the 50–100 Hz range than

a freight train and an Autorail train,

– for the highest frequencies, a gap is fully

perceptible between the modified and the non-

modified site.
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4. Validation of the model and use in prediction

4.1. Parametric analysis

A ‘2-layer’ model is made up of a ballast (0,8 m) and a

peat layer (7 m) lying on a limestone substratum. The

maximal amplitude of the velocity signal is represented as a

function of the Young modulus in Fig. 13. We can observe

that the maximal amplitude of the signal increases when the

frequency of excitation and the Young modulus of the peat

decrease. In the range of usual Young modulus for the

considered site (50–100 MPa), the particle speed of the soil

surface is less sensitive to the excitation frequency than for

lower modulus. This representation will hereafter allow us

to approach and to calibrate the model using measurements.

In the case of linear approximation, the principle of

superposition can be applied for a study including



Fig. 13. Influence of Young modulus on maximal particle speed.
several frequencies. An example is given in Fig. 14 in

the wave number domain and in the real field for a

harmonic rectangular load. Supplementary peaks corre-

sponding to excitation frequencies can be noted as well

as a change in shape of the temporal signal and the

amplitude under the load. In addition to the response

superposition, the weight function depends on a

frequency between 0 and 80 Hz.
Fig. 14. Frequency combination in the

Fig. 15. Comparison for Autorail train: particle speed at 2 m fr
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While it has already been previously noted in the

framework of a multifrequential study, the total excitation

includes a quasi-static component (weight of train axles)

and a harmonic component (irregularities due to wheel-rail

contact). The excitation is therefore a function of the

frequency. Near the track, static and quasi-static responses

are preponderant. The model used for comparisons at 2 or

3 m includes the contribution of the constant component and

of a low harmonic frequency component. Below 5 m, the

contribution of the harmonic component becomes more

important.
4.2. Comparison between simulation results and measure-

ment data

For this comparison, the spectral densities of displace-

ment show a large discrepancy in the range 0–20 Hz and

particle speeds are not easily comparable, certainly due to

experimental conditions and perhaps a less accurate

model used for the multifrequential representation of

Autorail train excitation. Similar difficulties have been

noted by Paolucci et al. [25] for the Ledsgaard site

(Sweden). Fig. 15 shows signals measured in situ
Fourier domain and in real field.

om track (left), spectral density of displacement (right).



Fig. 16. Comparison for Corail train: particle speed at 2 m from track (left),spectral density of displacement (right).
and calculated at 2 m from the track during the passage

of a light train (Autorail). The spectral density of vertical

displacement calculated with a complete model between

0 and 80 Hz can then be compared to the measurement

data from near the track.

Finally, Fig. 16 introduces results for a Corail train

(two engines) moving at a higher speed (135 km/h). In

this case, the simulation model gives results that are in

better accordance with spectral density and particle

speeds. Note that for this calculation, a train made up of

six carriages was studied while for the measurements,

the train had 12 carriages. This point can explain after

6 s a bigger decrease in the simulation curve than in the

measurement curve. Fig. 17 gives us information about

the calculated signal according to the distance from the

track and shows the quasi-static shape of the surface

displacement near the track. This shape disappears the

further it gets from the track and gives a harmonic

signal.

Farther from the source, the contribution of the harmonic

regime due to irregularities becomes more important. The

comparison between measurements and results deduced

from the numerical simulation according to the distance

from the track is also performed. Accordance between the

two sets of results confirms the accurate choice of

mechanical parameters before fitting using a minimisation

process, in particular for those linked to compression and

shear wave speeds.
Fig. 17. Distance from the track; top: displacement response against

distance, bottom: comparison between simulation and measurements.
4.3. Further developments

An analytical or semi-analytical approach using

Fourier transform is therefore suitable for the case of

a semi-infinite soil medium. Moreover, it can be used in

the case of horizontal homogeneous ground layers. But

this method is not possible if the ground includes

various heterogeneities (inclusions, tunnels, .) or buried

structures with very different material characteristics. In

this case, other more convenient approaches are
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necessary, for example a numerical model developed

by Laghrouche in [35] can be used. This model has

been compared with the semi-analytical approach for a

semi infinite medium by Lefeuve-Mesgouez et al. in

[36] and can be used in future developments to study

solutions to specific vibration problems such as: sites

with trenches, inclusion of damping layers or the

presence of concrete columns under or near the track.

Also in our approach, the ground is modelled as an

isotropic and homogeneous linear elastic medium with



a material dissipation by means of a hysteretic damping

hypothesis. To consider the real behaviour of the soil,

this model can be improved and for example, the effect

of fully saturated poroelastic soil taking into account soil

porosity and permeability, could be studied as in [37]

and [38] to give a better definition of the organic peat

layer. In the same outline, we could study the influence

of seasonal variations of the ground water table on rail

traffic-induced vibrations, in the same way as [39] for

the passage of heavy trucks on a uneven surface. The

modelisation of traffic loads also needs supplementary

study. The train axle indeed includes a lot of ‘mass-

spring’ systems between the proper train and the contact

on the rail, and for the study, our model is very much

simplified. Finally, more accurate data on the contact

between wheel and rail would allow better precision in

the real frequency range and thus improve the source

function approached during the validation.
5. Conclusions

The first part of this paper, is concerned with

numerical simulation tools suited to the problem of the

propagation of vibration from railway traffic and taking

into account the various elements of the structure (rail-

track-ground). The numerical model is proposed to ensure

the interaction between track and ground and possible

simplifications for the ground (semi-infinite or multi-

layered) with, nevertheless, the restriction of a linear

hypothesis for the behavior of all materials. The model

can be applied to 2D or 3D configurations. The

adaptation of a fitted argument (FASTIVIB software)

has allowed a gain in calculation time (reduction of 50

per cent for a soil including five layers). Despite

uncertain geomechanical data, the model has allowed us

to explain the relative influence of the various track

components. The model enables all possible parametric

studies (with or without track, characterisation of all

horizontal and vertical displacement in the wave number

and real fields).

The use of these models and the validity of the

results are directly connected to the accuracy of

geomechanical data concerning both the track and

more particularly the ground. Consequently, the second

part of this paper develops in situ measurements of soft

soil. The Rayleigh wave speed in the peat layer is

obtained in the 90–110 m/s range (320–400 km/h). Thus,

with a maximal train speed measured at 135 km/h, the

super-Rayleigh regime cannot be reached (Mach number

close to 0.4). Despite these conditions, the effect of

train speed can be perceived upon observation of trains

moving at 70 and 135 km/h and the effect of train type

has also been observed. Using the average of vertical

displacement and by choosing a reference of 1 for an

Autorail train, results of approximately 1.7 are obtained
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for a Corail train and 2.7 for a freight train. The

measurement network and the signal analysis have

allowed to accurately deduce displacement of each

part of the track and on the surface of ground; even

if some results are difficult to use (superposition of

noise and signal), the influence of several parameters

concerning with the railway track can be performed

correctly.

Finally, the last part is concerned with the comparison

of the numerical results and experimental data. For this

operation, it was necessary first to choose suitable data to

perform numerical simulations. Parameters of the ground

are deduced from seismic measures and borings.

Parameters for the track are provided from the S.N.C.F.

A problem arose from simulation studies concerning the

choice of the excitation frequency. Several models of

excitation were proposed (mono-frequential and multi-

frequential with frequencies in the 5–80 Hz range). This

choice could explain some differences (sometimes large

in the case of some frequency domains and trains)

obtained between experimental and numerical results.

However in many cases, the comparison performed by

Picoux in [40] leads us to an acceptable agreement taking

into account different uncertainties present in the two

approaches. This agreement is sufficiently significant to

estimate that the proposed model allows us to obtain

suitable information about the behaviour of the track and

the surrounding ground.
Appendix
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½Q�

Z

KibeKaPh

DP

Kib

DP

eKaSh 0 1 0

KigeKaPh

DP

Kig

DP

0 eKaSh 0 1

KiaPeKa1h

DP

iaP

DP

beKaSh

aS

geKaSh

aS

K
b

aS

K
g

aS

Kib

DP

KibeKaPh

DP

1 0 eKaSz 0

Kig

DP

KigeKaPh

DP

0 1 0 eKaSh

KiaP

DP

iaPeKaPh

DP

b

aS

g

aS

KbeKaSh

aS

KgeKaSh

aS

2
666666666666666666666666666664

3
777777777777777777777777777775

where DPZðU0KbcÞ2=c2
P and DSZðU0KbcÞ2=c2

S.

Stress matrix [S]



½S� Z m

2iaPb

DP

eKaPh K
2ibaP

DP

K
a2

S Cb2

aS

eKaPz Kbg

aS

a2
S Cb2

aS

bg

aS

2iaPg

DP

eKaPh K
2igaP

DP

Kbg

aS

K
a2

S Cg2

aS

eKaPh bg

aS

a2
S Cg2

aS

ið2a2
S CDSÞ

DP

eKaPh ið2a2
S CDSÞ

DP

K2beKaPz K2geKaPh K2b K2g

K
2ibaP

DP

2iaPg

DP

eKaPh a2
S Cb2

aS

bg

aS

K
a2

S Cg2

aS

eKaPh K
bg

aS

eKaPh

K2igaP

DP

2iaPg

DP

eKaPh bg

aS

a2
S Cg2

aS

K
bg

aS

eKaPh K
a2

S Cg2

aS

eKaPh

K
ið2a2

S CDSÞ

DP

K
ið2a2

S CDSÞ

DP

eKaPh 2b 2g 2beKaPh 2geKaPh

2
666666666666666666666666664

3
777777777777777777777777775
Stiffness matrix [R] for half-space
½R� Z
m

D

ðb2aP Cg2aSKaPa2
SÞ bgðaSKaPÞ bða2

S Cb2 Cg2 K2aPaSÞ

bgðaSKaPÞ K2aPg2 KaPb2 CaPa2
S gða2

S Cb2 Cg2K2aPaSÞ

bða2
S Cb2 Cg2K2aPaSÞ gða2

S Cb2 Cg2K2aPaSÞ KaS

U0 Kbc

c2
S

0
@

1
A2

2
6666666664

3
7777777775
where DZb2Cg2 KaPaS.
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