A Probabilistic Approach to Large Time Behavior of Mild Solutions of Hamilton-Jacobi-Bellman Equations in Infinite Dimension

Abstract : We study the large time behaviour of mild solutions of HJB equations in infinite dimension by a purely probabilistic approach. For that purpose, we show that the solution of a BSDE in finite horizon $T$ taken at initial time behaves like a linear term in $T$ shifted with the solution of the associated EBSDE taken at initial time. Moreover we give an explicit speed of convergence, which seems to appear very rarely in literature.
Type de document :
Article dans une revue
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2015, 53 (1), pp.378-398. 〈10.1137/140976091〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01006336
Contributeur : Pierre-Yves Madec <>
Soumis le : jeudi 15 janvier 2015 - 13:35:47
Dernière modification le : vendredi 17 novembre 2017 - 19:13:26
Document(s) archivé(s) le : samedi 15 avril 2017 - 17:46:19

Fichiers

097609R.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Ying Hu, Pierre-Yves Madec, Adrien Richou. A Probabilistic Approach to Large Time Behavior of Mild Solutions of Hamilton-Jacobi-Bellman Equations in Infinite Dimension. SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2015, 53 (1), pp.378-398. 〈10.1137/140976091〉. 〈hal-01006336v4〉

Partager

Métriques

Consultations de la notice

467

Téléchargements de fichiers

93