Convergent presentations and polygraphic resolutions of associative algebras

Yves Guiraud 1, 2 Eric Hoffbeck 3 Philippe Malbos 4, *
* Auteur correspondant
2 PI.R2 - Design, study and implementation of languages for proofs and programs
PPS - Preuves, Programmes et Systèmes, UPD7 - Université Paris Diderot - Paris 7, CNRS - Centre National de la Recherche Scientifique, Inria de Paris
Abstract : Several constructive homological methods based on noncommutative Gröbner bases are known to compute free resolutions of associative algebras. In particular, these methods relate the Koszul property for an associative algebra to the existence of a quadratic Gröbner basis of its ideal of relations. In this article, using a higher-dimensional rewriting theory approach, we give several improvements of these methods. We define polygraphs for associative algebras as higher-dimensional linear rewriting systems that generalise the notion of noncommutative Gröbner bases, and allow more possibilities of termination orders than those associated to monomial orders. We introduce polygraphic resolutions of associative algebras, giving a categorical description of higher-dimensional syzygies for presentations of algebras. We show how to compute polygraphic resolutions starting from a convergent presentation, and how these resolutions can be linked with the Koszul property.
Type de document :
Pré-publication, Document de travail
65 pages. 2017
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01006220
Contributeur : Yves Guiraud <>
Soumis le : jeudi 21 décembre 2017 - 18:51:29
Dernière modification le : mardi 22 mai 2018 - 20:40:03

Fichier

groebner.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01006220, version 2

Citation

Yves Guiraud, Eric Hoffbeck, Philippe Malbos. Convergent presentations and polygraphic resolutions of associative algebras. 65 pages. 2017. 〈hal-01006220v2〉

Partager

Métriques

Consultations de la notice

360

Téléchargements de fichiers

24